New Insight in Histamine Functions
Author Contributions
Funding
Conflicts of Interest
References
- Clark, C.G.; June Curnow, V.; Murray, J.G.; Stephens, F.O.; Wyllie, J.H. Mode of action of histamine in causing gastric secretion in man. Gut 1964, 5, 537–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simons, F.E. Anaphylaxis. J. Allergy Clin. Immunol. 2008, 121, S402–S407. [Google Scholar] [CrossRef] [PubMed]
- Passani, M.B.; Panula, P.; Lin, J.S. Histamine in the brain. Front. Syst. Neurosci. 2014, 8, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eissa, N.; Jayaprakash, P.; Stark, H.; Lazewska, D.; Kieć-Kononowicz, K.; Sadek, B. Simultaneous Blockade of Histamine H3 Receptors and Inhibition of Acetylcholine Esterase Alleviate Autistic-Like Behaviors in BTBR T+ tf/J Mouse Model of Autism. Biomolecules 2020, 10, 1251. [Google Scholar] [CrossRef] [PubMed]
- Rani, B.; Silva-Marques, B.; Leurs, R.; Passani, M.B.; Blandina, P.; Provensi, G. Short- and Long-Term Social Recognition Memory Are Differentially Modulated by Neuronal Histamine. Biomolecules 2021, 11, 555. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, A.M.; Hambly, M.G.; Jandu, S.; Simão-Gurge, R.; Lowder, C.; Lewis, E.E.; Riffel, J.A.; Luckhart, S. Histamine Ingestion by Anopheles stephensi Alters Important Vector Transmission Behaviors and Infection Success with Diverse Plasmodium Species. Biomolecules 2021, 11, 719. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Verweij, E.W.E.; Siderius, M.; Leurs, R.; Vischer, H. Identification of TSPAN4 as Novel Histamine H4 Receptor Interactor. Biomolecules 2021, 11, 1127. [Google Scholar] [CrossRef] [PubMed]
- Wilzopolski, J.; Kietzmann, M.; Mishra, S.K.; Stark, H.; Bäumer, W.; Rossbach, K. TRPV1 and TRPA1 Channels Are Both Involved Downstream of Histamine-Induced Itch. Biomolecules 2021, 11, 1166. [Google Scholar] [CrossRef] [PubMed]
- Micheli, L.; Durante, M.; Lucarini, E.; Sgambellone, S.; Lucarini, L.; Di Cesare Mannelli, L.; Ghelardini, C.; Masini, E. The Histamine H4 Receptor Partecipates in the Anti-Neuropathic Effect of the Adenosine A3 Receptor Agonist IB-MECA: Role of CD4+ T Cells. Biomolecules 2021, 11, 1447. [Google Scholar] [CrossRef] [PubMed]
- Durante, M.; Squillace, S.; Lauro, F.; Giancotti, L.A.; Coppi, E.; Cherchi, F.; Di Cesare Mannelli, L.; Ghelardini, C.; Kolar, G.; Wahlman, C.; et al. Adenosine A3 agonists reverse neuropathic pain via T cell-mediated production of IL-10. J. Clin. Investig. 2021, 131, e139299. [Google Scholar] [CrossRef] [PubMed]
- Verta, R.; Gurrieri, M.; Borga, S.; Benetti, E.; Pollicino, P.; Cavalli, R.; Thurmond, R.L.; Chazot, P.L.; Pini, A.; Rosa, A.C.; et al. The Interplay between Histamine H4 Receptor and the Kidney Function: The Lesson from H4 Receptor Knockout Mice. Biomolecules 2021, 11, 1517. [Google Scholar] [CrossRef] [PubMed]
- Rosa, A.C.; Nardini, P.; Sgambellone, S.; Gurrieri, M.; Spampinato, S.F.; Dell’Accio, A.; Chazot, P.L.; Obara, I.; Liu, W.L. CNS-Sparing Histamine H3 Receptor Antagonist as a Candidate to Prevent the Diabetes-Associated Gastrointestinal Symptoms. Biomolecules 2022, 12, 184. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, P.L.; Cho, J. Pathophysiological Roles of Histamine Receptors in Cancer Progression: Implications and Perspectives as Potential Molecular Targets. Biomolecules 2021, 11, 1232. [Google Scholar] [CrossRef] [PubMed]
- Moya-García, A.A.; Pino-Ángeles, A.; Sánchez-Jiménez, F.; Urdiales, J.L.; Medina, M.Á. Histamine, Metabolic Remodelling and Angiogenesis: A Systems Level Approach. Biomolecules 2021, 11, 415. [Google Scholar] [CrossRef] [PubMed]
- Sgambellone, S.; Lucarini, L.; Lanzi, C.; Masini, E. Novel Insight of Histamine and Its Receptor Ligands in Glaucoma and Retina Neuroprotection. Biomolecules 2021, 11, 1186. [Google Scholar] [CrossRef] [PubMed]
- Lanzi, C.; Lucarini, L.; Durante, M.; Sgambellone, S.; Pini, A.; Catarinicchia, S.; Łażewska, D.; Kieć-Kononowicz, K.; Stark, H.; Masini, E. Role of Histamine H₃ Receptor Antagonists on Intraocular Pressure Reduction in Rabbit Models of Transient Ocular Hypertension and Glaucoma. Int. J. Mol. Sci. 2019, 20, 981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Comas-Basté, O.; Sánchez-Pérez, S.; Veciana-Nogués, M.T.; Latorre-Moratalla, M.; Vidal-Carou, M.d.C. Histamine Intolerance: The Current State of the Art. Biomolecules 2020, 10, 1181. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Liu, J.; Chen, Z. The Histaminergic System in Neuropsychiatric Disorders. Biomolecules 2021, 11, 1345. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sgambellone, S.; Marri, S.; Masini, E.; Lucarini, L. New Insight in Histamine Functions. Biomolecules 2022, 12, 609. https://doi.org/10.3390/biom12050609
Sgambellone S, Marri S, Masini E, Lucarini L. New Insight in Histamine Functions. Biomolecules. 2022; 12(5):609. https://doi.org/10.3390/biom12050609
Chicago/Turabian StyleSgambellone, Silvia, Silvia Marri, Emanuela Masini, and Laura Lucarini. 2022. "New Insight in Histamine Functions" Biomolecules 12, no. 5: 609. https://doi.org/10.3390/biom12050609
APA StyleSgambellone, S., Marri, S., Masini, E., & Lucarini, L. (2022). New Insight in Histamine Functions. Biomolecules, 12(5), 609. https://doi.org/10.3390/biom12050609