IL-1 Superfamily Member (IL-1A, IL-1B and IL-18) Genetic Variants Influence Susceptibility and Clinical Course of Mediterranean Spotter Fever
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Laboratory Diagnosis of Rickettsia conorii Infection
2.3. DNA Extraction
2.4. SNPs Molecular Typing
2.5. Statistics
2.6. Decision Tree Model
3. Results
3.1. Analyses of Association of SNP Alleles and Genotypes to Mediterranean Spotted Fever Susceptibility
3.2. Application of a Decision Tree Model Based on Genetic Background Variations for the Characterization of Mediterranean Spotted Fever Subjects
3.3. SNP Genotype Association to Clinical Severity of Mediterranean Spotted Fever Symptoms
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Galanakis, E.; Bitsori, M. When to Think of Rickettsia. Pediatr. Infect. Dis. J. 2019, 38, S20–S23. [Google Scholar] [CrossRef] [PubMed]
- Colomba, C.; Saporito, L.; Polara, V.F.; Rubino, R.; Titone, L. Mediterranean Spotted Fever: Clinical and laboratory characteristics of 415 Sicilian children. BMC Infect. Dis. 2006, 6, 60. [Google Scholar] [CrossRef] [PubMed]
- Crespo, P.; Seixas, D.; Marques, N.; Oliveira, J.; Da Cunha, S.; Meliço-Silvestre, A. Mediterranean Spotted Fever: Case series of 24 years (1989–2012). Springerplus 2015, 4, 272. [Google Scholar] [CrossRef] [Green Version]
- De Vito, A.; Geremia, N.; Mameli, S.M.; Fiore, V.; Serra, P.A.; Rocchitta, G.; Nuvoli, S.; Spanu, A.; Lobrano, R.; Cossu, A.; et al. Epidemiology, clinical aspectes, laboratory diagnosis and treatment of rickesial diseases in the mediterranean area durin COVID-19 pandemic: A review of the literature. Mediterr. J. Hematol. Infect. Dis. 2020, 12, e2020056. [Google Scholar] [CrossRef] [PubMed]
- Lledó, L.; Domínguez-Peñafiel, G.; Giménez-Pardo, C.; Gegúndez, I.; González, R.; Saz, J.V. Molecular and Serological Study of Rickettsial Infection in Humans, and in Wild and Farm Animals, in the Province of Burgos, Spain. Vector-Borne Zoonotic Dis. 2014, 14, 383–388. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Valbuena, G.; Walker, D.H.; Gazi, M.; Hidalgo, M.; DeSousa, R.; Oteo, J.A.; Goez, Y.; Brasier, A.R. Endothelial Cell Proteomic Response to Rickettsia conorii Infection Reveals Activation of the Janus Kinase (JAK)-Signal Transducer and Activator of Transcription (STAT)-Inferferon Stimulated Gene (ISG)15 Pathway and Reprogramming Plasma Membrane Integrin/Cadherin Signaling. Mol. Cell Proteom. 2016, 15, 289–304. [Google Scholar] [CrossRef] [Green Version]
- Torina, A.; Villari, S.; Blanda, V.; Vullo, S.; La Manna, M.P.; Shekarkar Azgomi, M.; Di Liberto, D.; De La Fuente, J.; Sireci, G. Innate Immune Response to Tick-Borne Pathogens: Cellular and Molecular Mechanisms Induced in the Hosts. Int. J. Mol. Sci. 2020, 21, 5437. [Google Scholar] [CrossRef]
- Rumfield, C.; Hyseni, I.; McBride, J.W.; Walker, D.H.; Fang, R. Activation of ASC Inflammasome Driven by Toll-like Receptor 4 Contributes to Host Immunity against Rickettsial Infection. Infect. Immun. 2020, 88, e00886-19. [Google Scholar] [CrossRef]
- Fang, R.; Ismail, N.; Soong, L.; Popov, V.L.; Whitworth, T.; Bouyer, D.H.; Walker, D.H. Differential Interaction of Dendritic Cells with Rickettsia conorii: Impact on Host Susceptibility to Murine Spotted Fever Rickettsiosis. Infect. Immun. 2007, 75, 3112–3123. [Google Scholar] [CrossRef] [Green Version]
- Jordan, J.M.; Woods, M.E.; Olano, J.; Walker, D.H. The Absence of Toll-like Receptor 4 Signaling in C3H/HeJ Mice Predisposes Them to Overwhelming Rickettsial Infection and Decreased Protective Th1 Responses. Infect. Immun. 2008, 76, 3717–3724. [Google Scholar] [CrossRef]
- Curto, P.; Santa, C.; Cortes, L.; Manadas, B.; Simões, I. Spotted Fever Group Rickettsia Trigger Species-Specific Alterations in Macrophage Proteome Signatures with Different Impacts in Host Innate Inflammatory Responses. Microbiol. Spectr. 2021, 9, e0081421. [Google Scholar] [CrossRef] [PubMed]
- Balistreri, C.R.; Candore, G.; Lio, D.; Colonna-Romano, G.; Di Lorenzo, G.; Mansueto, P.; Rini, G.; Mansueto, S.; Cillari, E.; Franceschi, C.; et al. Role of TLR4 Receptor Polymorphisms in Boutonneuse Fever. Int. J. Immunopathol. Pharmacol. 2005, 18, 655–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sampaio, N.G.; Kocan, M.; Schofield, L.; Pfleger, K.; Eriksson, E.M. Investigation of interactions between TLR2, MyD88 and TIRAP by bioluminescence resonance energy transfer is hampered by artefacts of protein overexpression. PLoS ONE 2018, 13, e0202408. [Google Scholar] [CrossRef]
- Diomede, F.; Zingariello, M.; Cavalcanti, M.F.; Merciaro, I.; Pizzicannella, J.; de Isla, N.; Caputi, S.; Ballerini, P.; Trubiani, O. MyD88/ERK/NFkB pathways and pro-inflammatory cytokines release in periodontal ligament stem cells stimulated by Porphyromonas gingivalis. Eur. J. Histochem. 2017, 61, 2791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noonin, C.; Thongboonkerd, V. Exosome-inflammasome crosstalk and their roles in inflammatory responses. Theranostics 2021, 11, 4436–4451. [Google Scholar] [CrossRef]
- Su, Q.; Li, L.; Sun, Y.; Yang, H.; Ye, Z.; Zhao, J. Effects of the TLR4/Myd88/NF-κB Signaling Pathway on NLRP3 Inflammasome in Coronary Microembolization-Induced Myocardial Injury. Cell Physiol. Biochem. 2018, 47, 1497–1508. [Google Scholar] [CrossRef]
- Wiggins, K.A.; Parry, A.J.; Cassidy, L.D.; Humphry, M.; Webster, S.J.; Goodall, J.C.; Narita, M.; Clarke, M.C.H. IL-1α cleavage by inflammatory caspases of the noncanonical inflammasome controls the senescence-associated secretory phenotype. Aging Cell 2019, 18, e12946. [Google Scholar] [CrossRef] [Green Version]
- Tapia, V.S.; Daniels, M.J.D.; Palazón-Riquelme, P.; Dewhurst, M.; Luheshi, N.M.; Rivers-Auty, J.; Green, J.; Redondo-Castro, E.; Kaldis, P.; Lopez-Castejon, G.; et al. The three cytokines IL-1β, IL-18, and IL-1α share related but distinct secretory routes. J. Biol. Chem. 2019, 294, 8325–8335. [Google Scholar] [CrossRef] [Green Version]
- Malik, A.; Kanneganti, T.-D. Function and regulation of IL-1α in inflammatory diseases and cancer. Immunol. Rev. 2018, 281, 124–137. [Google Scholar] [CrossRef]
- Han, C.; Sheng, Y.; Wang, J.; Zhou, X.; Li, W.; Zhang, C.; Guo, L.; Yang, Y. Double-negative T cells mediate M1 polarization of microglial cells via TNF-α-NLRP3 to aggravate neuroinflammation and cognitive impairment in Alzheimer’s disease mice. J. Cell Physiol. 2022, 237, 3860–3871. [Google Scholar] [CrossRef]
- Mitchell, G.; Isberg, R.R. Innate Immunity to Intracellular Pathogens: Balancing Microbial Elimination and Inflammation. Cell Host Microbe 2017, 22, 166–175. [Google Scholar] [CrossRef]
- Zheng, D.; Liwinski, T.; Elinav, E. Inflammasome activation and regulation: Toward a better understanding of complex mechanisms. Cell Discov. 2020, 6, 36. [Google Scholar] [CrossRef] [PubMed]
- Voss, O.H.; Cobb, J.; Gaytan, H.; Rivera Díaz, N.; Sanchez, R.; DeTolla, L.; Rahman, M.S.; Azad, A.F. Pathogenic, but Not Nonpathogenic, Rickettsia spp. Evade Inflammasome-Dependent IL-1 Responses To Establish an Intracytosolic Replication Niche. mBio 2022, 13, e0291821. [Google Scholar] [CrossRef] [PubMed]
- Walker, D.H.; Popov, V.L.; Feng, H.-M. Establishment of a Novel Endothelial Target Mouse Model of a Typhus Group Rickettsiosis: Evidence for Critical Roles for Gamma Interferon and CD8 T Lymphocytes. Lab. Investig. 2000, 80, 1361–1372. [Google Scholar] [CrossRef] [Green Version]
- Jordan, J.M.; Woods, M.E.; Soong, L.; Walker, D.H. Rickettsiae Stimulate Dendritic Cells through Toll-like Receptor 4, Leading to Enhanced NK Cell Activation In Vivo. J. Infect. Dis. 2009, 199, 236–242. [Google Scholar] [CrossRef] [Green Version]
- Smalley, C.; Bechelli, J.; Rockx-Brouwer, D.; Saito, T.; Azar, S.R.; Ismail, N.; Walker, D.H.; Fang, R. Rickettsia australis Activates Inflammasome in Human and Murine Macrophages. PLoS ONE 2016, 11, e0157231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forte, G.I.; Scola, L.; Misiano, G.; Milano, S.; Mansueto, P.; Vitale, G.; Bellanca, F.; Sanacore, M.; Vaccarino, L.; Rini, G.B.; et al. Relevance of Gamma Interferon, Tumor Necrosis Factor Alpha, and Interleukin-10 Gene Polymorphisms to Susceptibility to Mediterranean Spotted Fever. Clin. Vaccine Immunol. 2009, 16, 811–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferwerda, B.; Alonso, S.; Banahan, K.; McCall, M.B.B.; Giamarellos-Bourboulis, E.J.; Ramakers, B.P.; Mouktaroudi, M.; Fain, P.R.; Izagirre, N.; Syafruddin, D.; et al. Functional and genetic evidence that the Mal/TIRAP allele variant 180L has been selected by providing protection against septic shock. Proc. Natl. Acad. Sci. USA 2009, 106, 10272–10277. [Google Scholar] [CrossRef] [Green Version]
- Dominici, R.; Cattaneo, M.; Malferrari, G.; Archi, D.; Mariani, C.; Grimaldi, L.; Biunno, I. Cloning and functional analysis of the allelic polymorphism in the transcription regulatory region of interleukin-1α. Immunogenetics 2002, 54, 82–86. [Google Scholar] [CrossRef]
- Jiménez-Sousa, M.; Medrano, L.M.; Liu, P.; Almansa, R.; Fernández-Rodríguez, A.; Gómez-Sánchez, E.; Rico, L.; Heredia-Rodríguez, M.; Gómez-Pesquera, E.; Tamayo, E.; et al. IL-1Brs16944 polymorphism is related to septic shock and death. Eur. J. Clin. Investig. 2017, 47, 53–62. [Google Scholar] [CrossRef]
- Arimitsu, J.; Hirano, T.; Higa, S.; Kawai, M.; Naka, T.; Ogata, A.; Shima, Y.; Fujimoto, M.; Yamadori, T.; Hagiwara, K.; et al. IL-18 gene polymorphisms affect IL-18 production capability by monocytes. Biochem. Biophys. Res. Commun. 2006, 342, 1413–1416. [Google Scholar] [CrossRef] [PubMed]
- Lewis, R.J. An Introduction to Classification and Regression Tree (CART) Analysis. In Proceedings of the Annual Meeting of the Society for Academic Emergency Medicine, San Francisco, CA, USA, 22–25 May 2000; pp. 1–14. [Google Scholar]
- Singh, S.; Gupta, P. Comparative study ID3, cart and C4. 5 decision tree algorithm: A survey. Int. J. Adv. Inf. Sci. Tech. 2014, 27, 97–103. [Google Scholar]
- Scola, L.; Giarratana, R.M.; Marinello, V.; Cancila, V.; Pisano, C.; Ruvolo, G.; Frati, G.; Lio, D.; Balistreri, C.R. Polymorphisms of Pro-Inflammatory IL-6 and IL-1β Cytokines in Ascending Aortic Aneurysms as Genetic Modifiers and Predictive and Prognostic Biomarkers. Biomolecules 2021, 11, 943. [Google Scholar] [CrossRef] [PubMed]
- Valkov, E.; Stamp, A.; DiMaio, F.; Baker, D.; Verstak, B.; Roversi, P.; Kellie, S.; Sweet, M.J.; Mansell, A.; Gay, N.J.; et al. Crystal structure of Toll-like receptor adaptor MAL/TIRAP reveals the molecular basis for signal transduction and disease protection. Proc. Natl. Acad. Sci. USA 2011, 108, 14879–14884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, A.J.; Humphries, S.E. Cytokine and cytokine receptor gene polymorphisms and their functionality. Cytokine Growth Factor Rev. 2009, 20, 43–59. [Google Scholar] [CrossRef] [PubMed]
- Altman, D.G.; Bland, J.M. Diagnostic tests. 1: Sensitivity and specificity. BMJ 1994, 308, 1552. [Google Scholar] [CrossRef] [Green Version]
- Altman, D.G.; Bland, J.M. Diagnostic tests 2: Predictive values. BMJ 1994, 309, 102. [Google Scholar] [CrossRef] [Green Version]
- Bechelli, J.; Smalley, C.; Zhao, X.; Judy, B.; Valdes, P.; Walker, D.H.; Fang, R. MyD88 Mediates Instructive Signaling in Dendritic Cells and Protective Inflammatory Response during Rickettsial Infection. Infect. Immun. 2016, 84, 883–893. [Google Scholar] [CrossRef] [Green Version]
- Andrade, W.A.; Zamboni, D.S. Inflammasome-dependent Mechanisms Involved in Sensing and Restriction of Bacterial Replication. Curr. Issues Mol. Biol. 2018, 25, 99–132. [Google Scholar] [CrossRef]
- Mansell, A.; Brint, E.; Gould, J.A.; O’Neill, L.A.; Hertzog, P.J. Mal Interacts with Tumor Necrosis Factor Receptor-associated Factor (TRAF)-6 to mediate NF-κB Activation by Toll-like Receptor (TLR)-2 and TLR. J. Biol. Chem. 2004, 279, 37227–37230. [Google Scholar] [CrossRef] [Green Version]
- Yalcinkaya, M.; Liu, W.; Islam, M.N.; Kotini, A.G.; Gusarova, G.A.; Fidler, T.P.; Papapetrou, E.P.; Bhattacharya, J.; Wang, N.; Tall, A.R. Modulation of the NLRP3 inflammasome by SARS-CoV-2 Envelope protein. Sci. Rep. 2021, 11, 24432. [Google Scholar] [CrossRef] [PubMed]
- Radulovic, S.; Price, P.W.; Beier, M.S.; Gaywee, J.; Macaluso, J.A.; Azad, A. Rickettsia -Macrophage Interactions: Host Cell Responses to Rickettsia akari and Rickettsia typhi. Infect. Immun. 2002, 70, 2576–2582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, A.H.; Schroder, K. Inflammasome signaling and regulation of interleukin-1 family cytokines. J. Exp. Med. 2020, 217, e20190314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giedraitis, V.; He, B.; Huang, W.-X.; Hillert, J. Cloning and mutation analysis of the human IL-18 promoter: A possible role of polymorphisms in expression regulation. J. Neuroimmunol. 2001, 112, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Cavalcante, J.; de Sousa, E.; de Oliveira Rodrigues, R.; de Almeida Viana, G.; Duarte Gadelha, D.; de Carvalho, M.; Sousa, D.L.; Silva, A.; Filho, R.; Fernandes, V.O.; et al. Interleukin-18 promoter −137 G/C polymorphism (rs187238) is associated with biochemical markers of renal function and cardiovascular disease in type 2 diabetes patients. Clin. Biochem. 2020, 80, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Boyle, A.J.; Ferris, P.; Bradbury, I.; Conlon, J.; Shankar-Hari, M.; Rogers, A.J.; O’Kane, C.M.; McAuley, D.F. Baseline plasma IL-18 may predict simvastatin treatment response in patients with ARDS: A secondary analysis of the HARP-2 randomised clinical trial. Crit. Care 2022, 26, 168. [Google Scholar] [CrossRef]
- Qu, H.-Q.; Snyder, J.; Connolly, J.; Glessner, J.; Kao, C.; Sleiman, P.; Hakonarson, H. Circulating LIGHT (TNFSF14) and Interleukin-18 Levels in Sepsis-Induced Multi-Organ Injuries. Biomedicines 2022, 10, 264. [Google Scholar] [CrossRef]
- Volfovitch, Y.; Tsur, A.M.; Gurevitch, M.; Novick, D.; Rabinowitz, R.; Mandel, M.; Achiron, A.; Rubinstein, M.; Shoenfeld, Y.; Amital, H. The intercorrelations between blood levels of ferritin, sCD163, and IL-18 in COVID-19 patients and their association to prognosis. Immunol. Res. 2022, 70, 817–828. [Google Scholar] [CrossRef] [PubMed]
Demographic Characteristics | MSF | Controls | p | ||
---|---|---|---|---|---|
N. | % | N. | % | ||
Adult females | 60 | 37.50 | 85 | 41.26 | |
Age, mean ± SD | 41.84 ± 14.28 | 38.95 ± 12.61 | 0.863 | ||
Age median | 39.00 | 39.50 | |||
Clinical characteristics of Mediterranean Spotted Fever patients | |||||
Fever Days ± SD | median | Fever T° Max ± SD | median | ||
9.12 ± 4.86 | 8.00 | 39.39 ± 0.64 | 39.45 | ||
MSF Symptoms | N. | % | |||
Rash | 151 | 94.37 | |||
Tache noire | 88 | 55.00 | |||
Lymphadenitis | 17 | 10.63 | |||
Generalized lymphadenitis | 7 | 4.38 | |||
Splenomegaly | 45 | 28.13 | |||
Hepatomegaly | 61 | 38.12 | |||
Arthralgia | 99 | 61.88 | |||
Conjunctivitis | 11 | 6.88 | |||
Severe Complications | |||||
All complicated cases | 33 | 20.63 | |||
ARDS * | 15 | 9.38 | |||
Sepsis | 17 | 10.62 | |||
Septic shock | 15 | 9.38 | |||
Neurologic symptoms | 21 | 13.12 | |||
Coma | 8 | 5.00 |
Genes | SNPs | Gene Region | Position | Minor Allele | Biological Effect | References |
---|---|---|---|---|---|---|
TIRAP | rs8177374 | Exon 5 +539 | 11:126,292,948 | T | Reduced receptor signal transduction | [28,35] |
IL-18 | rs187238 | 5′ flanking region −137 | 11:112,164,265 | G | Increased levels of gene transcription | [31] |
IL-1A | rs1800587 | 5′ flanking region −889 | 2:112,785,383 | T | Marker of Increased levels of gene transcription | [29] |
IL-1B | rs16944 | 5′ flanking region −511 | 2:112,837,290 | A | Marker of increased Active IL-1β release | [30] |
rs1143634 | Exon 5 +3954 | 2:112,832,813 | T | Marker of increased Active IL-1β release | [36] |
GENE | SNP | Alleles/Genotypes | Controls | MSF | OR (95% CI) | p-Value | ||
---|---|---|---|---|---|---|---|---|
N. | Freq. | N. | Freq. | |||||
TIRAP | rs8177374 | C | 378 | 0.92 | 291 | 0.91 | 1.11 (0.66–1.86) | 0.639 |
T | 34 | 0.08 | 29 | 0.09 | ||||
C/C | 178 | 0.86 | 134 | 0.84 | 0.81 (0.45–1.45) | 0.553 | ||
C/T | 22 | 0.11 | 23 | 0.14 | 1.39 (0.74–2.60) | 0.480 | ||
T/T | 6 | 0.03 | 3 | 0.02 | 0.64 (0.16–2.59) | 0.521 | ||
IL-18 | rs187238 | C | 288 | 0.7 | 231 | 0.72 | 0.89 (0.65–1.44) | 0.512 |
G | 124 | 0.3 | 89 | 0.28 | ||||
C/C | 102 | 0.5 | 82 | 0.51 | 1.07 (0.71–1.62) | 0.750 | ||
C/G | 84 | 0.41 | 67 | 0.42 | 0.99 (0.64–1.53) | 0.629 | ||
G/G | 20 | 0.1 | 11 | 0.07 | 0.63 (0.28–1.43) | 0.333 | ||
IL-1A | rs1800587 | C | 287 | 0.7 | 196 | 0.61 | 1.45 (1.07–1.98) | 0.018 |
T | 125 | 0.3 | 124 | 0.39 | ||||
C/C | 100 | 0.49 | 69 | 0.43 | 0.81 (0.53–1.22) | 0.342 | ||
C/T | 87 | 0.42 | 58 | 0.36 | 0.97 (0.61–1.52) | 0.241 | ||
T/T | 19 | 0.09 | 33 | 0.21 | 2.56 (1.39–4.70) | 0.002 | ||
IL-1B | rs16944 | G | 272 | 0.66 | 202 | 0.63 | 1.14 (0.84–1.54) | 0.436 |
A | 140 | 0.34 | 118 | 0.37 | ||||
G/G | 87 | 0.42 | 65 | 0.41 | 0.94 80.62–1.42) | 0.831 | ||
A/G | 98 | 0.48 | 72 | 0.45 | 0.90 (0.60–1.36) | 0.625 | ||
A/A | 21 | 0.1 | 23 | 0.14 | 1.48 (0.79–2.78) | 0.222 | ||
rs1143634 | C | 297 | 0.72 | 220 | 0.69 | 1.17 (0.85–1.62) | 0.328 | |
T | 115 | 0.28 | 100 | 0.31 | ||||
C/C | 108 | 0.52 | 81 | 0.51 | 0.93 (0.62–1.41) | 0.753 | ||
C/T | 81 | 0.39 | 58 | 0.36 | 0.88 (0.56–1.36) | 0.550 | ||
T/T | 17 | 0.08 | 21 | 0.13 | 1.77 (0.89–3.55) | 0.134 |
Hp | IL-1A rs1800587 C/T | IL-1B rs16944 G/A | IL-1B rs1143634 C/T | CTRL Freq. | MSF Freq. | OR (95%CI) | p |
---|---|---|---|---|---|---|---|
1 | C | G | C | 0.3575 | 0.3204 | 0.84 (0.62–1.15) | 0.31 |
2 | C | A | C | 0.2598 | 0.2051 | 0.74 (0.54–1.59) | 0.096 |
3 | T | G | T | 0.1621 | 0.1444 | 0.86 (0.57–1.20) | 0.54 |
4 | T | G | C | 0.0761 | 0.1071 | 1.49 (0.89–2.48) | 0.15 |
5 | C | G | T | 0.0645 | 0.0593 | 0.92 (0.50–1.68) | 0.88 |
6 | T | A | T | 0.0377 | 0.0811 | 2.19 (1.15–4.16) | 0.016 |
7 | T | A | C | 0.0276 | 0.0549 | 1.81 (0.47–6.97) | 0.055 |
8 | C | A | T | 0.0147 | 0.0277 | 1.96 (0.69–5.56) | 0.29 |
Test Results | MSF Patients | Control Subjects | Total |
---|---|---|---|
Positive | 8 | 2 | 10 |
negative | 24 | 40 | 64 |
Total | 32 | 42 | 74 |
Sensitivity | 0.250 | ||
Specificity | 0.952 | ||
PPV | 0.800 | ||
NPV | 0.625 |
Genes and SNP Alleles | ARDS | w/oARDS | Controls | ARDS vs. w/oARDS | ARDS vs. Controls | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
N. | Freq. | N. | Freq. | N. | Freq. | OR 95% CI | p Value | OR (95% CI) | p Value | ||
IL-18 rs187238 | C/C | 2 | 0.13 | 80 | 0.55 | 102 | 0.5 | 0.12 0.03–0.57 | 0.0021 | 0.16 0.03–0.71 | 0.0069 |
G/C | 13 | 0.87 | 54 | 0.37 | 84 | 0.41 | 12.86 2.68–61.70 | <0.0001 | 9.28 2.01–42.81 | 0.0005 | |
G/G | 0 | - | 11 | 0.08 | 20 | 0.1 | -- | - | -- | - |
Genes and SNP Alleles | IL-1A rs1800587 | IL-1B rs16944 | IL-1B rs1143634 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
C/C | C/T | T/T | G/G | G/A | A/A | C/C | C/T | T/T | ||
Sepsis vs. No-Sepsis | OR 95% CI | 0.51 0.17–1.54 | 0.86 0.29–2.50 | 2.75 0.90–8.42 | 0.28 0.08–1.01 | 7.04 1.92–25.8 | -- | 1.45 0.52–4.02 | 0.21 0.05–0.96 | 3.42 1.04–11.3 |
p value | 0.303 | 0.784 | 0.0871 | 0.0652 | <0.0007 | - | 0.609 | 0.019 | 0.056 | |
Vs. Control | OR (95% CI) | 0.44 0.15–1.30 | 0.75 0.26–2.14 | 6.97 2.09–23.2 | 0.29 0.08–1.05 | 4.65 1.28–16.9 | -- | 1.30 0.50–3.54 | 0.21 0.05–0.96 | 4.75 1.43–15.8 |
p value | 0.205 | 0.592 | 0.0027 | 0.069 | 0.0087 | - | 0.801 | 0.018 | 0.018 | |
Sept-Sh vs. No-Sept-Sh | OR 95% CI | 0.30 0.08–1.11 | 1.05 0.35–3.18 | 3.65 1.13–11.8 | 0.20 0.04–0.92 | 9.86 2.12–45.7 | -- | 1.13 0.3–3.27 | 0.25 0.05–1.08 | 4.27 1.25–14.6 |
p value | 0.098 | 0.934 | 0.036 | 0.027 | <0.0004 | -- | 1.00 | 0.087 | 0.029 | |
vs. Controls | OR (95% CI) | 0.26 0.07–0.97 | 0.92 0.31–2.74 | 9.25 2.59–33.0 | 0.21 0.05–0.96 | 6.29 1.37–29.0 | -- | 1.04 0.36–2.97 | 0.24 0.05–1.13 | 5.84 1.68–18.1 |
p value | 0.0351 | 0.881 | 0.001 | 0.034 | 0.0051 | -- | 1.00 | 0.054 | 0.0097 | |
N-Sympt vs. No-N-Sympt | OR 95% CI | 0.62 0.24–1.63 | 0.79 0.29–2.11 | 2.47 0.87–6.96 | 0.21 0.06–0.73 | 9.83 2.74–35.3 | -- | 1.35 0.54–3.42 | 0.39 0.12–1.22 | 2.40 0.76–7.58 |
p value | 0.357 | 0.634 | 0.0981 | 0.0085 | <0.0001 | -- | 0.641 | 0.083 | 0.164 | |
N-Sympt vs. Controls | OR 95% CI | 0.53 0.21–1.37 | 0.68 0.26–1.79 | 6.03 2.00–18.2 | 0.23 0.07–0.79 | 6.03 1.71–21.3 | -- | 1.21 0.49–2.99 | 0.36 0.12–1.13 | 3.56 1.11–11.4 |
p value | 0.252 | 0.433 | 0.0024 | 0.0173 | 0.0011 | -- | 0.819 | 0.059 | 0.046 | |
Coma vs. No-Coma | OR 95% CI | 2.99 0.68–13.3 | 2.68 0.58–12.3 | 0.19 0.02–1.64 | 9.52 1.14–79.7 | -- | 1.67 0.38–7.22 | 0.25 0.03–2.15 | 2.24 0.41–12.1 | 2.99 0.68–13.3 |
p value | 0.143 | 0.225 | 0.1441 | 0.0096 | -- | 0.720 | 0.151 | 0.384 | 0.147 | |
vs. Controls | OR (95% CI) | 2.36 0.54–10.28 | 9.00 1.75–46.30 | 0.195 0.02–1.62 | 6.90 0.83–57.6 | -- | 1.51 0.35–6.49 | 0.23 0.03–1.91 | 4.06 0.73–22.48 | 2.36 0.54–10.28 |
p value | 0.241 | 0.015 | 0.145 | 0.033 | -- | 0.725 | 0.111 | 0.154 | 0.242 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scola, L.; Pilato, G.; Giarratana, R.M.; Sanfilippo, G.L.; Lio, D.; Colomba, C.; Giammanco, G.M. IL-1 Superfamily Member (IL-1A, IL-1B and IL-18) Genetic Variants Influence Susceptibility and Clinical Course of Mediterranean Spotter Fever. Biomolecules 2022, 12, 1892. https://doi.org/10.3390/biom12121892
Scola L, Pilato G, Giarratana RM, Sanfilippo GL, Lio D, Colomba C, Giammanco GM. IL-1 Superfamily Member (IL-1A, IL-1B and IL-18) Genetic Variants Influence Susceptibility and Clinical Course of Mediterranean Spotter Fever. Biomolecules. 2022; 12(12):1892. https://doi.org/10.3390/biom12121892
Chicago/Turabian StyleScola, Letizia, Giovanni Pilato, Rosa Maria Giarratana, Giuseppa Luisa Sanfilippo, Domenico Lio, Claudia Colomba, and Giovanni Maurizio Giammanco. 2022. "IL-1 Superfamily Member (IL-1A, IL-1B and IL-18) Genetic Variants Influence Susceptibility and Clinical Course of Mediterranean Spotter Fever" Biomolecules 12, no. 12: 1892. https://doi.org/10.3390/biom12121892
APA StyleScola, L., Pilato, G., Giarratana, R. M., Sanfilippo, G. L., Lio, D., Colomba, C., & Giammanco, G. M. (2022). IL-1 Superfamily Member (IL-1A, IL-1B and IL-18) Genetic Variants Influence Susceptibility and Clinical Course of Mediterranean Spotter Fever. Biomolecules, 12(12), 1892. https://doi.org/10.3390/biom12121892