Novel Set of Diarylmethanes to Target Colorectal Cancer: Synthesis, In Vitro and In Silico Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemistry
2.2. Physical Measurements
2.3. General Procedure for the Synthesis of Olefinic Diarylmethanes
2.3.1. 2-(1-(4-methoxyphenyl)-2-arylvinyl)pyridine 6
2.3.2. 2-(1-(4-methoxyphenyl)-2-(p-tolyl)vinyl)pyridine 7
2.3.3. 2-(1,2-bis(4-methoxyphenyl)vinyl)pyridine 8
2.3.4. 2-(2-(4-isopropylphenyl)-1-(4-methoxyphenyl)vinyl)pyridine 9
2.3.5. 2-(2-(4-(tert-butyl)phenyl)-1-(4-methoxyphenyl)vinyl)pyridine 10
2.3.6. 4-(2-(4-methoxyphenyl)-2-(pyridin-2-yl)vinyl)phenol 11b
2.3.7. 2-(1-(4-methoxyphenyl)-2-(4-(trifluoromethyl)phenyl)vinyl)pyridine 12
2.3.8. 2-(2-(4-bromophenyl)-1-(4-methoxyphenyl)vinyl)pyridine 13
2.3.9. 2-(2-(4-chlorophenyl)-1-(4-methoxyphenyl)vinyl)pyridine 14
2.3.10. 2-(2-(4-fluorophenyl)-1-(4-methoxyphenyl)vinyl)pyridine 15
2.4. General Procedure for the Synthesis of aryloxyDAM
2.4.1. 2-((4-methoxyphenyl)(phenoxy)methyl)pyridine 17
2.4.2. 2-((4-methoxyphenyl)(p-tolyloxy)methyl)pyridine 18
2.4.3. 2-((4-methoxyphenoxy)(4-methoxyphenyl)methyl)pyridine 19
2.4.4. 2-((4-(tert-butyl)phenoxy)(4-methoxyphenyl)methyl)pyridine 20
2.4.5. 2-((4-chlorophenoxy)(4-methoxyphenyl)methyl)pyridine 21
2.4.6. 2-((4-bromophenoxy)(4-methoxyphenyl)methyl)pyridine 22
2.4.7. 2-((4-fluorophenoxy)(4-methoxyphenyl)methyl)pyridine 23
2.4.8. 2-((4-methoxyphenyl)(4-(trifluoromethyl)phenoxy)methyl)pyridine 24
2.4.9. 2-((4-methoxyphenyl)(4-nitrophenoxy)methyl)pyridine 25
2.4.10. 4-((4-methoxyphenyl)(pyridin-2-yl)methoxy)-N,N dimethylaniline 26
2.4.11. 1-(4-((4-methoxyphenyl)(pyridin-2-yl)methoxy)phenyl)ethanone 27
2.5. Preparation of N-oxides
2.5.1. 2-(2-(4-(tert-butyl)phenyl)-1-(4-methoxyphenyl)vinyl)pyridine 1-oxide 28
2.5.2. 2-(1-(4-methoxyphenyl)-2-(4-(trifluoromethyl)phenyl)vinyl)pyridine 1-oxide 29
2.5.3. 2-((4-methoxyphenyl)(phenoxy)methyl)pyridine 1-oxide 30
2.5.4. 2-((4-bromophenoxy)(4-methoxyphenyl)methyl)pyridine 1-oxide 31
2.6. Bioassays
2.6.1. Materials
2.6.2. Cells Lines, Cell Culture and Treatment
2.6.3. Cell Metabolic Activity
2.6.4. Protein Extraction and Western Blot Analysis
2.6.5. Apoptosis Quantification by DNA Fragmentation Analysis
2.6.6. Statistical Analysis
2.7. Molecular Modeling
2.7.1. Protein and Compounds Preparation
2.7.2. Docking Study and Protein-Ligand Interactions Analysis
2.7.3. ADME Profile and Drug-Likeness
3. Results and Discussion
3.1. Chemistry
3.2. Biological Evaluation
3.2.1. Cell Viability, Cell Proliferation Inhibition, and IC50 Determination
3.2.2. Structure Activity Relationship Considerations
3.2.3. Mechanism of Action Investigation
3.2.4. Normal Cell Line Viability
3.3. In Silico Studies
3.3.1. Molecular Modeling
3.3.2. Prediction of ADME Properties and Druglikeness
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goyal, M.; Singh, P.; Alam, A.; Das, S.K.; Iqbal, M.S.; Dey, S.; Bindu, S.; Pal, C.; Das, S.K.; Panda, G.; et al. Aryl aryl methyl thio arenes prevent multidrug-resistant malaria in mouse by promoting oxidative stress in parasites. Free Radic. Biol. Med. 2012, 53, 129–142. [Google Scholar] [CrossRef] [PubMed]
- Görmen, M.; Veitía, M.S.-I.; Trigui, F.; El Arbi, M.; Ferroud, C. Ferrocenyl analogues of bisacodyl: Synthesis and antimicrobial activity. J. Organomet. Chem. 2015, 794, 274–281. [Google Scholar] [CrossRef]
- Cardinal, S.; Paquet-Côté, P.-A.; Azelmat, J.; Bouchard, C.; Grenier, D.; Voyer, N. Synthesis and anti-inflammatory activity of isoquebecol. Bioorg. Med. Chem. 2017, 25, 2043–2056. [Google Scholar] [CrossRef] [PubMed]
- Cardinal, S.; Azelmat, J.; Grenier, D.; Voyer, N. Anti-inflammatory properties of quebecol and its derivatives. Bioorg. Med. Chem. Lett. 2016, 26, 440–444. [Google Scholar] [CrossRef]
- Alexander, R.; Warrellow, G.; Eaton, M.; Boyd, E.; Head, J.; Porter, J.; Brown, J.; Reuberson, J.; Hutchinson, B.; Turner, P.; et al. CDP840. A prototype of a novel class of orally active anti-Inflammatory phosphodiesterase 4 inhibitors. Bioorg. Med. Chem. Lett. 2002, 12, 1451–1456. [Google Scholar] [CrossRef]
- Rioux, B.; Pouget, C.; Fidanzi-Dugas, C.; Gamond, A.; Laurent, A.; Semaan, J.; Pinon, A.; Champavier, Y.; Léger, D.Y.; Liagre, B.; et al. Design and multi-step synthesis of chalcone-polyamine conjugates as potent antiproliferative agents. Bioorg. Med. Chem. Lett. 2017, 27, 4354–4357. [Google Scholar] [CrossRef]
- Houpis, I.N.; Lee, J.; Dorziotis, I.; Molina, A.; Reamer, B.; Volante, R.; Reider, P.J. Ni-catalyzed nucleophilic conjugate additions of Grignard and organozincate reagents to substituted 4-vinylpyridines. General synthesis of phosphodiesterase IV inhibitors. Tetrahedron 1998, 54, 1185–1195. [Google Scholar] [CrossRef]
- Pericherla, K.; Shirazi, A.N.; Rao, V.K.; Tiwari, R.K.; DaSilva, N.; McCaffrey, K.T.; Beni, Y.A.; González-Sarrías, A.; Seeram, N.P.; Parang, K.; et al. Synthesis and antiproliferative activities of quebecol and its analogs. Bioorg. Med. Chem. Lett. 2013, 23, 5329–5331. [Google Scholar] [CrossRef] [Green Version]
- Valavaara, R.; Pyrhönen, S.; Heikkinen, M.; Rissanen, P.; Blanco, G.; Thölix, E.; Nordman, E.; Taskinen, P.; Holsti, L.; Hajba, A. Toremifene, a new antiestrogenic compound, for treatment of advanced breast cancer. Phase II study. Eur. J. Cancer Clin. Oncol. 1988, 24, 785–790. [Google Scholar] [CrossRef]
- Vessières, A.; Top, S.; Beck, W.; Hillard, E.; Jaouen, G. Metal complex SERMs (selective oestrogen receptor modulators). The influence of different metal units on breast cancer cell antiproliferative effects. Dalton Trans. 2006, 529–541. [Google Scholar] [CrossRef]
- Köpf-Maier, P. Complexes of metals other than platinum as antitumour agents. Eur. J. Clin. Pharmacol. 1994, 47, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Heilmann, J.B.; Hillard, E.A.; Plamont, M.-A.; Pigeon, P.; Bolte, M.; Jaouen, G.; Vessières, A. Ferrocenyl compounds possessing protected phenol and thiophenol groups: Synthesis, X-ray structure, and in vitro biological effects against breast cancer. J. Organomet. Chem. 2008, 693, 1716–1722. [Google Scholar] [CrossRef]
- Top, S.; Vessières, A.; Leclercq, G.; Quivy, J.; Tang, J.; Vaissermann, J.; Huché, M.; Jaouen, G. Synthesis, Biochemical Properties and Molecular Modelling Studies of Organometallic Specific Estrogen Receptor Modulators (SERMs), the Ferrocifens and Hydroxyferrocifens: Evidence for an Antiproliferative Effect of Hydroxyferrocifens on both Hormone-Dependent and Hormone-Independent Breast Cancer Cell Lines. Chem.-A Eur. J. 2003, 9, 5223–5236. [Google Scholar] [CrossRef]
- Pigeon, P.; Top, S.; Zekri, O.; Hillard, E.A.; Vessières, A.; Plamont, M.-A.; Buriez, O.; Labbé, E.; Huché, M.; Boutamine, S.; et al. The replacement of a phenol group by an aniline or acetanilide group enhances the cytotoxicity of 2-ferrocenyl-1,1-diphenyl-but-l-ene compounds against breast cancer cells. J. Organomet. Chem. 2009, 694, 895–901. [Google Scholar] [CrossRef] [Green Version]
- Guay, D.; Hamel, P.; Blouin, M.; Brideau, C.; Chan, C.C.; Chauret, N.; Ducharme, Y.; Huang, Z.; Girard, M.; Jones, T.R.; et al. Discovery of L-791,943: A potent, selective, non emetic and orally active phosphodiesterase-4 inhibitor. Bioorg. Med. Chem. Lett. 2002, 12, 1457–1461. [Google Scholar] [CrossRef]
- Legault, J.; Girard-Lalancette, K.; Grenon, C.; Dussault, C.; Pichette, A. Antioxidant Activity, Inhibition of Nitric Oxide Overproduction, and In Vitro Antiproliferative Effect of Maple Sap and Syrup from Acer saccharum. J. Med. Food 2010, 13, 460–468. [Google Scholar] [CrossRef]
- Ducharme, Y.; Friesen, R.W.; Blouin, M.; Côté, B.; Dubé, D.; Ethier, D.; Frenette, R.; Laliberté, F.; Mancini, J.A.; Masson, P.; et al. Substituted 2-Pyridinemethanol derivatives as potent and selective phosphodiesterase-4 inhibitors. Bioorg. Med. Chem. Lett. 2003, 13, 1923–1926. [Google Scholar] [CrossRef]
- Smolobochkin, A.V.; Gazizov, A.S.; Yakhshilikova, L.J.; Bekrenev, D.D.; Burilov, A.R.; Pudovik, M.A.; Lyubina, A.P.; Amerhanova, S.K.; Voloshina, A.D. Synthesis and Biological Evaluation of Taurine-Derived Diarylmethane and Dibenzoxanthene Derivatives as Possible Cytotoxic and Antimicrobial Agents. Chem. Biodivers. 2022, 19, e202100970. [Google Scholar] [CrossRef]
- Parida, S.K.; Hota, S.K.; Jaiswal, S.; Singh, P.; Murarka, S. Multicomponent Synthesis of Biologically Relevant S-Diarylmethane Dithiocarbamates Using p-Quinone Methides. Adv. Synth. Catal. 2022, 364, 1549–1554. [Google Scholar] [CrossRef]
- Wang, C.; Wang, B.; Hou, S.; Xue, L.; Kang, Z.; Du, J.; Li, Y.; Liu, X.; Wang, Q.; Zhang, C. Corrigendum to “Discovery of novel nonsteroidal VDR agonists with novel diarylmethane skeleton for the treatment of breast cancer” [Eur. J. Med. Chem. 163 (2019) 787–803]. Eur. J. Med. Chem. 2020, 186, 111907. [Google Scholar] [CrossRef]
- Wang, C.; Wang, B.; Hou, S.; Xue, L.; Kang, Z.; Du, J.; Li, Y.; Liu, X.; Wang, Q.; Zhang, C. Discovery of novel nonsteroidal VDR agonists with novel diarylmethane skeleton for the treatment of breast cancer. Eur. J. Med. Chem. 2019, 163, 787–803. [Google Scholar] [CrossRef] [PubMed]
- Qu, C.; Gao, L.; Tang, Y.; Liu, Y.; Luo, X.; Song, G. Metal-Free Reductive Coupling of para-Quinone Methides with 4-Cyanopyridines Enabled by Pyridine-Boryl Radicals: Access to Pyridylated Diarylmethanes with Anti-Cancer Activity. Chem.–A Eur. J. 2022, 28, e202200264. [Google Scholar] [CrossRef]
- Top, S.; Kaloun, E.B.; Vessières, A.; Leclercq, G.; Laïos, I.; Ourevitch, M.; Deuschel, C.; McGlinchey, M.J.; Jaouen, G. Tamoxifen Derivatives for Delivery of the Antitumoral (DACH)Pt Group: Selective Synthesis by McMurry Coupling, and Biochemical Behaviour. ChemBioChem 2003, 4, 754–761. [Google Scholar] [CrossRef] [PubMed]
- Top, S.; Vessières, A.; Cabestaing, C.; Laios, I.; Leclercq, G.; Provot, C.; Jaouen, G. Studies on organometallic selective estrogen receptor modulators. (SERMs) Dual activity in the hydroxy-ferrocifen series. J. Organomet. Chem. 2001, 637–639, 500–506. [Google Scholar] [CrossRef]
- Pigeon, P.; Top, S.; Vessières, A.; Huché, M.; Hillard, E.A.; Salomon, A.E.; Jaouen, G. Selective Estrogen Receptor Modulators in the Ruthenocene Series. Synthesis and Biological Behavior. J. Med. Chem. 2005, 48, 2814–2821. [Google Scholar] [CrossRef] [Green Version]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424, Erratum in CA Cancer J. Clin. 2020, 70, 313. [Google Scholar] [CrossRef] [Green Version]
- Defossez, G.; Le Guyader-Peyrou, S.; Uhry, Z.; Grosclaude, P.; Remontet, L.; Colonna, M. Estimations Nationales de L’incidence et de la Mortalité par Cancer en France Métropolitaine Entre 1990 et 2018, Vol. 1–Tumeurs Solides; Santé Publique France: Saint-Maurice, France, 2019; p. 372. [Google Scholar]
- Mohamed, A.H.; Görmen, M.; El Arbi, M.; Msaddek, M.; Veitia, M.S.-I. Synthesis of some new diarylmethanes by McMurry coupling reaction: Characterization and antibacterial activity. In Proceedings of the MOL2NET’18, Conference on Molecular, Biomedical & Computational Sciences and Engineering, Paris, France, 15 January 2018–20 January 2019. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Bretin, L.; Pinon, A.; Bouramtane, S.; Ouk, C.; Richard, L.; Perrin, M.-L.; Chaunavel, A.; Carrion, C.; Bregier, F.; Sol, V.; et al. Photodynamic Therapy Activity of New Porphyrin-Xylan-Coated Silica Nanoparticles in Human Colorectal Cancer. Cancers 2019, 11, 1474. [Google Scholar] [CrossRef] [Green Version]
- Saur, I.M.L.; Panstruga, R.; Schulze-Lefert, P. NOD-like receptor-mediated plant immunity: From structure to cell death. Nat. Rev. Immunol. 2021, 21, 305–318. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allouche, A. Software News and Updates Gabedit—A Graphical User Interface for Computational Chemistry Softwares. J. Comput. Chem. 2012, 32, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Wolber, G.; Langer, T. LigandScout: 3-D Pharmacophores Derived from Protein-Bound Ligands and Their Use as Virtual Screening Filters. J. Chem. Inf. Model. 2004, 45, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://chemaxon.com/ (accessed on 20 May 2020).
- Quiroga, R.; Villarreal, M.A. Vinardo: A Scoring Function Based on Autodock Vina Improves Scoring, Docking, and Virtual Screening. PLoS ONE 2016, 11, e0155183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schrödinger, Inc. Schrödinger Release 2019-4: Maestro; Schrödinger, Inc.: New York, NY, USA, 2019. [Google Scholar]
- Harder, E.; Damm, W.; Maple, J.; Wu, C.; Reboul, M.; Xiang, J.Y.; Wang, L.; Lupyan, D.; Dahlgren, M.K.; Knight, J.L.; et al. OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins. J. Chem. Theory Comput. 2016, 12, 281–296. [Google Scholar] [CrossRef]
- Trécourt, F.; Breton, G.; Bonnet, V.; Mongin, F.; Marsais, F.; Quéguiner, G. New Syntheses of Substituted Pyridines via Bromine–Magnesium Exchange. Tetrahedron 2001, 56, 1349–1360. [Google Scholar] [CrossRef]
- Seto, M.; Aramaki, Y.; Imoto, H.; Aikawa, K.; Oda, T.; Kanzaki, N.; Iizawa, Y.; Baba, M.; Shiraishi, M. Orally Active CCR5 Antagonists as Anti-HIV-1 Agents 2: Synthesis and Biological Activities of Anilide Derivatives Containing a Pyridine N-Oxide Moiety. Chem. Pharm. Bull. 2004, 52, 818–829. [Google Scholar] [CrossRef] [Green Version]
- Goya-Jorge, E.; Rampal, C.; Loones, N.; Barigye, S.J.; Carpio, L.E.; Gozalbes, R.; Ferroud, C.; Veitía, M.S.-I.; Giner, R.M. Targeting the aryl hydrocarbon receptor with a novel set of triarylmethanes. Eur. J. Med. Chem. 2020, 207, 112777. [Google Scholar] [CrossRef]
- Sui, J.-J.; Xiong, D.-C.; Ye, X.-S. Copper-mediated O-arylation of lactols with aryl boronic acids. Chin. Chem. Lett. 2019, 30, 1533–1537. [Google Scholar] [CrossRef]
- Zekri, O.; Hillard, E.A.; Top, S.; Vessières, A.; Pigeon, P.; Plamont, M.-A.; Huché, M.; Boutamine, S.; Mcglinchey, M.J.; Müller-Bunz, H. Role of aromatic substituents on the antiproliferative effects of diphenyl ferrocenyl butene compounds. Dalt. Trans. 2009, 4318–4326. [Google Scholar] [CrossRef]
- Guo, Y.; Pan, W.; Liu, S.; Shen, Z.; Xu, Y.; Hu, L. ERK/MAPK signalling pathway and tumorigenesis. Exp. Ther. Med. 2020, 19, 1997–2007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Liu, W.-Z.; Liu, T.; Feng, X.; Yang, N.; Zhou, H.-F. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J. Recept. Signal Transduct. 2015, 35, 600–604. [Google Scholar] [CrossRef] [PubMed]
- Ye, Q.; Cai, W.; Zheng, Y.; Evers, B.M.; She, Q.-B. ERK and AKT signaling cooperate to translationally regulate survivin expression for metastatic progression of colorectal cancer. Oncogene 2014, 33, 1828–1839. [Google Scholar] [CrossRef] [Green Version]
- Loesch, M.; Chen, G. The p38 MAPK stress pathway as a tumor suppressor or more? Front. Biosci. J. Virtual Libr. 2008, 13, 3581. [Google Scholar] [CrossRef] [Green Version]
- Khajeh, E.; Rasmi, Y.; Kheradmand, F.; Malekinejad, H.; Aramwit, P.; Saboory, E.; Daeihassani, B.; Nasirzadeh, M. Crocetin suppresses the growth and migration in HCT-116 human colorectal cancer cells by activating the p-38 MAPK signaling pathway. Res. Pharm. Sci. 2020, 15, 592. [Google Scholar] [CrossRef]
- Papaliagkas, V.; Anogianaki, A.; Anogianakis, G.; Ilonidis, G. The proteins and the mechanisms of apoptosis: A mini-review of the fundamentals. Hippokratia 2007, 11, 108–113. [Google Scholar]
- Sulzyc-Bielicka, V.; Domagala, P.; Hybiak, J.; Majewicz-Broda, A.; Safranow, K.; Domagala, W. Colorectal cancers differ in respect of PARP-1 protein expression. arxiv 2012, arXiv:1207.5956. [Google Scholar]
- Augustine, T.; Maitra, R.; Zhang, J.; Nayak, J.; Goel, S. Sensitization of colorectal cancer to irinotecan therapy by PARP inhibitor rucaparib. Investig. New Drugs. 2019, 37, 948–960. [Google Scholar] [CrossRef] [PubMed]
- Adasme, M.F.; Linnemann, K.L.; Bolz, S.N.; Kaiser, F.; Salentin, S.; Haupt, V.J.; Schroeder, M. PLIP 2021: Expanding the scope of the protein-ligand interaction profiler to DNA and RNA. Nucleic Acids Res. 2021, 49, W530–W534. [Google Scholar] [CrossRef]
DAM | R | n° | Isomer | IC50 ± SEM (µM) a | |
---|---|---|---|---|---|
HT-29 b | HCT116 b | ||||
H | 6a | Z | 30.34 ± 1.78 | 35.58 ± 2.08 | |
6b | E | >50 | >50 | ||
Me | 7a | Z | 35.00 ± 1.99 | >50 | |
7b | E | 36.24 ± 4.56 | >50 | ||
OMe | 8a | E | 43.49 ± 4.91 | >50 | |
CH(CH3)2 | 9a | Z | >50 | >50 | |
9b | E | 34.88 ± 0.78 | >50 | ||
C(CH3)3 | 10a | Z | 25.70 ± 1.21 | 33.61 ± 0.71 | |
10b | E | 25.15 ± 1.28 | >50 | ||
OH | 11b | E | >50 | >50 | |
CF3 | 12a | Z | 23.02 ± 1.27 | 31.44 ± 1.74 | |
12b | E | >50 | >50 | ||
Br | 13a | Z | 24.03 ± 2.65 | 36.61 ± 2.94 | |
13b | E | >50 | 26.13 ± 2.08 | ||
Cl | 14a | Z | 28.48 ± 1.82 | 42.69 ± 2.24 | |
14b | E | >50 | >50 | ||
F | 15a | Z | 43.43 ± 0.31 | >50 | |
15b | E | >50 | >50 | ||
H | 17 | - | >50 | >50 | |
Me | 18 | - | >50 | >50 | |
OMe | 19 | - | >50 | >50 | |
C(CH3)3 | 20 | - | >50 | >50 | |
Cl | 21 | - | >50 | >50 | |
Br | 22 | - | 37.86 ± 1.87 | 41.51 ± 1.48 | |
F | 23 | - | >50 | >50 | |
CF3 | 24 | - | >50 | >50 | |
NO2 | 25 | - | >50 | >50 | |
N(CH3)2 | 26 | - | >50 | >50 | |
Ac | 27 | - | >50 | >50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hadj Mohamed, A.; Pinon, A.; Lagarde, N.; Goya Jorge, E.; Mouhsine, H.; Msaddek, M.; Liagre, B.; Sylla-Iyarreta Veitía, M. Novel Set of Diarylmethanes to Target Colorectal Cancer: Synthesis, In Vitro and In Silico Studies. Biomolecules 2023, 13, 54. https://doi.org/10.3390/biom13010054
Hadj Mohamed A, Pinon A, Lagarde N, Goya Jorge E, Mouhsine H, Msaddek M, Liagre B, Sylla-Iyarreta Veitía M. Novel Set of Diarylmethanes to Target Colorectal Cancer: Synthesis, In Vitro and In Silico Studies. Biomolecules. 2023; 13(1):54. https://doi.org/10.3390/biom13010054
Chicago/Turabian StyleHadj Mohamed, Ameni, Aline Pinon, Nathalie Lagarde, Elizabeth Goya Jorge, Hadley Mouhsine, Moncef Msaddek, Bertrand Liagre, and Maité Sylla-Iyarreta Veitía. 2023. "Novel Set of Diarylmethanes to Target Colorectal Cancer: Synthesis, In Vitro and In Silico Studies" Biomolecules 13, no. 1: 54. https://doi.org/10.3390/biom13010054
APA StyleHadj Mohamed, A., Pinon, A., Lagarde, N., Goya Jorge, E., Mouhsine, H., Msaddek, M., Liagre, B., & Sylla-Iyarreta Veitía, M. (2023). Novel Set of Diarylmethanes to Target Colorectal Cancer: Synthesis, In Vitro and In Silico Studies. Biomolecules, 13(1), 54. https://doi.org/10.3390/biom13010054