Clinical Applications of Mixed Reality and 3D Printing in Congenital Heart Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Generation of the Digital Heart Models
2.2. Three-Dimensional Printing
2.3. Development of Mixed Reality Application
2.4. Participant Recruitment and Data Collection
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Biglino, G.; Koniordou, D.; Gasparini, M.; Capelli, C.; Leaver, L.K.; Khambadkone, S.; Schievano, S.; Taylor, A.M.; Wray, J. Piloting the use of patient-specific cardiac models as a novel tool to facilitate communication during clinical consultations. Pediatr. Cardiol. 2017, 38, 813–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valverde, I.; Gomez-Ciriza, G.; Hussain, T.; Suarez-Mejias, C.; Velasco-Forte, M.N.; Byrne, N.; Ordoñez, A.; Gonzalez-Calle, A.; Anderson, D.; Hazekamp, M.G. Three-dimensional printed models for surgical planning of complex congenital heart defects: An international multicentre study. Eur. J. Cardio-Thorac. Surg. 2017, 52, 1139–1148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoo, S.J.; Hussien, N.; Peel, B.; Coles, J.; van Arsdell, G.S.; Honjo, O.; Haller, C.; Lam, C.Z.; Seed, M.; Barron, D. 3D modeling and printing in congenital heart surgery: Entering the stage of maturation. Front. Pediatr. 2021, 9, 621672. [Google Scholar] [CrossRef]
- Liang, J.; Zhao, X.; Pan, G.; Zhang, G.; Zhao, D.; Xu, J.; Li, D.; Lu, B. Comparison of blood pool and myocardial 3D printing in the diagnosis of types of congenital heart disease. Sci. Rep. 2022, 12, 7136. [Google Scholar] [CrossRef] [PubMed]
- Hoashi, T.; Ichikawa, H.; Nakata, T.; Shimada, M.; Ozawa, H.; Higashida, A.; Kurosaki, K.; Kanzaki, S.; Shiraishi, I. Utility of a super-flexible three-dimensional printed heart model in congenital heart surgery. Interact. CardioVascular Thorac. Surg. 2018, 27, 749–755. [Google Scholar] [CrossRef]
- Olivieri, L.J.; Zurakowski, D.; Ramakrishnan, K.; Su, L.; Alfares, F.A.; Irwin, M.R.; Heichel, J.; Krieger, A.; Nath, D.S. Novel, 3D display of heart models in the postoperative care setting improves CICU caregiver confidence. World J. Pediatr. Congenit. Heart Surg. 2018, 9, 206–213. [Google Scholar] [CrossRef]
- Smith, M.; McGuinness, J.; O’Reilly, M.; Nolke, L.; Murray, J.; Jones, J. The role of 3D printing in preoperative planning for heart transplantation in complex congenital heart disease. Ir. J. Med. Sci. 2017, 186, 753–756. [Google Scholar] [CrossRef]
- Yang, D.H.; Park, S.-H.; Kim, N.; Choi, E.S.; Kwon, B.S.; Park, C.S.; Cha, S.G.; Baek, J.S.; Yu, J.J.; Kim, Y.-H.; et al. Incremental value of 3D printing in the preoperative planning of complex congenital heart disease surgery. JACC Cardiovasc. Imaging 2021, 14, 1265–1270. [Google Scholar] [CrossRef]
- Loke, Y.-H.; Harahsheh, A.S.; Krieger, A.; Olivieri, L.J. Usage of 3D models of tetralogy of Fallot for medical education: Impact on learning congenital heart disease. BMC Med. Educ. 2017, 17, 54. [Google Scholar] [CrossRef] [Green Version]
- Hermsen, J.L.; Burke, T.M.; Seslar, S.P.; Owens, D.S.; Ripley, B.A.; Mokadam, N.A.; Verrier, E.D. Scan, plan, print, practice, perform: Development and use of a patient-specific 3-dimensional printed model in adult cardiac surgery. J. Thorac. Cardiovasc. Surg. 2016, 153, 132–140. [Google Scholar] [CrossRef]
- Sun, Z.; Lau, I.; Wong, Y.H.; Yeong, C.H. Personalized three-dimensional printed models in congenital heart disease. J. Clin. Med. 2019, 8, 522. [Google Scholar] [CrossRef] [Green Version]
- Lau, I.W.W.; Sun, Z. Dimensional accuracy and clinical value of 3D printed models in congenital heart disease: A systematic review and meta-analysis. J. Clin. Med. 2019, 8, 1483. [Google Scholar] [CrossRef] [Green Version]
- Lau, I.; Gupta, A.; Sun, Z. Clinical value of virtual reality versus 3D printing in congenital heart disease. Biomolecules 2021, 11, 884. [Google Scholar] [CrossRef]
- Sun, Z. Clinical applications of patient-specific 3D printed models in cardiovascular disease: Current status and clinical applications. Biomolecules 2020, 10, 1577. [Google Scholar] [CrossRef]
- Valverde, I.; Gomez, G.; Coserria, J.F.; Suarez-Mejias, C.; Uribe, S.; Sotelo, J.; Velasco, M.N.; Santos De Soto, J.; Hossienpour, A.-R.; Gomez-Cia, T. 3D printed models for planning endovascular stenting in transverse aortic arch hypoplasia. Catheter. Cardiovasc. Interv. 2015, 85, 1006–1012. [Google Scholar] [CrossRef]
- Valverde, I.; Gomez, G.; Byrne, N.; Anwar, S.; Silva Cerpa, M.A.; Talavera, M.M.; Pushparajah, K.; Velasco Forte, M.N. Criss-cross heart three-dimensional printed models in medical education: A multicentre study on their value as a supporting tool to conventional imaging. Anat. Sci. Educ. 2022, 15, 719–730. [Google Scholar] [CrossRef]
- Lau, I.; Sun, Z. The role of 3D printed heart models in immediate and long-term knowledge retention in medical education. Rev. Cardiovasc. Med. 2022, 23, 022. [Google Scholar] [CrossRef] [PubMed]
- Karkkainen, J.M.; Sandri, G.; Tenorio, E.R.; Alexander, A.; Bjellum, K.; Matsumoto, J.; Morris, J.; Mendes, B.C.; DeMartino, R.R.; Oderich, G.S. Simulation of endovascular aortic repair using 3D printed abdominal aortic aneurysm model and fluid pump. Cardiovasc. Intervent. Radiol. 2019, 42, 1627–1634. [Google Scholar] [CrossRef]
- Mitsuno, D.; Ueda, K.; Hirota, Y.; Ogino, M. Effective application of mixed reality device holoLens: Simple manual alignment of surgical field and holograms. Plast. Reconstr. Surg. 2019, 143, 647–651. [Google Scholar] [CrossRef]
- Moro, C.; Phelps, C.; Redmond, P.; Stromberga, Z. HoloLens and mobile augmented reality in medical and health science education: A randomised controlled trial. Br. J. Educ. Technol. 2021, 52, 680–694. [Google Scholar] [CrossRef]
- Gehrsitz, P.; Rompel, O.; Schöber, M.; Cesnjevar, R.; Purbojo, A.; Uder, M.; Dittrich, S.; Alkassar, M. Cinematic rendering in mixed reality holograms: A new 3D preoperative planning tool in pediatric heart surgery. Front. Cardiovasc. Med. 2021, 8, 633611. [Google Scholar] [CrossRef] [PubMed]
- Soulami, R.B.; Verhoye, J.-P.; Nguyen Duc, H.; Castro, M.; Auffret, V.; Anselmi, A.; Haigron, P.; Ruggieri, V.G. Computer-assisted transcatheter heart valve implantation in valve-in-valve procedures. Innovations 2016, 11, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Opolski, M.P.; Artur, D.; Bartosz, B.; Staruch, A.D.; Kepka, C.; Rokicki, J.K.; Sieradzki, B.; Witkowski, A. Feasibility and safety of augmented-reality glass for computed tomography-assisted percutaneous revascularization of coronary chronic total occlusion: A single center prospective pilot study. J. Cardiovasc. Comput. Tomogr. 2017, 11, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Microsoft. HoloLens 2 Fundamentals: Develop Mixed Reality Applications. Available online: https://docs.microsoft.com/en-us/learn/paths/beginner-hololens-2-tutorials/ (accessed on 3 October 2021).
- Ye, W.; Zhang, X.; Li, T.; Luo, C.; Yang, L. Mixed-reality hologram for diagnosis and surgical planning of double outlet of the right ventricle: A pilot study. Clin. Radiol. 2021, 76, e1–e237. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.P.; Pelanis, E.; Bugge, R.; Brun, H.; Palomar, R.; Aghayan, D.L.; Fretland, A.A.; Edwin, B.; Elle, O.J. Use of mixed reality for surgery planning: Assessment and development workflow. J. Biomed. Inform. 2020, 112, 100077. [Google Scholar] [CrossRef]
- Brun, H.; Bugge, R.A.B.; Suther, L.K.R.; Birkeland, S.; Kumar, R.; Pelanis, E.; Elle, O.J. Mixed reality holograms for heart surgery planning: First user experience in congenital heart disease. Eur. Heart J. Cardiovasc. Imaging 2019, 20, 883–888. [Google Scholar] [CrossRef] [Green Version]
- Microsoft. Spatial awareness getting started—MRTK2. 8 March 2022. Available online: https://docs.microsoft.com/en-us/windows/mixed-reality/mrtk-unity/mrtk2/features/spatial-awareness/spatial-awareness-getting-started?view=mrtkunity-2022-05 (accessed on 19 August 2022).
- Wu, C.A.; Squelch, A.; Sun, Z. Investigation of three-dimensional printing materials for printing aorta model replicating type B aortic dissection. Curr. Med. Imaging 2021, 17, 843–849. [Google Scholar] [CrossRef]
- Wu, C.A.; Squelch, A.; Jansen, S.; Sun, Z. Optimization of computed tomography angiography protocols for follow-up type B aortic dissection patients by using 3D printed model. Appl. Sci. 2021, 11, 6844. [Google Scholar] [CrossRef]
- Sun, Z.; Wee, C. 3D printed models in cardiovascular disease: An exciting future to deliver personalized medicine. Micromachines 2022, 13, 1575. [Google Scholar] [CrossRef]
- Kaufmann, R.; Zech, C.J.; Takes, M.; Brantner, P.; Thieringer, F.; Dentschmann, M.; Hergan, K.; Scharinger, B.; Hecht, S.; Rezar, R.; et al. Vascular 3D printing with a novel biological tissue mimicking resin for patient-specific procedure simulations in interventional radiology: A feasibility study. J. Digit. Imaging 2022, 35, 9–20. [Google Scholar] [CrossRef]
- Lee, S.; Squelch, A.; Sun, Z. Quantitative assessment of 3D printed model accuracy in delineating congenital heart disease. Biomolecules 2021, 11, 270. [Google Scholar] [CrossRef]
- Lau, I.W.W.; Liu, D.; Xu, L.; Fan, Z.; Sun, Z. Clinical value of patient-specific three-dimensional printing of congenital heart disease: Quantitative and qualitative assessments. PLoS ONE 2018, 13, e0194333. [Google Scholar] [CrossRef]
- Yoo, S.J.; Spray, T.; Austin, E.H.; Yun, T.J.; van Arsdell, G.S. Hands-on surgical training of congenital heart surgery suing 3-dimensional print models. J. Thorac. Cardiovasc. Surg. 2017, 153, 15301–15540. [Google Scholar] [CrossRef] [Green Version]
- Brunner, B.S.; Thierij, A.; Jakob, A.; Tengler, A.; Grab, M.; Thierfelder, N.; Leuner, C.J.; Haas, N.A.; Hopfner, C. 3D-printed heart models for hands-on training in pediatric cardiology-the future of modern learning and teaching? GMS J. Med. Educ. 2022, 39, Doc23. [Google Scholar]
- Newe, A.; Becker, L. Three-dimensional portable document format (3D PDF) in clinical communication and biomedical sciences: Systematic review of applications, tools and protocols. JMIR Med. Inform. 2018, 6, e10295. [Google Scholar] [CrossRef]
- Newe, A.; Becker, L.; Schenk, A. Application and evaluation of interactive 3D PDF for presenting and sharing planning results for liver surgery in clinical routine. PLoS ONE 2014, 9, e115697. [Google Scholar] [CrossRef]
Variables | No. of Participants (%) |
---|---|
Gender | |
Male | 27 (79.4) |
Female | 7 (20.6) |
Age | |
Below 40 | 16 (47.1) |
Above 40 | 15 (44.1) |
Missed responses | 3 (8.8) |
Occupation | |
Surgical/interventional | |
Cardiac surgeon | 8 (23.5) |
Interventional cardiologist, cardiology registrar | 16 (47.0) |
Non-surgical/non-interventional | |
Cardiologist, cardiac imaging fellow | 6 (17.6) |
Radiologist, general physicians | 4 (11.8) |
AR experience | |
Yes | 12 (35.3) |
No | 20 (58.8) |
Missed responses | 2 (5.9) |
3D-printing experience | |
Yes | 14 (41.2) |
No | 18 (52.9) |
Missed responses | 2 (5.9) |
Questions | Modality | Atrial Septal Defect | Double Outlet Right Ventricle | ||||
---|---|---|---|---|---|---|---|
Mean | SD | p-Value | Mean | SD | p-Value | ||
1. Assessment of major vessels | DICOM | 1.85 | 0.86 | 0.28 | 2.09 | 0.90 | 0.85 |
3DPHM | 2.03 | 0.67 | 2.06 | 0.69 | |||
MR | 2.12 | 0.91 | 1.85 | 0.86 | |||
2. Appreciation of heart defects | DICOM | 2.47 | 0.83 | 0.05 | 2.50 | 0.75 | 0.05 |
3DPHM | 1.62 | 0.74 | 1.76 | 0.74 | |||
MR | 1.91 | 0.67 | 1.74 | 0.75 | |||
3. Spatial relationship between the cardiac structures | DICOM | 2.56 | 0.75 | 0.02 | 2.65 | 0.69 | 0.00 |
3DPHM | 1.74 | 0.71 | 1.85 | 0.74 | |||
MR | 1.71 | 0.72 | 1.50 | 0.56 | |||
4. Depth perception | DICOM | 2.68 | 0.68 | 0.00 | 2.62 | 0.70 | 0.00 |
3DPHM | 1.74 | 0.67 | 1.85 | 0.70 | |||
MR | 1.59 | 0.66 | 1.53 | 0.66 | |||
5. Pathology learning | DICOM | 2.59 | 0.74 | 0.00 | 2.50 | 0.79 | 0.01 |
3DPHM | 1.74 | 0.50 | 1.88 | 0.73 | |||
MR | 1.65 | 0.65 | 1.59 | 0.66 | |||
6. Communication tool with another health professional | DICOM | 2.00 | 0.89 | 0.09 | 2.15 | 0.86 | 0.33 |
3DPHM | 1.79 | 0.73 | 1.76 | 0.78 | |||
MR | 2.21 | 0.81 | 2.09 | 0.79 | |||
7. Communication tool with patients | DICOM | 2.59 | 0.61 | 0.00 | 2.65 | 0.54 | 0.00 |
3DPHM | 1.18 | 0.52 | 1.21 | 0.59 | |||
MR | 2.24 | 0.55 | 2.15 | 0.56 | |||
8. Prepares me for surgery/intervention | DICOM | 2.23 | 0.87 | 0.18 | 2.27 | 0.83 | 0.09 |
3DPHM | 2.00 | 0.69 | 2.14 | 0.77 | |||
MR | 1.77 | 0.87 | 1.59 | 0.73 | |||
9. Helps to understand possible complications | DICOM | 2.22 | 0.85 | 0.92 | 2.39 | 0.78 | 0.05 |
3DPHM | 1.91 | 0.73 | 2.00 | 0.80 | |||
MR | 1.87 | 0.87 | 1.61 | 0.72 | |||
10. Pre-operative planning | DICOM | 2.43 | 0.79 | 0.03 | 2.39 | 0.78 | 0.03 |
3DPHM | 1.87 | 0.76 | 1.77 | 0.73 | |||
MR | 1.70 | 0.77 | 1.52 | 0.73 | |||
11. Intra-operative guidance | DICOM | 2.39 | 0.78 | 0.39 | 2.39 | 0.78 | 0.06 |
3DPHM | 1.91 | 0.73 | 2.04 | 0.77 | |||
MR | 1.70 | 0.82 | 1.57 | 0.73 |
Questions | Atrial Septal Defect | Double Outlet Right Ventricle | |||||
---|---|---|---|---|---|---|---|
Mean Diff. | SD | p-Value a | Mean Diff. | SD | p-Value a | ||
1. Assessment of major vessels | DICOM-3DPHM | −0.18 | 1.24 | 0.41 | 0.03 | 1.36 | 1.00 |
DICOM-MR | −0.26 | 1.64 | 0.15 | 0.24 | 1.62 | 1.00 | |
3DPHM-MR | −0.09 | 1.36 | 1.00 | 0.21 | 1.27 | 1.00 | |
2. Appreciation of heart defects | DICOM-3DPHM | 0.85 | 1.42 | 0.06 | 0.74 | 1.29 | 0.18 |
DICOM-MR | 0.56 | 1.31 | 0.16 | 0.76 | 1.30 | 0.01 | |
3DPHM-MR | −0.29 | 1.14 | 1.00 | 0.03 | 1.29 | 0.18 | |
3. Spatial relationship between the cardiac structures | DICOM-3DPHM | 0.82 | 1.27 | 0.06 | 0.79 | 1.32 | 0.07 |
DICOM-MR | 0.85 | 1.28 | 0.10 | 1.15 | 1.02 | 0.00 | |
3DPHM-MR | 0.03 | 1.22 | 1.00 | 0.35 | 1.12 | 1.00 | |
4. Depth perception | DICOM-3DPHM | 0.94 | 1.18 | 0.02 | 0.76 | 1.23 | 0.06 |
DICOM-MR | 1.09 | 1.16 | 0.00 | 1.09 | 1.16 | 0.00 | |
3DPHM-MR | 0.15 | 1.13 | 0.66 | 0.32 | 1.17 | 0.40 | |
5. Pathology learning | DICOM-3DPHM | 0.85 | 1.28 | 0.02 | 0.62 | 1.35 | 0.26 |
DICOM-MR | 0.94 | 1.20 | 0.00 | 0.91 | 1.26 | 0.00 | |
3DPHM-MR | 0.09 | 1.14 | 1.00 | 0.29 | 1.14 | 0.33 | |
6. Communication tool with another health professional | DICOM-3DPHM | 0.21 | 1.41 | 1.00 | 0.38 | 1.44 | 1.00 |
DICOM-MR | −0.21 | 1.53 | 0.29 | 0.06 | 1.46 | 1.00 | |
3DPHM-MR | −0.41 | 1.26 | 0.29 | −0.32 | 1.32 | 0.57 | |
7. Communication tool with patients | DICOM-3DPHM | 1.41 | 0.99 | 0.00 | 1.44 | 0.99 | 0.00 |
DICOM-MR | 0.35 | 1.04 | 0.29 | 0.50 | 0.93 | 0.12 | |
3DPHM-MR | −1.06 | 0.89 | 0.00 | −0.94 | 1.01 | 0.01 | |
8. Prepares me for surgery/intervention | DICOM-3DPHM | 0.23 | 1.31 | 1.00 | 0.14 | 1.42 | 1.00 |
DICOM-MR | 0.45 | 1.60 | 0.57 | 0.68 | 1.36 | 0.23 | |
3DPHM-MR | 0.23 | 1.31 | 1.00 | 0.55 | 1.26 | 0.34 | |
9. Helps to understand possible complications | DICOM-3DPHM | 0.30 | 1.33 | 1.00 | 0.39 | 1.41 | 1.00 |
DICOM-MR | 0.35 | 1.56 | 1.00 | 0.78 | 1.28 | 0.05 | |
3DPHM-MR | 0.44 | 1.36 | 1.00 | 0.39 | 1.31 | 0.22 | |
10. Pre-operative planning | DICOM-3DPHM | 0.57 | 1.34 | 0.30 | 0.30 | 1.33 | 1.00 |
DICOM-MR | 0.74 | 1.36 | 0.00 | 0.87 | 1.32 | 0.02 | |
3DPHM-MR | 0.17 | 1.30 | 1.00 | 0.57 | 1.24 | 0.22 | |
11. Intra-operative guidance | DICOM-3DPHM | 0.48 | 1.27 | 0.88 | 0.35 | 1.37 | 1.00 |
DICOM-MR | 0.70 | 1.43 | 0.36 | 0.83 | 1.30 | 0.14 | |
3DPHM-MR | 0.22 | 1.35 | 1.00 | 0.18 | 1.27 | 0.08 |
Questions a | Mean Difference | p-Value |
---|---|---|
1. Assessment of major vessels | 0.02 | 0.41 |
2. Appreciation of heart defects | −0.06 | 0.74 |
3. Spatial relationship between the cardiac structures | −0.01 | 0.50 |
4. Depth perception | 0.26 | 0.66 |
5. Pathology learning | −0.15 | 0.85 |
6. Communication tool with another health professional | 0.22 | 0.59 |
7. Communication tool with patients | 0.14 | 0.86 |
Themes | Feedbacks | Total |
---|---|---|
Intuitiveness of the clipping tool in the MR application | Relatively easy to use (n = 10) Not fully intuitive (n = 4) Steep learning curve (n = 2) | n = 16 |
Requirement of training for MR application | Training required to get the greatest benefit (n = 5) Training is needed (n = 4) | n = 9 |
Advantages of MR application | Clipping tool is very helpful in visualizing internal structures at different angles (n = 7) Help to plan surgeries (n = 2) Excellent 3D visualization (n = 3) Exciting possibilities to improve our practice (n = 1) | n = 13 |
Limitations of MR application | Creation of artificial defects from the clipping tool (n = 2) Difficult to look at structural connections (n = 1) Visual field of MR is too small (n = 1) | n = 4 |
Suggestions for MR application | A preset button to auto-crop the MR models (n = 2) Flat 2D ‘clipping plane’ is better (n = 1) Colored models (n = 1) Measuring tool (n = 1) Ability to offer ‘tunnel view’ (n = 1) Image definition needs improvement (n = 1) Ability to isolate the heart vessels or chambers (n = 1) | n = 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lau, I.; Gupta, A.; Ihdayhid, A.; Sun, Z. Clinical Applications of Mixed Reality and 3D Printing in Congenital Heart Disease. Biomolecules 2022, 12, 1548. https://doi.org/10.3390/biom12111548
Lau I, Gupta A, Ihdayhid A, Sun Z. Clinical Applications of Mixed Reality and 3D Printing in Congenital Heart Disease. Biomolecules. 2022; 12(11):1548. https://doi.org/10.3390/biom12111548
Chicago/Turabian StyleLau, Ivan, Ashu Gupta, Abdul Ihdayhid, and Zhonghua Sun. 2022. "Clinical Applications of Mixed Reality and 3D Printing in Congenital Heart Disease" Biomolecules 12, no. 11: 1548. https://doi.org/10.3390/biom12111548