Galectin-3 and Myeloperoxidase May Monitor Cancer-Therapy-Related Cardiotoxicity? A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy and Selection Criteria
2.2. Study Selection and Data Extraction
2.3. Quality Assessment
2.4. Statistical Analysis
3. Results
3.1. Article Selection and Baseline Characteristics
3.2. Galectin-3 Does Not Increase in Response to Cancer Treatment
3.3. Galectin-3 Is Not Useful for the Monitoring of Cancer-Therapy-Related Cardiotoxicity
3.4. MPO Increases in Response to Cancer Treatment
3.5. MPO for the Monitoring of Cancer-Therapy-Related Cardiotoxicity
3.6. MPO Levels Increased Earlier Than TnI and Nt-proBNP Levels in Response to Cancer Treatment
4. Discussion
4.1. Biomarker Pathway
4.2. Strengths and Opportunities for Future Research
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zamorano, J.L.; Lancellotti, P.; Rodriguez Muñoz, D.; Aboyans, V.; Asteggiano, R.; Galderisi, M.; Habib, G.; Lenihan, D.J.; Lip, G.Y.; Lyon, A.R.; et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur. J. Heart Fail 2017, 19, 9–42. [Google Scholar] [CrossRef] [PubMed]
- Michel, L.; Rassaf, T. Cardio-oncology: Need for novel structures. Eur. J. Med. Res. 2019, 24, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrmann, J. Adverse cardiac effects of cancer therapies: Cardiotoxicity and arrhythmia. Nat. Rev. Cardiol. 2020, 17, 474–502. [Google Scholar] [CrossRef] [PubMed]
- Lyon, A.R. Heart failure resulting from cancer treatment: Still serious but an opportunity for prevention. Syst. Rev. 2018, 7, 6–8. [Google Scholar] [CrossRef]
- Patrizio, L.; Suter, T.M.; Teresa, L.F.; Maurizio, G.; Lyon, A.R.; Peter, V.; Alain, C.S.; Jose-Luis, Z.; Guy, J.; Marie, M. Cardio-Oncology Services: Rationale, organization, and implementationA report from the ESC Cardio-Oncology council. Eur. Heart J. 2018, 22, 1756–1763. [Google Scholar]
- Totzeck, M.; Schuler, M.; Stuschke, M.; Heusch, G.; Rassaf, T. Cardio-oncology—Strategies for management of cancer-therapy related cardiovascular disease. Int. J. Cardiol. 2019, 280, 163–175. [Google Scholar] [CrossRef]
- Mcgowan, J.V.; Chung, R.; Maulik, A.; Piotrowska, I.; Walker, J.M.; Yellon, D.M. Anthracycline Chemotherapy and Cardiotoxicity. Cardiovasc. Drugs Ther. 2017, 31, 63–75. [Google Scholar] [CrossRef] [Green Version]
- Ananthan, K.; Lyon, A.R. The Role of Biomarkers in Cardio-Oncology. J. Cardiovasc. Transl. Res. 2020, 13, 431–450. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef] [Green Version]
- Curigliano, G.; Lenihan, D.; Fradley, M.; Ganatra, S.; Barac, A.; Blaes, A.; Herrmann, J.; Porter, C.; Lyon, A.R.; Lancellotti, P. Management of cardiac disease in cancer patients throughout oncological treatment: ESMO consensus recommendations—ScienceDirect. Ann. Oncol. 2020, 31, 171–190. [Google Scholar] [CrossRef] [Green Version]
- Institute, N.C. Common Terminology Criteria for Adverse Events (CTCAE). Version 4.0. Available online: https://evs.nci.nih.gov/ftp1/CTCAE/CTCAE_4.03/Archive/CTCAE_4.0_2009-05-29_QuickReference_8.5x11.pdf (accessed on 22 October 2022).
- Drevon, D.; Fursa, S.R.; Malcolm, A.L. Intercoder Reliability and Validity of WebPlotDigitizer in Extracting Graphed Data. Behav. Modif. 2017, 41, 323–339. [Google Scholar] [CrossRef] [PubMed]
- Demissei, B.G.; Hubbard, R.A.; Zhang, L.; Smith, A.M.; Sheline, K.; McDonald, C.; Narayan, V.; Domchek, S.M.; DeMichele, A.; Shah, P.; et al. Changes in Cardiovascular Biomarkers with Breast Cancer Therapy and Associations with Cardiac Dysfunction. J. Am. Heart Assoc. 2020, 9, e014708. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.R.; Herrmann, J.; Vierkant, R.A.; Olson, J.E.; Couch, F.J.; Hazim, A.; Sloan, J.A.; Loprinzi, C.L.; Ruddy, K.J. N-Terminal Pro Brain Natriuretic Peptide, sST2, and Galectin-3 Levels in Breast Cancer Survivors. J. Clin. Med. 2021, 10, 3313. [Google Scholar] [CrossRef] [PubMed]
- van Boxtel, W.; Bulten, B.F.; Mavinkurve-Groothuis, A.M.; Bellersen, L.; Mandigers, C.M.; Joosten, L.A.; Kapusta, L.; de Geus-Oei, L.F.; van Laarhoven, H.W. New biomarkers for early detection of cardiotoxicity after treatment with docetaxel, doxorubicin and cyclophosphamide. Biomarkers 2015, 20, 143–148. [Google Scholar] [CrossRef]
- Lakhani, H.V.; Pillai, S.S.; Zehra, M.; Dao, B.; Tirona, M.T.; Thompson, E.; Sodhi, K. Detecting early onset of anthracyclines-induced cardiotoxicity using a novel panel of biomarkers in West-Virginian population with breast cancer. Sci. Rep. 2021, 11, 7954. [Google Scholar] [CrossRef]
- Wanderley, M.R.B., Jr.; Ávila, M.S.; Fernandes-Silva, M.M.; Cruz, F.D.D.; Brandão, S.M.G.; Rigaud, V.O.C.; Hajjar, L.A.; Filho, R.K.; Cunha-Neto, E.; Bocchi, E.A.; et al. Plasma biomarkers reflecting high oxidative stress in the prediction of myocardial injury due to anthracycline chemotherapy and the effect of carvedilol: Insights from the CECCY Trial. Oncotarget 2022, 13, 214–223. [Google Scholar] [CrossRef]
- Gulati, G.; Heck, S.L.; Røsjø, H.; Ree, A.H.; Hoffmann, P.; Hagve, T.A.; Norseth, J.; Gravdehaug, B.; Steine, K.; Geisler, J.; et al. Neurohormonal Blockade and Circulating Cardiovascular Biomarkers during Anthracycline Therapy in Breast Cancer Patients: Results from the PRADA (Prevention of Cardiac Dysfunction during Adjuvant Breast Cancer Therapy) Study. J. Am. Heart Assoc. 2017, 6, e006513. [Google Scholar] [CrossRef] [Green Version]
- Ky, B.; Putt, M.; Sawaya, H.; French, B.; Januzzi, J.L., Jr.; Sebag, I.A.; Plana, J.C.; Cohen, V.; Banchs, J.; Carver, J.R.; et al. Early increases in multiple biomarkers predict subsequent cardiotoxicity in patients with breast cancer treated with doxorubicin, taxanes, and trastuzumab. J. Am. Coll. Cardiol. 2014, 63, 809–816. [Google Scholar] [CrossRef] [Green Version]
- Todorova, V.K.; Hsu, P.C.; Wei, J.Y.; Lopez-Candales, A.; Chen, J.Z.; Su, L.J.; Makhoul, I. Biomarkers of inflammation, hypercoagulability and endothelial injury predict early asymptomatic doxorubicin-induced cardiotoxicity in breast cancer patients. Am. J. Cancer Res. 2020, 10, 2933–2945. [Google Scholar]
- Stang, A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol. 2010, 25, 603–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kastora, S.L.; Pana, T.A.; Sarwar, Y.; Myint, P.K.; Mamas, M.A. Biomarker Determinants of Early Anthracycline-Induced Left Ventricular Dysfunction in Breast Cancer: A Systematic Review and Meta-Analysis. Mol. Diagn. Ther. 2022, 26, 369–382. [Google Scholar] [CrossRef]
- Higgins, J.P.; Green, S. Cochrane Handbook for Systematic Reviews of Interventions; Cochrane Handbook for Systematic Reviews of Interventions: Chichester, UK, 2009. [Google Scholar]
- George, J.; Yoo, J.W.; Joshi, N.; Farrell, J.J. Incidence of Pancreatitis with the Use of Immune Checkpoint Inhibitors (ICI) In Advanced Cancers: A Systematic Review and Meta-Analysis. Pancreas 2018, 19, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navin, S.; Meijers, W.C.; Silljé, H.; Ho, J.E.; Liu, F.T.; De, B. Galectin-3 Activation and Inhibition in Heart Failure and Cardiovascular Disease: An Update. Theranostics 2018, 8, 593–609. [Google Scholar]
- Chen, H.; Chen, C.; Fang, J.; Wang, R.; Nie, W. Circulating galectin-3 on admission and prognosis in acute heart failure patients: A meta-analysis. Heart Fail Rev. 2020, 25, 331–341. [Google Scholar] [CrossRef]
- Narayan, V.; Thompson, E.W.; Demissei, B.; Ho, J.E.; Januzzi, J.L., Jr.; Ky, B. Mechanistic Biomarkers Informative of Both Cancer and Cardiovascular Disease: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 75, 2726–2737. [Google Scholar] [CrossRef]
- Xiao, H.; Wang, X.; Li, S.; Liu, Y.; Cui, Y.; Deng, X. Advances in Biomarkers for Detecting Early Cancer Treatment-Related Cardiac Dysfunction. Front. Cardiovasc. Med. 2021, 8, 753313. [Google Scholar] [CrossRef]
- Ndrepepa, G. Myeloperoxidase—A bridge linking inflammation and oxidative stress with cardiovascular disease. Clin. Chim. Acta 2019, 493, 36–51. [Google Scholar] [CrossRef]
- Baldus, S.; Heeschen, C.; Meinertz, T.; Zeiher, A.M.; Eiserich, J.P.; Münzel, T.; Simoons, M.L.; Hamm, C.W. Myeloperoxidase serum levels predict risk in patients with acute coronary syndromes. Circulation 2003, 108, 1440–1445. [Google Scholar] [CrossRef] [Green Version]
- Cervantes Gracia, K.; Llanas-Cornejo, D.; Husi, H. CVD and Oxidative Stress. J. Clin. Med. 2017, 6, 22. [Google Scholar] [CrossRef] [Green Version]
- Rawat, P.S.; Jaiswal, A.; Khurana, A.; Bhatti, J.S.; Navik, U. Doxorubicin-induced cardiotoxicity: An update on the molecular mechanism and novel therapeutic strategies for effective management. Biomed. Pharm. 2021, 139, 111708. [Google Scholar] [CrossRef] [PubMed]
- Teng, T.S.; Ji, A.L.; Ji, X.Y.; Li, Y.Z. Neutrophils and Immunity: From Bactericidal Action to Being Conquered. J. Immunol. Res. 2017, 2017, 9671604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demkow, U. Neutrophil Extracellular Traps (NETs) in Cancer Invasion, Evasion and Metastasis. Cancers 2021, 13, 4495. [Google Scholar] [CrossRef] [PubMed]
- Armenian, S.H.; Lacchetti, C.; Barac, A.; Carver, J.; Constine, L.S.; Denduluri, N.; Dent, S.; Douglas, P.S.; Durand, J.B.; Ewer, M.; et al. Prevention and Monitoring of Cardiac Dysfunction in Survivors of Adult Cancers: American Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol. 2017, 35, 893–911. [Google Scholar] [CrossRef]
- Ruggiero, A.; De Rosa, G.; Rizzo, D.; Leo, A.; Maurizi, P.; De Nisco, A.; Vendittelli, F.; Zuppi, C.; Mordente, A.; Riccardi, R. Myocardial performance index and biochemical markers for early detection of doxorubicin-induced cardiotoxicity in children with acute lymphoblastic leukaemia. Int. J. Clin. Oncol. 2013, 18, 927–933. [Google Scholar] [CrossRef]
- Sawaya, H.; Sebag, I.A.; Plana, J.C.; Januzzi, J.L.; Ky, B.; Cohen, V.; Gosavi, S.; Carver, J.R.; Wiegers, S.E.; Martin, R.P.; et al. Early detection and prediction of cardiotoxicity in chemotherapy-treated patients. Am. J. Cardiol. 2011, 107, 1375–1380. [Google Scholar] [CrossRef] [Green Version]
- Sawaya, H.; Sebag, I.A.; Plana, J.C.; Januzzi, J.L.; Ky, B.; Tan, T.C.; Cohen, V.; Banchs, J.; Carver, J.R.; Wiegers, S.E.; et al. Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. Circ. Cardiovasc. Imaging 2012, 5, 596–603. [Google Scholar] [CrossRef] [Green Version]
- Tan, L.L.; Lyon, A.R. Role of Biomarkers in Prediction of Cardiotoxicity During Cancer Treatment. Curr. Treat. Options Cardiovasc. Med. 2018, 20, 55. [Google Scholar] [CrossRef]
Study Characteristics | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Author | Year | Sample Size | Study Type | Country | Age (Mean; Interquartile Range/SD) | Cancer Type | Intervention (Treatment Modality) | Follow-Up (Months) | Baseline LVEF % (Mean; Interquartile Range/SD) | Biomarker Examined | Outcome Events (n) | Associated Outcome (HR) |
B. G. Demissei et al. [13] | 2020 | 323 | Prospective | USA | 48 (41–57) | breast cancer | doxorubicin + Trastuzumab | 44.4 | 53 (51–56)% | MPO | 49 | MPO: 1.1 (0.92–1.31) |
S. R. Patel et al. [14] | 2021 | 1160 | Prospective | USA | 52.2 ± 9.6 | breast Cancer | Anthracyclines | 32.4 | — | gal-3 | + | — |
W. van Boxtel et al. [15] | 2015 | 55 | Prospective | Netherlands | 52.8 ± 8.5 | breast cancer | docetaxel + doxorubicin + cyclophosphamide (TAC) | 12 | — | gal-3 | 5 | gal-3: 3.19 (0.46, 22.20) |
Lakhani HV et al. [16] | 2021 | 17 | Prospective | USA | 57.6 ± 4.5 | invasive ductal carcinoma | Anthracyclines | 6 | 62.9 ± 1.2% | MPO | 4 | — |
M. R. B. Wanderley et al. [17] | 2022 | 174 | Prospective | Brazil | 50.4 ± 9.5 | breast Cancer | Anthracyclines | 6 | — | gal-3, MPO | 26 | — |
G.Gulati et al. [18] | 2017 | 121 | Prospective | Norway | ① Epirubicin = 400 mg/m2: 51.0 (42.0, 59.0) n = 27 ② Epirubicin < 400 mg/m2: 48.5 (43.8, 58.0) n = 94 | breast cancer | Anthracyclines | 3.2 | 63.3 ± 4.0% | gal-3 | 1 | — |
B. Ky et al. [19] | 2014 | 78 | Prospective | USA | 50.0 (42.0–56.8) | breast cancer | Anthracyclines | 3 | 64 (61–68)% | gal-3, MPO | + | gal-3: 1.33 (0.86–2.05) MPO: 1.34 (1.00–1.80) |
V. K. Todorova et al. [20] | 2020 | 51 | Prospective | USA | 52.2 ± 11.5 | breast cancer | doxorubicin | 0.5 | 64.5 ± 7.0% | MPO | + | — |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Gao, D.; Xue, J.; Zuo, Z. Galectin-3 and Myeloperoxidase May Monitor Cancer-Therapy-Related Cardiotoxicity? A Systematic Review and Meta-Analysis. Biomolecules 2022, 12, 1788. https://doi.org/10.3390/biom12121788
Wu Y, Gao D, Xue J, Zuo Z. Galectin-3 and Myeloperoxidase May Monitor Cancer-Therapy-Related Cardiotoxicity? A Systematic Review and Meta-Analysis. Biomolecules. 2022; 12(12):1788. https://doi.org/10.3390/biom12121788
Chicago/Turabian StyleWu, Yujuan, Diansa Gao, Jinmin Xue, and Zhong Zuo. 2022. "Galectin-3 and Myeloperoxidase May Monitor Cancer-Therapy-Related Cardiotoxicity? A Systematic Review and Meta-Analysis" Biomolecules 12, no. 12: 1788. https://doi.org/10.3390/biom12121788
APA StyleWu, Y., Gao, D., Xue, J., & Zuo, Z. (2022). Galectin-3 and Myeloperoxidase May Monitor Cancer-Therapy-Related Cardiotoxicity? A Systematic Review and Meta-Analysis. Biomolecules, 12(12), 1788. https://doi.org/10.3390/biom12121788