Levels of Coenzyme Q10 and Several COQ Proteins in Human Astrocytoma Tissues Are Inversely Correlated with Malignancy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Background Information of Patients and Astrocytoma Specimens
2.2. Simultaneous Detection of CoQ10 and α-Tocopherol Levels in Astrocytoma Tissues through High-Performance Liquid Chromatography
2.3. Detection of PDSS2 and Various COQ Proteins in Astrocytoma Tissues through Western Blot Analysis
2.4. Data Presentation and Statistical Analysis
3. Results
3.1. Levels of CoQ10, but Not α-Tocopherol, Were Higher in the Nontumor Control Group Than in All Astrocytoma Groups
3.2. Levels of PDSS2, Various COQ Proteins, and COX II in Different Groups
3.3. Correlations of CS Activity or COX II Level with Levels of Various Molecules Detected in This Study
3.4. Correlations of Various Analytes with Malignancy and with GOS Scores for Grade IV Astrcocytomas
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kawamukai, M. Biosynthesis of coenzyme Q in eukaryotes. Biosci. Biotechnol. Biochem. 2016, 80, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Stefely, J.A.; Pagliarini, D.J. Biochemistry of mitochondrial coenzyme Q biosynthesis. Trends Biochem. Sci. 2017, 42, 824–843. [Google Scholar] [CrossRef]
- Hernandez-Camacho, J.D.; Bernier, M.; Lopez-Lluch, G.; Navas, P. Coenzyme Q10 supplementation in aging and disease. Front. Physiol. 2018, 9, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Awad, A.M.; Bradley, M.C.; Fernandez-Del-Rio, L.; Nag, A.; Tsui, H.S.; Clarke, C.F. Coenzyme Q10 deficiencies: Pathways in yeast and humans. Essays Biochem. 2018, 62, 361–376. [Google Scholar] [PubMed] [Green Version]
- Hayashi, K.; Ogiyama, Y.; Yokomi, K.; Nakagawa, T.; Kaino, T.; Kawamukai, M. Functional conservation of coenzyme Q biosynthetic genes among yeasts, plants, and humans. PLoS ONE 2014, 9, e99038. [Google Scholar] [CrossRef] [Green Version]
- Acosta, M.J.; Vazquez Fonseca, L.; Desbats, M.A.; Cerqua, C.; Zordan, R.; Trevisson, E.; Salviati, L. Coenzyme Q biosynthesis in health and disease. Biochim. Biophys. Acta 2016, 1857, 1079–1085. [Google Scholar] [CrossRef]
- Yen, H.C.; Yeh, W.Y.; Lee, S.H.; Feng, Y.H.; Yang, S.L. Characterization of human mitochondrial PDSS and COQ proteins and their roles in maintaining coenzyme Q10 levels and each other’s stability. Biochim. Biophys. Acta Bioenerg. 2020, 1861, 148192. [Google Scholar] [CrossRef]
- Chen, S.W.; Liu, C.C.; Yen, H.C. Detection of suppressed maturation of the human COQ5 protein in the mitochondria following mitochondrial uncoupling by an antibody recognizing both precursor and mature forms of COQ5. Mitochondrion 2013, 13, 143–152. [Google Scholar] [CrossRef]
- Yen, H.C.; Liu, Y.C.; Kan, C.C.; Wei, H.J.; Lee, S.H.; Wei, Y.H.; Feng, Y.H.; Chen, C.W.; Huang, C.C. Disruption of the human COQ5-containing protein complex is associated with diminished coenzyme Q10 levels under two different conditions of mitochondrial energy deficiency. Biochim. Biophys. Acta 2016, 1860, 1864–1876. [Google Scholar] [CrossRef]
- Yen, H.C.; Liu, C.C.; Kan, C.C.; Chen, C.S.; Wei, H.R. Suppression of coenzyme Q10 levels and the induction of multiple PDSS and COQ genes in human cells following oligomycin treatment. Free Radic. Res. 2014, 48, 1125–1134. [Google Scholar] [CrossRef]
- Yen, H.C.; Chen, F.Y.; Chen, S.W.; Huang, Y.H.; Chen, Y.R.; Chen, C.W. Effect of mitochondrial dysfunction and oxidative stress on endogenous levels of coenzyme Q10 in human cells. J. Biochem. Mol. Toxicol. 2011, 25, 280–289. [Google Scholar] [CrossRef]
- Maher, E.A.; Furnari, F.B.; Bachoo, R.M.; Rowitch, D.H.; Louis, D.N.; Cavenee, W.K.; DePinho, R.A. Malignant glioma: Genetics and biology of a grave matter. Genes Dev. 2001, 15, 1311–1333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Louis, D.N.; Ohgaki, H.; Wiestler, O.D.; Cavenee, W.K.; Burger, P.C.; Jouvet, A.; Scheithauer, B.W.; Kleihues, P. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007, 114, 97–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sayegh, E.T.; Oh, T.; Fakurnejad, S.; Oyon, D.E.; Bloch, O.; Parsa, A.T. Principles of surgery for malignant astrocytomas. Semin. Oncol. 2014, 41, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Fontana, F.; Limonta, P. The multifaceted roles of mitochondria at the crossroads of cell life and death in cancer. Free Radic. Biol. Med. 2021, 176, 203–221. [Google Scholar] [CrossRef] [PubMed]
- Arismendi-Morillo, G.; Castellano-Ramirez, A.; Seyfried, T.N. Ultrastructural characterization of the mitochondria-associated membranes abnormalities in human astrocytomas: Functional and therapeutics implications. Ultrastruct. Pathol. 2017, 41, 234–244. [Google Scholar] [CrossRef]
- Deighton, R.F.; Le Bihan, T.; Martin, S.F.; Gerth, A.M.J.; McCulloch, M.; Edgar, J.M.; Kerr, L.E.; Whittle, I.R.; McCulloch, J. Interactions among mitochondrial proteins altered in glioblastoma. J. Neurooncol. 2014, 118, 247–256. [Google Scholar] [CrossRef] [Green Version]
- Feichtinger, R.G.; Weis, S.; Mayr, J.A.; Zimmermann, F.; Geilberger, R.; Sperl, W.; Kofler, B. Alterations of oxidative phosphorylation complexes in astrocytomas. Glia 2014, 62, 514–525. [Google Scholar] [CrossRef]
- Kirches, E.; Krause, G.; Warich-Kirches, M.; Weis, S.; Schneider, T.; Meyer-Puttlitz, B.; Mawrin, C.; Dietzmann, K. High frequency of mitochondrial DNA mutations in glioblastoma multiforme identified by direct sequence comparison to blood samples. Int. J. Cancer 2001, 93, 534–538. [Google Scholar] [CrossRef]
- Yen, H.C.; Lin, C.L.; Chen, B.S.; Chen, C.W.; Wei, K.C.; Yang, M.L.; Hsu, J.C.; Hsu, Y.H. Alterations of the levels of primary antioxidant enzymes in different grades of human astrocytoma tissues. Free Radic. Res. 2018, 52, 856–871. [Google Scholar] [CrossRef]
- Portakal, O.; Ozkaya, O.; Erden Inal, M.; Bozan, B.; Kosan, M.; Sayek, I. Coenzyme Q10 concentrations and antioxidant status in tissues of breast cancer patients. Clin. Biochem. 2000, 33, 279–284. [Google Scholar] [CrossRef]
- Li, Y.; Lin, S.; Li, L.; Tang, Z.; Hu, Y.; Ban, X.; Zeng, T.; Zhou, Y.; Zhu, Y.; Gao, S.; et al. PDSS2 deficiency induces hepatocarcinogenesis by decreasing mitochondrial respiration and reprogramming glucose metabolism. Cancer Res. 2018, 78, 4471–4481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, W.; Gao, F.; Li, K.; Wang, W.; Lai, Y.R.; Tang, S.H.; Yang, D.H. Decaprenyl diphosphate synthase subunit 2 as a prognosis factor in hepatocellular carcinoma. World J. Gastroenterol. 2015, 21, 3055–3065. [Google Scholar] [CrossRef] [PubMed]
- Kanda, M.; Nomoto, S.; Oya, H.; Hashimoto, R.; Takami, H.; Shimizu, D.; Sonohara, F.; Kobayashi, D.; Tanaka, C.; Yamada, S.; et al. Decreased expression of prenyl diphosphate synthase subunit 2 correlates with reduced survival of patients with gastric cancer. J. Exp. Clin. Cancer Res. 2014, 33, 88. [Google Scholar] [CrossRef]
- Fung, J.M.; Smith, R.; Brown, M.A.; Lau, S.H.; Xie, D.; Lau, G.K.; Guan, X.Y. Identification and characterization of a novel melanoma tumor suppressor gene on human chromosome 6q21. Clin. Cancer Res. 2009, 15, 797–803. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Yu, J.; Knecht, J.; Chen, Q. Decrease of PDSS2 expression, a novel tumor suppressor, in non-small cell lung cancer. Cancer Epidemiol. 2013, 37, 166–171. [Google Scholar] [CrossRef]
- Yu, T.J.; Liu, Y.Y.; Li, X.G.; Lian, B.; Lu, X.X.; Jin, X.; Shao, Z.M.; Hu, X.; Di, G.H.; Jiang, Y.Z. PDSS1-nediated activation of CAMK2A-STAT3 signaling promotes metastasis in triple-negative breast cancer. Cancer Res. 2021, 81, 5491–5505. [Google Scholar] [CrossRef]
- Shao, M.; Li, W.; Wang, S.; Liu, Z. Identification of key genes and pathways associated with esophageal squamous cell carcinoma development based on weighted gene correlation network analysis. J. Cancer 2020, 11, 1393–1402. [Google Scholar] [CrossRef] [Green Version]
- Vigneswaran, K.; Neill, S.; Hadjipanayis, C.G. Beyond the World Health Organization grading of infiltrating gliomas: Advances in the molecular genetics of glioma classification. Ann. Transl. Med. 2015, 3, 95. [Google Scholar]
- Yen, H.C.; Hsu, Y.T. Impurities from polypropylene microcentrifuge tubes as a potential source of interference in simultaneous analysis of multiple lipid-soluble antioxidants by HPLC with electrochemical detection. Clin. Chem. Lab. Med. 2004, 42, 390–395. [Google Scholar] [CrossRef]
- Leray, C.; Andriamampandry, M.D.; Freund, M.; Gachet, C.; Cazenave, J.P. Simultaneous determination of homologues of vitamin E and coenzyme Q and products of alpha-tocopherol oxidation. J. Lipid Res. 1998, 39, 2099–2105. [Google Scholar] [CrossRef]
- CoulArray Detector; Version 3.1; ESA Inc.: Chelmsford, MA, USA, 2010.
- Multi-Gauge Software; Version 3.0; Fujifilm: Tokyo, Japan, 2010.
- SigmaPlot Software; Version 10.0.1; Systat Software Inc.: San Jose, CA, USA, 2007.
- SPSS Statistics; Version 22.0; IBM: Armonk, NY, USA, 2020.
- Cheng, T.L.; Liao, C.C.; Tsai, W.H.; Lin, C.C.; Yeh, C.W.; Teng, C.F.; Chang, W.T. Identification and characterization of the mitochondrial targeting sequence and mechanism in human citrate synthase. J. Cell Biochem. 2009, 107, 1002–1015. [Google Scholar] [CrossRef]
- Wiedemann, N.; Pfanner, N. Mitochondrial machineries for protein import and assembly. Annu. Rev. Biochem. 2017, 86, 685–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuhl, I.; Miranda, M.; Atanassov, I.; Kuznetsova, I.; Hinze, Y.; Mourier, A.; Filipovska, A.; Larsson, N.G. Transcriptomic and proteomic landscape of mitochondrial dysfunction reveals secondary coenzyme Q deficiency in mammals. eLife 2017, 6, e30952. [Google Scholar] [CrossRef]
- Yubero, D.; Adin, A.; Montero, R.; Jou, C.; Jiménez-Mallebrera, C.; García-Cazorla, A.; Nascimento, A.; O’Callaghan, M.M.; Montoya, J.; Gort, L.; et al. A statistical algorithm showing coenzyme Q10 and citrate synthase as biomarkers for mitochondrial respiratory chain enzyme activities. Sci. Rep. 2016, 6, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amodio, G.; Pagliara, V.; Moltedo, O.; Remondelli, P. Structural and functional significance of the endoplasmic reticulum unfolded protein response transducers and chaperones at the mitochondria-ER contacts: A cancer perspective. Front. Cell Dev. Biol. 2021, 9, 641194. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hekimi, S. The complexity of making ubiquinone. Trends Endocrinol. Metab. 2019, 30, 929–943. [Google Scholar] [CrossRef] [PubMed]
Group | Patient | Conditions | 1-yr GOS | CS * | CoQ10 and α-Tocopherol | PDSS2 and COQ Proteins |
---|---|---|---|---|---|---|
Nontumor control | 1 | TBI | NA. | + | + | + |
2 | TBI | NA. | + | + | + | |
3 | TBI | NA. | + | + | + | |
4 | TBI | NA. | + | + | + | |
5 | TBI | NA. | + | + | + | |
Low grade | 6 | Grade II | G | + | + | + |
7 | Grade I | M | + | + | + | |
8 | Grade I | G | + | + | + | |
9 | Grade II | G | + | + | + | |
10 | Grade II | G | + | + | + | |
11 | Grade II | G | + | + | + | |
12 | Grade II | M | + | + | + | |
13 | Grade II | G | + | + | + | |
14 | Grade II | G | + | + | + | |
Grade III | 15 | Grade III | D | ND. | + | ND. |
16 | Grade III | G | + | + | ND. | |
17 | Grade III | G | + | + | + | |
18 | Grade III | G | + | + | + | |
19 | Grade III | M | + | + | + | |
20 | Grade III | G | + | + | + | |
Grade IV | 21 | Grade IV | D | + | + | + |
22 | Grade IV | D | + | + | + | |
23 | Grade IV | G | + | + | + | |
24 | Grade IV | S | + | + | + | |
25 | Grade IV | G | + | + | + | |
26 | Grade IV | D | + | + | + | |
27 | Grade IV | S | + | + | + | |
28 | Grade IV | M | + | + | + | |
29 | Grade IV | M | + | + | + | |
30 | Grade IV | S | + | + | + | |
31 | Grade IV | D | + | + | + | |
32 | Grade IV | G | + | + | + | |
33 | Grade IV | D | + | + | + | |
34 | Grade IV | S | + | + | + | |
35 | Grade IV | S | + | + | + | |
36 | Grade IV | M | + | + | + | |
37 | Grade IV | D | + | + | + | |
38 | Grade IV | D | + | + | + | |
39 | Grade IV | D | + | + | + | |
40 | Grade IV | D | + | + | + |
Parameters | CS | COX II |
---|---|---|
CoQ10 | 0.410 ** | 0.229 |
α-tocopherol | 0.076 | 0.162 |
PDSS2-b | −0.148 | −0.015 |
PDSS2-c | −0.469 *** | −0.506 *** |
COQ3-a | 0.780 *** | 0.640 *** |
COQ3-b | 0.751 *** | 0.712 *** |
COQ4 | 0.206 | 0.530 *** |
COQ5 | 0.563 *** | 0.719 *** |
COQ6 | 0.684 *** | 0.757 *** |
COQ7 | 0.653 ** | 0.769 *** |
COQ8A | 0.449 *** | 0.512 *** |
COQ9 | 0.613 *** | 0.777 *** |
COX II | 0.460 *** | NA. |
Parameters | Malignancy | 1-Year GOS (Grade IV) | |
---|---|---|---|
All Groups | No Grade IV | ||
CoQ10 | −0.405 ** | −0.704 *** | 0.218 |
α-tocopherol | −0.047 | −0.408 | 0.307 |
PDSS2-b | 0.541 *** | 0.769 *** | −0.016 |
PDSS2-c | 0.375 * | −0.101 | −0.290 |
COQ3-a | −0.504 *** | −0.624 ** | 0.277 |
COQ3-b | −0.530 *** | −0.406 | 0.029 |
COQ4 | −0.217 | 0.402 | 0.052 |
COQ5 | −0.555 *** | −0.163 | 0.277 |
COQ6 | −0.544 *** | −0.400 | 0.128 |
COQ7 | −0.434 ** | −0.236 | −0.360 |
COQ8A | −0.453 *** | −0.295 | 0.019 |
COQ9 | −0.402 * | −0.281 | 0.285 |
COX II | −0.334 * | −0.186 | −0.123 |
Parameters | Malignancy | 1-Year GOS (Grade IV) | |
---|---|---|---|
All Groups | No Grade IV | ||
CoQ10/CS | 0.198 | −0.278 | −0.123 |
PDSS2-b/CS | 0.664 *** | 0.751 *** | −0.024 |
PDSS2-c/CS | 0.547 * | 0.336 | −0.317 |
COQ3-a/CS | −0.344 * | −0.452 | 0.220 |
COQ3-b/CS | −0.258 | −0.092 | 0.157 |
COQ4/CS | 0.143 | 0.660 ** | −0.092 |
COQ5/CS | −0.162 | 0.187 | −0.068 |
COQ6/CS | −0.308 | −0.048 | 0.140 |
COQ7/CS | −0.088 | 0.284 | −0.038 |
COQ8A/CS | 0.131 | 0.229 | −0.567 ** |
COQ9/CS | 0.033 | 0.011 | −0.162 |
COX II/CS | −0.022 | 0.274 | 0.279 |
CoQ10/COX II | 0.068 | −0.368 | −0.167 |
PDSS2-b/COX II | 0.714 *** | 0.645 *** | −0.136 |
PDSS2-c/COX II | 0.440 ** | 0.123 | −0.335 |
COQ3-a/COX II | −0.359 * | −0.448 | 0.016 |
COQ3-b/COX II | −0.428 ** | −0.407 | 0.092 |
COQ4/COX II | -0.243 | −0.657 *** | −0.332 |
COQ5/COX II | −0.382 * | −0.306 | −0.261 |
COQ6/COX II | −0.371 * | −0.483 * | −0.221 |
COQ7/COX II | −0.236 | −0.333 | −0.425 |
COQ8A/COX II | 0.015 | −0.209 | −0.666 *** |
COQ9/COX II | 0.043 | −0.306 | −0.424 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yen, H.-C.; Chen, B.-S.; Yang, S.-L.; Wu, S.-Y.; Chang, C.-W.; Wei, K.-C.; Hsu, J.-C.; Hsu, Y.-H.; Yen, T.-H.; Lin, C.-L. Levels of Coenzyme Q10 and Several COQ Proteins in Human Astrocytoma Tissues Are Inversely Correlated with Malignancy. Biomolecules 2022, 12, 336. https://doi.org/10.3390/biom12020336
Yen H-C, Chen B-S, Yang S-L, Wu S-Y, Chang C-W, Wei K-C, Hsu J-C, Hsu Y-H, Yen T-H, Lin C-L. Levels of Coenzyme Q10 and Several COQ Proteins in Human Astrocytoma Tissues Are Inversely Correlated with Malignancy. Biomolecules. 2022; 12(2):336. https://doi.org/10.3390/biom12020336
Chicago/Turabian StyleYen, Hsiu-Chuan, Bing-Shian Chen, Si-Ling Yang, Shin-Yu Wu, Chun-Wei Chang, Kuo-Chen Wei, Jee-Ching Hsu, Yung-Hsing Hsu, Tzung-Hai Yen, and Chih-Lung Lin. 2022. "Levels of Coenzyme Q10 and Several COQ Proteins in Human Astrocytoma Tissues Are Inversely Correlated with Malignancy" Biomolecules 12, no. 2: 336. https://doi.org/10.3390/biom12020336
APA StyleYen, H.-C., Chen, B.-S., Yang, S.-L., Wu, S.-Y., Chang, C.-W., Wei, K.-C., Hsu, J.-C., Hsu, Y.-H., Yen, T.-H., & Lin, C.-L. (2022). Levels of Coenzyme Q10 and Several COQ Proteins in Human Astrocytoma Tissues Are Inversely Correlated with Malignancy. Biomolecules, 12(2), 336. https://doi.org/10.3390/biom12020336