Clocks, Rhythms, Sex, and Hearts: How Disrupted Circadian Rhythms, Time-of-Day, and Sex Influence Cardiovascular Health
Abstract
:1. Introduction
2. Biological Rhythms, the Master Biological Clock, and the Mechanisms Setting and Maintaining Circadian Rhythms
3. Entrainment and Disruption of the SCN Clock
4. SCN Control of Peripheral Clocks
5. Circadian Rhythms, Autonomic Function, and the Cardiovascular System
6. Disrupted Circadian Rhythms and Cardiac Pathology
7. Sources of Disrupted Circadian Rhythms
7.1. Environmental Lighting
7.2. Night Shift Work and Social Jetlag
8. Time-of-Day as a Biological Variable Influencing Cardiovascular Function
9. Sex Differences in Cardiac Events
9.1. Clinical Data and Human Studies
9.2. Animal models
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kochanek, K.D.; Xu, J.; Arias, E. Mortality in the United States, 2019; U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics: Hyattsville, MD, USA, 2020. [Google Scholar]
- The Top 10 Causes of Death. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 17 January 2021).
- Chellappa, S.L.; Vujovic, N.; Williams, J.S.; Scheer, F.A.J.L. Impact of Circadian Disruption on Cardiovascular Function and Disease. Trends Endocrinol. Metab. 2019, 30, 767–779. [Google Scholar] [CrossRef]
- Thosar, S.S.; Butler, M.P.; Shea, S.A. Role of the Circadian System in Cardiovascular Disease. J. Clin. Investig. 2018, 128, 2157–2167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konturek, P.C.; Brzozowski, T.; Konturek, S.J. Gut Clock: Implication of Circadian Rhythms in the Gastrointestinal Tract. J. Physiol. Pharmacol. 2011, 62, 139–150. [Google Scholar] [PubMed]
- Martchenko, A.; Martchenko, S.E.; Biancolin, A.D.; Brubaker, P.L. Circadian Rhythms and the Gastrointestinal Tract: Relationship to Metabolism and Gut Hormones. Endocrinology 2020, 161, bqaa167. [Google Scholar] [CrossRef] [PubMed]
- Dutheil, F.; Baker, J.S.; Mermillod, M.; De Cesare, M.; Vidal, A.; Moustafa, F.; Pereira, B.; Navel, V. Shift Work, and Particularly Permanent Night Shifts, Promote Dyslipidaemia: A Systematic Review and Meta-Analysis. Atherosclerosis 2020, 313, 156–169. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Chair, S.Y.; Lo, S.H.S.; Chau, J.P.-C.; Schwade, M.; Zhao, X. Association between Shift Work and Obesity among Nurses: A Systematic Review and Meta-Analysis. Int. J. Nurs. Stud. 2020, 112, 103757. [Google Scholar] [CrossRef] [PubMed]
- Hansen, J. Night Shift Work and Risk of Breast Cancer. Curr. Environ. Health Rep. 2017, 4, 325–339. [Google Scholar] [CrossRef]
- Walker, W.H., 2nd; Bumgarner, J.R.; Walton, J.C.; Liu, J.A.; Meléndez-Fernández, O.H.; Nelson, R.J.; DeVries, A.C. Light Pollution and Cancer. Int. J. Mol. Sci. 2020, 21, 9360. [Google Scholar] [CrossRef]
- Ward, E.M.; Germolec, D.; Kogevinas, M.; McCormick, D.; Vermeulen, R.; Anisimov, V.N.; Aronson, K.J.; Bhatti, P.; Cocco, P.; Costa, G.; et al. IARC Monographs Carcinogenicity of Night Shift Work. Lancet Oncol. 2019, 124, 1058–1059. [Google Scholar] [CrossRef]
- Yamazaki, S.; Numano, R.; Abe, M.; Hida, A.; Takahashi, R.; Ueda, M.; Block, G.D.; Sakaki, Y.; Menaker, M.; Tei, H. Resetting Central and Peripheral Circadian Oscillators in Transgenic Rats. Science 2000, 288, 682–685. [Google Scholar] [CrossRef] [Green Version]
- Balsalobre, A.; Damiola, F.; Schibler, U. A Serum Shock Induces Circadian Gene Expression in Mammalian Tissue Culture Cells. Cell 1998, 93, 929–937. [Google Scholar] [CrossRef] [Green Version]
- Stephan, F.K. The “Other” Circadian System: Food as a Zeitgeber. J. Biol. Rhythms 2002, 17, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Aschoff, J.; Fatranská, M.; Giedke, H.; Doerr, P.; Stamm, D.; Wisser, H. Human Circadian Rhythms in Continuous Darkness: Entrainment by Social Cues. Science 1971, 171, 213–215. [Google Scholar] [CrossRef]
- Bonmati-Carrion, M.-A.; Revell, V.L.; Cook, T.J.; Welch, T.R.E.; Rol, M.-A.; Skene, D.J.; Madrid, J.A. Living Without Temporal Cues: A Case Study. Front. Physiol. 2020, 11, 11. [Google Scholar] [CrossRef] [PubMed]
- Zucker, I. Light-Dark Rhythms in Rat Eating and Drinking Behavior. Physiol. Behav. 1971, 6, 115–126. [Google Scholar] [CrossRef]
- Stephan, F.K.; Zucker, I. Circadian Rhythms in Drinking Behavior and Locomotor Activity of Rats Are Eliminated by Hypothalamic Lesions. Proc. Natl. Acad. Sci. USA 1972, 69, 1583–1586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, H.; Nagai, K.; Nakagawa, H. Bilateral Lesions of the SCN Abolish Lipolytic and Hyperphagic Responses to 2DG. Physiol. Behav. 1984, 32, 1017–1020. [Google Scholar] [CrossRef]
- Weaver, D.R. The Suprachiasmatic Nucleus: A 25-Year Retrospective. J. Biol. Rhythms 1998, 13, 100–112. [Google Scholar] [CrossRef]
- Yamazaki, S.; Goto, M.; Menaker, M. No Evidence for Extraocular Photoreceptors in the Circadian System of the Syrian Hamster. J. Biol. Rhythms 1999, 14, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Ibata, Y.; Takahashi, Y.; Okamura, H.; Kawakami, F.; Terubayashi, H.; Kubo, T.; Yanaihara, N. Vasoactive Intestinal Peptide (VIP)-like Immunoreactive Neurons Located in the Rat Suprachiasmatic Nucleus Receive a Direct Retinal Projection. Neurosci. Lett. 1989, 97, 1–5. [Google Scholar] [CrossRef]
- Moore, R.Y.; Lenn, N.J. A Retinohypothalamic Projection in the Rat. J. Comp. Neurol. 1972, 146, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Berson, D.M. Phototransduction by Retinal Ganglion Cells That Set the Circadian Clock. Science 2002, 295, 1070–1073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hattar, S.; Liao, H.W.; Takao, M.; Berson, D.M.; Yau, K.W. Melanopsin-Containing Retinal Ganglion Cells: Architecture, Projections, and Intrinsic Photosensitivity. Science 2002, 295, 1065–1070. [Google Scholar] [CrossRef] [Green Version]
- Gooley, J.J.; Lu, J.; Chou, T.C.; Scammell, T.E.; Saper, C.B. Melanopsin in Cells of Origin of the Retinohypothalamic Tract. Nat. Neurosci. 2001, 4, 1165. [Google Scholar] [CrossRef]
- Panda, S.; Sato, T.K.; Castrucci, A.M.; Rollag, M.D.; DeGrip, W.J.; Hogenesch, J.B.; Provencio, I.; Kay, S.A. Melanopsin (Opn4) Requirement for Normal Light-Induced Circadian Phase Shifting. Science 2002, 298, 2213–2216. [Google Scholar] [CrossRef] [Green Version]
- Ecker, J.L.; Dumitrescu, O.N.; Wong, K.Y.; Alam, N.M.; Chen, S.-K.; LeGates, T.; Renna, J.M.; Prusky, G.T.; Berson, D.M.; Hattar, S. Melanopsin-Expressing Retinal Ganglion-Cell Photoreceptors: Cellular Diversity and Role in Pattern Vision. Neuron 2010, 67, 49–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wahl, S.; Engelhardt, M.; Schaupp, P.; Lappe, C.; Ivanov, I.V. The Inner Clock-Blue Light Sets the Human Rhythm. J. Biophotonics 2019, 12, e201900102. [Google Scholar] [CrossRef]
- Smith, M.R.; Eastman, C.I. Phase Delaying the Human Circadian Clock with Blue-Enriched Polychromatic Light. Chronobiol. Int. 2009, 26, 709–725. [Google Scholar] [CrossRef]
- Smith, M.R.; Revell, V.L.; Eastman, C.I. Phase Advancing the Human Circadian Clock with Blue-Enriched Polychromatic Light. Sleep Med. 2009, 10, 287–294. [Google Scholar] [CrossRef] [Green Version]
- Ruby, N.F.; Brennan, T.J.; Xie, X.; Cao, V.; Franken, P.; Heller, H.C.; O’Hara, B.F. Role of Melanopsin in Circadian Responses to Light. Science 2002, 298, 2211–2213. [Google Scholar] [CrossRef] [PubMed]
- Rijo-Ferreira, F.; Takahashi, J.S. Genomics of Circadian Rhythms in Health and Disease. Genome Med. 2019, 11, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, J.S. Transcriptional Architecture of the Mammalian Circadian Clock. Nat. Rev. Genet. 2017, 18, 164–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, S.A.; Schibler, U. The Ins and Outs of Circadian Timekeeping. Curr. Opin. Genet. Dev. 1999, 9, 588–594. [Google Scholar] [CrossRef]
- Zhang, R.; Lahens, N.F.; Ballance, H.I.; Hughes, M.E.; Hogenesch, J.B. A Circadian Gene Expression Atlas in Mammals: Implications for Biology and Medicine. Proc. Natl. Acad. Sci. USA 2014, 111, 16219–16224. [Google Scholar] [CrossRef] [Green Version]
- Lewis, P.; Oster, H.; Korf, H.W.; Foster, R.G.; Erren, T.C. Food as a Circadian Time Cue - Evidence from Human Studies. Nat. Rev. Endocrinol. 2020, 16, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Tahara, Y.; Aoyama, S.; Shibata, S. The Mammalian Circadian Clock and Its Entrainment by Stress and Exercise. J. Physiol. Sci. 2017, 67, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Mistlberger, R.E.; Skene, D.J. Nonphotic Entrainment in Humans? J. Biol. Rhythms 2005, 20, 339–352. [Google Scholar] [CrossRef]
- Lewis, P.; Korf, H.W.; Kuffer, L.; Groß, J.V.; Erren, T.C. Exercise Time Cues (zeitgebers) for Human Circadian Systems Can Foster Health and Improve Performance: A Systematic Review. BMJ Open Sport Exerc. Med. 2018, 4, e000443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levitsky, D. The Control of Food Intake and the Regulation of Body Weight in Humans. In Appetite and Food Intake; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2008; Volume 1, pp. 21–42. [Google Scholar]
- Klok, M.D.; Jakobsdottir, S.; Drent, M.L. The Role of Leptin and Ghrelin in the Regulation of Food Intake and Body Weight in Humans: A Review. Obes. Rev. 2007, 8, 21–34. [Google Scholar] [CrossRef]
- Challet, E. The Circadian Regulation of Food Intake. Nat. Rev. Endocrinol. 2019, 15, 393–405. [Google Scholar] [CrossRef] [PubMed]
- Boulos, Z.; Terman, M. Food Availability and Daily Biological Rhythms. Neurosci. Biobehav. Rev. 1980, 4, 119–131. [Google Scholar] [CrossRef]
- Mistlberger, R.E. Circadian Food-Anticipatory Activity: Formal Models and Physiological Mechanisms. Neurosci. Biobehav. Rev. 1994, 18, 171–195. [Google Scholar] [CrossRef]
- Hara, R.; Wan, K.; Wakamatsu, H.; Aida, R.; Moriya, T.; Akiyama, M.; Shibata, S. Restricted Feeding Entrains Liver Clock without Participation of the Suprachiasmatic Nucleus. Genes Cells 2001, 6, 269–278. [Google Scholar] [CrossRef]
- Damiola, F.; Le Minh, N.; Preitner, N.; Kornmann, B.; Fleury-Olela, F.; Schibler, U. Restricted Feeding Uncouples Circadian Oscillators in Peripheral Tissues from the Central Pacemaker in the Suprachiasmatic Nucleus. Genes Dev. 2000, 14, 2950–2961. [Google Scholar] [CrossRef] [Green Version]
- Stokkan, K.A.; Yamazaki, S.; Tei, H.; Sakaki, Y.; Menaker, M. Entrainment of the Circadian Clock in the Liver by Feeding. Science 2001, 291, 490–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bedrosian, T.A.; Nelson, R.J. Timing of Light Exposure Affects Mood and Brain Circuits. Transl. Psychiatry 2017, 7, e1017. [Google Scholar] [CrossRef] [PubMed]
- Nelson, R.J.; Walton, J.C.; Fonken, L.K.; Bedrosian, T.A. Light at Night Influences Immune Function. Brain Behav. Immun. 2010, 24, S37. [Google Scholar] [CrossRef]
- Bedrosian, T.A.; Fonken, L.K.; Nelson, R.J. Endocrine Effects of Circadian Disruption. Annu. Rev. Physiol. 2016, 78, 109–131. [Google Scholar] [CrossRef] [Green Version]
- Tähkämö, L.; Partonen, T.; Pesonen, A.-K. Systematic Review of Light Exposure Impact on Human Circadian Rhythm. Chronobiol. Int. 2019, 36, 151–170. [Google Scholar] [CrossRef] [Green Version]
- Fonken, L.K.; Nelson, R.J. The Effects of Light at Night on Circadian Clocks and Metabolism. Endocr. Rev. 2014, 35, 648–670. [Google Scholar] [CrossRef]
- Krishnan, H.C.; Lyons, L.C. Synchrony and Desynchrony in Circadian Clocks: Impacts on Learning and Memory. Learn. Mem. 2015, 22, 426–437. [Google Scholar] [CrossRef] [Green Version]
- Nelson, R.J. Light at Night Influences Neuroinflammation and Metabolism. Psychoneuroendocrinology 2019, 100, S59. [Google Scholar] [CrossRef]
- Nelson, R.J.; Chbeir, S. Dark Matters: Effects of Light at Night on Metabolism. Proc. Nutr. Soc. 2018, 77, 223–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borniger, J.C.; Maurya, S.K.; Periasamy, M.; Nelson, R.J. Acute Dim Light at Night Increases Body Mass, Alters Metabolism, and Shifts Core Body Temperature Circadian Rhythms. Chronobiol. Int. 2014, 31, 917–925. [Google Scholar] [CrossRef] [PubMed]
- Rumanova, V.S.; Okuliarova, M.; Zeman, M. Differential Effects of Constant Light and Dim Light at Night on the Circadian Control of Metabolism and Behavior. Int. J. Mol. Sci. 2020, 21, 5478. [Google Scholar] [CrossRef]
- Ripperger, J.A.; Schibler, U. Circadian Regulation of Gene Expression in Animals. Curr. Opin. Cell Biol. 2001, 13, 357–362. [Google Scholar] [CrossRef]
- Landgraf, D.; Tsang, A.H.; Leliavski, A.; Koch, C.E.; Barclay, J.L.; Drucker, D.J.; Oster, H. Oxyntomodulin Regulates Resetting of the Liver Circadian Clock by Food. Elife 2015, 4, e06253. [Google Scholar] [CrossRef]
- Chen, S.; Feng, M.; Zhang, S.; Dong, Z.; Wang, Y.; Zhang, W.; Liu, C. Angptl8 Mediates Food-Driven Resetting of Hepatic Circadian Clock in Mice. Nat. Commun. 2019, 10, 3518. [Google Scholar] [CrossRef] [Green Version]
- Durgan, D.J.; Trexler, N.A.; Egbejimi, O.; McElfresh, T.A.; Suk, H.Y.; Petterson, L.E.; Shaw, C.A.; Hardin, P.E.; Bray, M.S.; Chandler, M.P.; et al. The Circadian Clock within the Cardiomyocyte Is Essential for Responsiveness of the Heart to Fatty Acids. J. Biol. Chem. 2006, 281, 24254–24269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandewalle, G.; Middleton, B.; Rajaratnam, S.M.W.; Stone, B.M.; Thorleifsdottir, B.; Arendt, J.; Dijk, D.-J. Robust Circadian Rhythm in Heart Rate and Its Variability: Influence of Exogenous Melatonin and Photoperiod. J. Sleep Res. 2007, 16, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Massin, M.M. Circadian Rhythm of Heart Rate and Heart Rate Variability. Arch. Dis. Child. 2000, 83, 179–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millar-Craig, M.W.; Bishop, C.N.; Raftery, E.B. Circadian Variation of Blood-Pressure. Lancet 1978, 1, 795–797. [Google Scholar] [CrossRef]
- Soulban, G.; Labrecque, G. Circadian Rhythms of Blood Clotting Time and Coagulation Factors II, VII, IX and X in Rats. Life Sci. 1989, 45, 2485–2489. [Google Scholar] [CrossRef]
- Scheer, F.A.J.L.; Shea, S.A. Human Circadian System Causes a Morning Peak in Prothrombotic Plasminogen Activator Inhibitor-1 (PAI-1) Independent of the Sleep/Wake Cycle. Blood 2014, 123, 590–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Undar, L.; Türkay, C.; Korkmaz, L. Circadian Variation in Circulating Platelet Aggregates. Ann. Med. 1989, 21, 429–433. [Google Scholar] [CrossRef]
- Naito, Y.; Tsujino, T.; Kawasaki, D.; Okumura, T.; Morimoto, S.; Masai, M.; Sakoda, T.; Fujioka, Y.; Ohyanagi, M.; Iwasaki, T. Circadian Gene Expression of Clock Genes and Plasminogen Activator Inhibitor-1 in Heart and Aorta of Spontaneously Hypertensive and Wistar–Kyoto Rats. J. Hypertens. 2003, 21, 1107. [Google Scholar] [CrossRef] [PubMed]
- Morris, C.J.; Purvis, T.E.; Hu, K.; Scheer, F.A.J.L. Circadian Misalignment Increases Cardiovascular Disease Risk Factors in Humans. Proc. Natl. Acad. Sci. USA 2016, 113, E1402–E1411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandoo, A.; van Zanten, J.J.C.S.V.; Metsios, G.S.; Carroll, D.; Kitas, G.D. The Endothelium and Its Role in Regulating Vascular Tone. Open Cardiovasc. Med. J. 2010, 4, 302–312. [Google Scholar] [CrossRef]
- Takeda, N.; Maemura, K.; Horie, S.; Oishi, K.; Imai, Y.; Harada, T.; Saito, T.; Shiga, T.; Amiya, E.; Manabe, I.; et al. Thrombomodulin Is a Clock-Controlled Gene in Vascular Endothelial Cells. J. Biol. Chem. 2007, 282, 32561–32567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turek, F.W.; Joshu, C.; Kohsaka, A.; Lin, E.; Ivanova, G.; McDearmon, E.; Laposky, A.; Losee-Olson, S.; Easton, A.; Jensen, D.R.; et al. Obesity and Metabolic Syndrome in Circadian Clock Mutant Mice. Science 2005, 308, 1043–1045. [Google Scholar] [CrossRef] [Green Version]
- Nonaka, H.; Emoto, N.; Ikeda, K.; Fukuya, H.; Rohman, M.S.; Raharjo, S.B.; Yagita, K.; Okamura, H.; Yokoyama, M. Angiotensin II Induces Circadian Gene Expression of Clock Genes in Cultured Vascular Smooth Muscle Cells. Circulation 2001, 104, 1746–1748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNamara, P.; Seo, S.B.; Rudic, R.D.; Sehgal, A.; Chakravarti, D.; FitzGerald, G.A. Regulation of CLOCK and MOP4 by Nuclear Hormone Receptors in the Vasculature: A Humoral Mechanism to Reset a Peripheral Clock. Cell 2001, 105, 877–889. [Google Scholar] [CrossRef] [Green Version]
- Scheer, F.A.; van Doornen, L.J.; Buijs, R.M. Light and Diurnal Cycle Affect Human Heart Rate: Possible Role for the Circadian Pacemaker. J. Biol. Rhythm. 1999, 14, 202–212. [Google Scholar] [CrossRef]
- Storch, K.-F.; Lipan, O.; Leykin, I.; Viswanathan, N.; Davis, F.C.; Wong, W.H.; Weitz, C.J. Extensive and Divergent Circadian Gene Expression in Liver and Heart. Nature 2002, 417, 78–83. [Google Scholar] [CrossRef]
- Viswambharan, H.; Carvas, J.M.; Antic, V.; Marecic, A.; Jud, C.; Zaugg, C.E.; Ming, X.-F.; Montani, J.-P.; Albrecht, U.; Yang, Z. Mutation of the Circadian Clock Gene Per2 Alters Vascular Endothelial Function. Circulation 2007, 115, 2188–2195. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Yang, G.; Jia, Z.; Zhang, H.; Aoyagi, T.; Soodvilai, S.; Symons, J.D.; Schnermann, J.B.; Gonzalez, F.J.; Litwin, S.E.; et al. Vascular PPARγ Controls Circadian Variation in Blood Pressure and Heart Rate through Bmal1. Cell Metab. 2008, 8, 482–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, G.; Jia, Z.; Aoyagi, T.; McClain, D.; Mortensen, R.M.; Yang, T. Systemic PPARγ Deletion Impairs Circadian Rhythms of Behavior and Metabolism. PLoS ONE 2012, 7, e38117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curtis, A.M.; Cheng, Y.; Kapoor, S.; Reilly, D.; Price, T.S.; Fitzgerald, G.A. Circadian Variation of Blood Pressure and the Vascular Response to Asynchronous Stress. Proc. Natl. Acad. Sci. USA 2007, 104, 3450–3455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durgan, D.J.; Tsai, J.-Y.; Grenett, M.H.; Pat, B.M.; Ratcliffe, W.F.; Villegas-Montoya, C.; Garvey, M.E.; Nagendran, J.; Dyck, J.R.B.; Bray, M.S.; et al. Evidence Suggesting That the Cardiomyocyte Circadian Clock Modulates Responsiveness of the Heart to Hypertrophic Stimuli in Mice. Chronobiol. Int. 2011, 28, 187–203. [Google Scholar] [CrossRef] [PubMed]
- Kondratov, R.V.; Kondratova, A.A.; Gorbacheva, V.Y.; Vykhovanets, O.V.; Antoch, M.P. Early Aging and Age-Related Pathologies in Mice Deficient in BMAL1, the Core Component of the Circadian Clock. Genes Dev. 2006, 20, 1868–1873. [Google Scholar] [CrossRef] [Green Version]
- Masuki, S.; Todo, T.; Nakano, Y.; Okamura, H.; Nose, H. Reduced α-Adrenoceptor Responsiveness and Enhanced Baroreflex Sensitivity inCry-Deficient Mice Lacking a Biological Clock. J. Physiol. 2005, 566, 213–224. [Google Scholar] [CrossRef]
- Douma, L.G.; Solocinski, K.; Holzworth, M.R.; Crislip, G.R.; Masten, S.H.; Miller, A.H.; Cheng, K.-Y.; Lynch, I.J.; Cain, B.D.; Wingo, C.S.; et al. Female C57BL/6J Mice Lacking the Circadian Clock Protein PER1 Are Protected from Nondipping Hypertension. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2019, 316, R50–R58. [Google Scholar] [CrossRef] [PubMed]
- Richards, J.; Cheng, K.-Y.; All, S.; Skopis, G.; Jeffers, L.; Lynch, I.J.; Wingo, C.S.; Gumz, M.L. A Role for the Circadian Clock Protein Per1 in the Regulation of Aldosterone Levels and Renal Na+ Retention. Am. J. Physiol. Renal Physiol. 2013, 305, F1697–F1704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stow, L.R.; Richards, J.; Cheng, K.-Y.; Lynch, I.J.; Jeffers, L.A.; Greenlee, M.M.; Cain, B.D.; Wingo, C.S.; Gumz, M.L. The Circadian Protein Period 1 Contributes to Blood Pressure Control and Coordinately Regulates Renal Sodium Transport Genes. Hypertension 2012, 59, 1151–1156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munakata, M.; Imai, Y.; Abe, K.; Sasaki, S.; Minami, N.; Hashimoto, J.; Sakuma, H.; Ichijo, T.; Yoshizawa, M.; Sekino, H. Assessment of Age-Dependent Changes in Circadian Blood Pressure Rhythm in Patients with Essential Hypertension. J. Hypertens. 1991, 9, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Davidson, A.J.; London, B.; Block, G.D.; Menaker, M. Cardiovascular Tissues Contain Independent Circadian Clocks. Clin. Exp. Hypertens. 2005, 27, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Leibetseder, V.; Humpeler, S.; Svoboda, M.; Schmid, D.; Thalhammer, T.; Zuckermann, A.; Marktl, W.; Ekmekcioglu, C. Clock Genes Display Rhythmic Expression in Human Hearts. Chronobiol. Int. 2009, 26, 621–636. [Google Scholar] [CrossRef]
- Hughey, J.J.; Butte, A.J. Differential Phasing between Circadian Clocks in the Brain and Peripheral Organs in Humans. J. Biol. Rhythms 2016, 31, 588–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, L.; Smale, L.; Nunez, A.A. Circadian and Photic Modulation of Daily Rhythms in Diurnal Mammals. Eur. J. Neurosci. 2020, 51, 551–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinjo, K.; Sato, H.; Sato, H.; Shiotani, I.; Kurotobi, T.; Ohnishi, Y.; Hishida, E.; Nakatani, D.; Ito, H.; Koretsune, Y.; et al. Circadian Variation of the Onset of Acute Myocardial Infarction in the Osaka Area, 1998-1999: Characterization of Morning and Nighttime Peaks. Jpn. Circ. J. 2001, 65, 617–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behar, S.; Halabi, M.; Reicher-Reiss, H.; Zion, M.; Kaplinsky, E.; Mandelzweig, L.; Goldbourt, U. Circadian Variation and Possible External Triggers of Onset of Myocardial Infarction. SPRINT Study Group. Am. J. Med. 1993, 94, 395–400. [Google Scholar] [CrossRef]
- Muller, J.E.; Tofler, G.H.; Stone, P.H. Circadian Variation and Triggers of Onset of Acute Cardiovascular Disease. Circulation 1989, 79, 733–743. [Google Scholar] [CrossRef] [Green Version]
- Cohen, M.C.; Muller, J.E. Onset of Acute Myocardial Infarction--Circadian Variation and Triggers. Cardiovasc. Res. 1992, 26, 831–838. [Google Scholar] [CrossRef]
- Khan, M.S.; Ahmad, S.I. Circadian Variation--Increased Morning Incidence of Acute Myocardial Infarction in Patients with Coronary Artery Disease. J. Pak. Med. Assoc. 2003, 53, 84–87. [Google Scholar]
- Goldberg, R.J. Epidemiologic Aspects of Circadian Patterns of Cardiovascular Disease and Triggers of Acute Cardiac Events. Cardiol. Clin. 1996, 14, 175–184. [Google Scholar] [CrossRef]
- Tofler, G.H.; Muller, J.E. Diurnal Variation and Triggers of Onset of Cardiovascular Disease. In Temporal Variations of the Cardiovascular System; Springer: Berlin/Heidelberg, Germany, 1992; pp. 145–158. [Google Scholar]
- Muller, J.E. Circadian Variation and Triggering of Acute Coronary Events. Am. Heart J. 1999, 137, S1–S8. [Google Scholar] [CrossRef]
- Manfredini, R.; Boari, B.; Salmi, R.; Fabbian, F.; Pala, M.; Tiseo, R.; Portaluppi, F. Twenty-Four-Hour Patterns in Occurrence and Pathophysiology of Acute Cardiovascular Events and Ischemic Heart Disease. Chronobiol. Int. 2013, 30, 6–16. [Google Scholar] [CrossRef]
- Giles, T. Relevance of Blood Pressure Variation in the Circadian Onset of Cardiovascular Events. J. Hypertens. 2005, 23, S35–S39. [Google Scholar] [CrossRef]
- Rüger, M.; Scheer, F.A.J.L. Effects of Circadian Disruption on the Cardiometabolic System. Rev. Endocr. Metab. Disord. 2009, 10, 245–260. [Google Scholar] [CrossRef] [Green Version]
- Muller, J.E.; Ludmer, P.L.; Willich, S.N.; Tofler, G.H.; Aylmer, G.; Klangos, I.; Stone, P.H. Circadian Variation in the Frequency of Sudden Cardiac Death. Circulation 1987, 75, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Yang, G. Recent Advances in Circadian Rhythms in Cardiovascular System. Front. Pharmacol. 2015, 6, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viskin, S.; Golovner, M.; Malov, N.; Fish, R.; Alroy, I.; Vila, Y.; Laniado, S.; Kaplinsky, E.; Roth, A. Circadian Variation of Symptomatic Paroxysmal Atrial Fibrillation. Data from Almost 10000 Episodes. Eur. Heart J. 1999, 20, 1429–1434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaneko, Y.; Nakajima, T.; Ota, M.; Kurabayashi, M. Circadian Variations in ST-Segment Elevation Surrounding the Spontaneous Onset of Ventricular Fibrillation in Brugada Syndrome. J. Cardiovasc. Electrophysiol. 2012, 23, 664–665. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, K.; Kurita, T.; Inagaki, M.; Kakishita, M.; Aihara, N.; Shimizu, W.; Taguchi, A.; Suyama, K.; Kamakura, S.; Shimomura, K. The Circadian Pattern of the Development of Ventricular Fibrillation in Patients with Brugada Syndrome. Eur. Heart J. 1999, 20, 465–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redon, J. The Normal Circadian Pattern of Blood Pressure: Implications for Treatment. Int. J. Clin. Pract. Suppl. 2004, 58, 3–8. [Google Scholar] [CrossRef]
- Grassi, G.; Seravalle, G.; Quarti-Trevano, F.; Dell’Oro, R.; Bombelli, M.; Cuspidi, C.; Facchetti, R.; Bolla, G.; Mancia, G. Adrenergic, Metabolic, and Reflex Abnormalities in Reverse and Extreme Dipper Hypertensives. Hypertension 2008, 52, 925–931. [Google Scholar] [CrossRef] [Green Version]
- Zimmet, P.; Alberti, K.G.M.M.; Stern, N.; Bilu, C.; El-Osta, A.; Einat, H.; Kronfeld-Schor, N. The Circadian Syndrome: Is the Metabolic Syndrome and Much More! J. Intern. Med. 2019, 286, 181–191. [Google Scholar] [CrossRef]
- Butler, M.P.; Smales, C.; Wu, H.; Hussain, M.V.; Mohamed, Y.A.; Morimoto, M.; Shea, S.A. The Circadian System Contributes to Apnea Lengthening across the Night in Obstructive Sleep Apnea. Sleep 2015, 38, 1793–1801. [Google Scholar] [CrossRef] [Green Version]
- Tietjens, J.R.; Claman, D.; Kezirian, E.J.; De Marco, T.; Mirzayan, A.; Sadroonri, B.; Goldberg, A.N.; Long, C.; Gerstenfeld, E.P.; Yeghiazarians, Y. Obstructive Sleep Apnea in Cardiovascular Disease: A Review of the Literature and Proposed Multidisciplinary Clinical Management Strategy. J. Am. Heart Assoc. 2019, 8, e010440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, J. Disruption of Circadian Rhythm Impairs Pancreatic Islet Function and Increases Susceptibility to Beta-Cell Failure, While Pathological Complications of Type 2 Diabetes Mellitus Have Scant Effects on the Circadian System; University of California: Los Angeles, CA, USA, 2015. [Google Scholar]
- Rakshit, K.; Qian, J.; Colwell, C.S.; Matveyenko, A.V. The Islet Circadian Clock: Entrainment Mechanisms, Function and Role in Glucose Homeostasis. Diabetes Obes. Metab. 2015, 17 (Suppl. 1), 115–122. [Google Scholar] [CrossRef] [Green Version]
- Mason, I.C.; Qian, J.; Adler, G.K.; Scheer, F.A.J.L. Impact of Circadian Disruption on Glucose Metabolism: Implications for Type 2 Diabetes. Diabetologia 2020, 63, 462–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engin, A. Circadian Rhythms in Diet-Induced Obesity. Adv. Exp. Med. Biol. 2017, 960, 19–52. [Google Scholar] [CrossRef]
- Serin, Y.; Acar Tek, N. Effect of Circadian Rhythm on Metabolic Processes and the Regulation of Energy Balance. Ann. Nutr. Metab. 2019, 74, 322–330. [Google Scholar] [CrossRef] [PubMed]
- Curtis, A.M.; Bellet, M.M.; Sassone-Corsi, P.; O’Neill, L.A.J. Circadian Clock Proteins and Immunity. Immunity 2014, 40, 178–186. [Google Scholar] [CrossRef] [Green Version]
- Rana, S.; Prabhu, S.D.; Young, M.E. Chronobiological Influence Over Cardiovascular Function: The Good, the Bad, and the Ugly. Circ. Res. 2020, 126, 258–279. [Google Scholar] [CrossRef]
- Schloss, M.J.; Horckmans, M.; Nitz, K.; Duchene, J.; Drechsler, M.; Bidzhekov, K.; Scheiermann, C.; Weber, C.; Soehnlein, O.; Steffens, S. The Time-of-Day of Myocardial Infarction Onset Affects Healing through Oscillations in Cardiac Neutrophil Recruitment. EMBO Mol. Med. 2016, 8, 937–948. [Google Scholar] [CrossRef] [PubMed]
- Cinzano, P.; Falchi, F.; Elvidge, C.D.; Baugh, K.E. The Artificial Night Sky Brightness Mapped from DMSP Satellite Operational Linescan System Measurements. Mon. Not. R. Astron. Soc. 2000, 318, 641–657. [Google Scholar] [CrossRef] [Green Version]
- Falchi, F.; Cinzano, P.; Duriscoe, D.; Kyba, C.C.M.; Elvidge, C.D.; Baugh, K.; Portnov, B.A.; Rybnikova, N.A.; Furgoni, R. The New World Atlas of Artificial Night Sky Brightness. Sci. Adv. 2016, 2, e1600377. [Google Scholar] [CrossRef] [Green Version]
- Gaston, K.J.; Duffy, J.P.; Gaston, S.; Bennie, J.; Davies, T.W. Human Alteration of Natural Light Cycles: Causes and Ecological Consequences. Oecologia 2014, 176, 917–931. [Google Scholar] [CrossRef] [Green Version]
- Boivin, D.B.; Boudreau, P. Impacts of Shift Work on Sleep and Circadian Rhythms. Pathol. Biol. 2014, 62, 292–301. [Google Scholar] [CrossRef]
- Jankowiak, S.; Backé, E.; Liebers, F.; Schulz, A.; Hegewald, J.; Garthus-Niegel, S.; Nübling, M.; Blankenberg, S.; Pfeiffer, N.; Lackner, K.J.; et al. Current and Cumulative Night Shift Work and Subclinical Atherosclerosis: Results of the Gutenberg Health Study. Int. Arch. Occup. Environ. Health 2016, 89, 1169–1182. [Google Scholar] [CrossRef] [Green Version]
- Andrews, N.P.; Gralnick, H.R.; Merryman, P.; Vail, M.; Quyyumi, A.A. Mechanisms Underlying the Morning Increase in Platelet Aggregation: A Flow Cytometry Study. J. Am. Coll. Cardiol. 1996, 28, 1789–1795. [Google Scholar] [CrossRef] [Green Version]
- Puttonen, S.; Härmä, M.; Hublin, C. Shift Work and Cardiovascular Disease—Pathways from Circadian Stress to Morbidity. Scand. J. Work, Environ. Health 2010, 36, 96–108. [Google Scholar] [CrossRef] [Green Version]
- Kitamura, T.; Onishi, K.; Dohi, K.; Okinaka, T.; Ito, M.; Isaka, N.; Nakano, T. Circadian Rhythm of Blood Pressure Is Transformed from a Dipper to a Non-Dipper Pattern in Shift Workers with Hypertension. J. Hum. Hypertens. 2002, 16, 193–197. [Google Scholar] [CrossRef] [Green Version]
- Phillips, R.A.; Sheinart, K.F.; Godbold, J.H.; Mahboob, R.; Tuhrim, S. The Association of Blunted Nocturnal Blood Pressure Dip and Stroke in a Multiethnic Population. Am. J. Hypertens. 2000, 13, 1250–1255. [Google Scholar] [CrossRef] [Green Version]
- Alfonsi, V.; Scarpelli, S.; Gorgoni, M.; Pazzaglia, M.; Giannini, A.M.; De Gennaro, L. Sleep-Related Problems in Night Shift Nurses: Towards an Individualized Interventional Practice. Front. Hum. Neurosci. 2021, 15, 644570. [Google Scholar] [CrossRef]
- Costa, G. Sleep Deprivation due to Shift Work. Handb. Clin. Neurol. 2015, 131, 437–446. [Google Scholar] [CrossRef]
- Gumenyuk, V.; Roth, T.; Drake, C.L. Circadian Phase, Sleepiness, and Light Exposure Assessment in Night Workers with and without Shift Work Disorder. Chronobiol. Int. 2012, 29, 928–936. [Google Scholar] [CrossRef]
- St-Onge, M.-P.; Ard, J.; Baskin, M.L.; Chiuve, S.E.; Johnson, H.M.; Kris-Etherton, P.; Varady, K.; American Heart Association Obesity Committee of the Council on Lifestyle and Cardiometabolic Health; Council on Cardiovascular Disease in the Young; Council on Clinical Cardiology; et al. Meal Timing and Frequency: Implications for Cardiovascular Disease Prevention: A Scientific Statement From the American Heart Association. Circulation 2017, 135, e96–e121. [Google Scholar] [CrossRef]
- Mohd Azmi, N.A.S.; Juliana, N.; Mohd Fahmi Teng, N.I.; Azmani, S.; Das, S.; Effendy, N. Consequences of Circadian Disruption in Shift Workers on Chrononutrition and Their Psychosocial Well-Being. Int. J. Environ. Res. Public Health 2020, 17, 2043. [Google Scholar] [CrossRef] [Green Version]
- Kahleova, H.; Lloren, J.I.; Mashchak, A.; Hill, M.; Fraser, G.E. Meal Frequency and Timing Are Associated with Changes in Body Mass Index in Adventist Health Study 2. J. Nutr. 2017, 147, 1722–1728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reiter, A.; Sargent, C.; Roach, G. The Effect of Total Sleep Deprivation on Cognitive Performance during Night-Shift for Early and Late Chronotypes. Sleep Med. 2019, 64, S317–S318. [Google Scholar] [CrossRef]
- Amirian, I. The Impact of Sleep Deprivation on Surgeons’ Performance during Night Shifts. Dan. Med. J. 2014, 61, B4912. [Google Scholar] [PubMed]
- Sűdy, Á.R.; Ella, K.; Bódizs, R.; Káldi, K. Association of Social Jetlag With Sleep Quality and Autonomic Cardiac Control During Sleep in Young Healthy Men. Front. Neurosci. 2019, 13, 950. [Google Scholar] [CrossRef]
- Roenneberg, T.; Wirz-Justice, A.; Merrow, M. Life between Clocks: Daily Temporal Patterns of Human Chronotypes. J. Biol. Rhythms 2003, 18, 80–90. [Google Scholar] [CrossRef] [Green Version]
- Knutsson, A. Health Disorders of Shift Workers. Occup. Med. 2003, 53, 103–108. [Google Scholar] [CrossRef] [Green Version]
- Grimaldi, D.; Carter, J.R.; Van Cauter, E.; Leproult, R. Adverse Impact of Sleep Restriction and Circadian Misalignment on Autonomic Function in Healthy Young Adults. Hypertension 2016, 68, 243–250. [Google Scholar] [CrossRef] [Green Version]
- Wittmann, M.; Dinich, J.; Merrow, M.; Roenneberg, T. Social Jetlag: Misalignment of Biological and Social Time. Chronobiol. Int. 2006, 23, 497–509. [Google Scholar] [CrossRef]
- Libby, P. Inflammation and Cardiovascular Disease Mechanisms. Am. J. Clin. Nutr. 2006, 83, 456S–460S. [Google Scholar] [CrossRef] [Green Version]
- Libby, P. Inflammation in Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 2045–2051. [Google Scholar] [CrossRef] [Green Version]
- Puttonen, S.; Viitasalo, K.; Härmä, M. Effect of Shiftwork on Systemic Markers of Inflammation. Chronobiol. Int. 2011, 28, 528–535. [Google Scholar] [CrossRef]
- Tuomisto, K.; Jousilahti, P.; Sundvall, J.; Pajunen, P.; Salomaa, V. C-Reactive Protein, Interleukin-6 and Tumor Necrosis Factor Alpha as Predictors of Incident Coronary and Cardiovascular Events and Total Mortality. Thromb. Haemost. 2006, 95, 511–518. [Google Scholar] [CrossRef]
- Hussain, A.; Sun, W.; Deswal, A.; de Lemos, J.A.; McEvoy, J.W.; Hoogeveen, R.C.; Matsushita, K.; Aguilar, D.; Bozkurt, B.; Virani, S.S.; et al. Association of NT-ProBNP, Blood Pressure, and Cardiovascular Events: The ARIC Study. J. Am. Coll. Cardiol. 2021, 77, 559–571. [Google Scholar] [CrossRef]
- Vasan, R.S.; Larson, M.G.; Leip, E.P.; Evans, J.C.; O’Donnell, C.J.; Kannel, W.B.; Levy, D. Impact of High-Normal Blood Pressure on the Risk of Cardiovascular Disease. N. Engl. J. Med. 2001, 345, 1291–1297. [Google Scholar] [CrossRef]
- Andreadis, E.A. Hypertension and Cardiovascular Disease; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Volders, P.G.A. Novel Insights into the Role of the Sympathetic Nervous System in Cardiac Arrhythmogenesis. Heart Rhythm 2010, 7, 1900–1906. [Google Scholar] [CrossRef]
- Hadaya, J.; Ardell, J.L. Autonomic Modulation for Cardiovascular Disease. Front. Physiol. 2020, 11, 617459. [Google Scholar] [CrossRef] [PubMed]
- Sabbah, H.N.; Ilsar, I.; Zaretsky, A.; Rastogi, S.; Wang, M.; Gupta, R.C. Vagus Nerve Stimulation in Experimental Heart Failure. Heart Fail. Rev. 2011, 16, 171–178. [Google Scholar] [CrossRef] [Green Version]
- La Rovere, M.T.; Bigger, J.T., Jr.; Marcus, F.I.; Mortara, A.; Schwartz, P.J. Baroreflex Sensitivity and Heart-Rate Variability in Prediction of Total Cardiac Mortality after Myocardial Infarction. ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators. Lancet 1998, 351, 478–484. [Google Scholar] [CrossRef]
- El-Sheikh, M.; Harger, J.; Whitson, S.M. Exposure to Interparental Conflict and Children’s Adjustment and Physical Health: The Moderating Role of Vagal Tone. Child Dev. 2001, 72, 1617–1636. [Google Scholar] [CrossRef]
- Kok, B.E.; Fredrickson, B.L. Upward Spirals of the Heart: Autonomic Flexibility, as Indexed by Vagal Tone, Reciprocally and Prospectively Predicts Positive Emotions and Social Connectedness. Biol. Psychol. 2010, 85, 432–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souza, G.G.L.; Magalhães, L.N.; Cruz, T.A.R.D.; Mendonça-De-Souza, A.C.F.; Duarte, A.F.A.; Fischer, N.L.; Souza, W.F.; Coutinho, E.D.S.F.; Vila, J.; Gleiser, S.; et al. Resting Vagal Control and Resilience as Predictors of Cardiovascular Allostasis in Peacekeepers. Stress 2013, 16, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M.C.; Rohtla, K.M.; Lavery, C.E.; Muller, J.E.; Mittleman, M.A. Meta-Analysis of the Morning Excess of Acute Myocardial Infarction and Sudden Cardiac Death. Am. J. Cardiol. 1997, 79, 1512–1516. [Google Scholar] [CrossRef]
- Kaye, B.L.; Tofler, G.H. Concurrent Morning Increase in Platelet Aggregability and Risk of Myocardial Infarction and Sudden Cardiac Death. Plast. Reconstr. Surg. 1988, 82, 379. [Google Scholar]
- Virag, J.A.I.; Lust, R.M. Circadian Influences on Myocardial Infarction. Front. Physiol. 2014, 5, 422. [Google Scholar] [CrossRef]
- Suárez-Barrientos, A.; López-Romero, P.; Vivas, D.; Castro-Ferreira, F.; Núñez-Gil, I.; Franco, E.; Ruiz-Mateos, B.; García-Rubira, J.C.; Fernández-Ortiz, A.; Macaya, C.; et al. Circadian Variations of Infarct Size in Acute Myocardial Infarction. Heart 2011, 97, 970–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selvi, Y.; Smolensky, M.H.; Boysan, M.; Aydin, A.; Besiroglu, L.; Atli, A.; Gumrukcuoglu, H.A. Role of Patient Chronotype on Circadian Pattern of Myocardial Infarction: A Pilot Study. Chronobiol. Int. 2011, 28, 371–377. [Google Scholar] [CrossRef]
- Savopoulos, C.; Ziakas, A.; Hatzitolios, A.; Delivoria, C.; Kounanis, A.; Mylonas, S.; Tsougas, M.; Psaroulis, D. Circadian Rhythm in Sudden Cardiac Death: A Retrospective Study of 2665 Cases. Angiology 2006, 57, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Larochelle, P. Circadian Variation in Blood Pressure: Dipper or Nondipper. J. Clin. Hypertens. 2002, 4, 3–8. [Google Scholar] [CrossRef]
- Hermida, R.C.; Ayala, D.E.; Portaluppi, F. Circadian Variation of Blood Pressure: The Basis for the Chronotherapy of Hypertension. Adv. Drug Deliv. Rev. 2007, 59, 901–922. [Google Scholar] [CrossRef]
- Hermida, R.C.; Ayala, D.E.; Calvo, C.; Portaluppi, F.; Smolensky, M.H. Chronotherapy of Hypertension: Administration-Time-Dependent Effects of Treatment on the Circadian Pattern of Blood Pressure. Adv. Drug Deliv. Rev. 2007, 59, 923–939. [Google Scholar] [CrossRef]
- Kenig, A.; Ilan, Y. A Personalized Signature and Chronotherapy-Based Platform for Improving the Efficacy of Sepsis Treatment. Front. Physiol. 2019, 10, 1542. [Google Scholar] [CrossRef] [PubMed]
- Ilan, Y. Establishment of an Individualized Chronotherapy, Autonomic Nervous System, and Variability-Based Dynamic Platform for Overcoming the Loss of Response to Analgesics. Pain Physician 2021, 24, 243–252. [Google Scholar] [CrossRef]
- Durgan, D.J.; Pulinilkunnil, T.; Villegas-Montoya, C.; Garvey, M.E.; Frangogiannis, N.G.; Michael, L.H.; Chow, C.-W.; Dyck, J.R.B.; Young, M.E. Short Communication: Ischemia/Reperfusion Tolerance Is Time-of-Day–Dependent. Circ. Res. 2010, 106, 546–550. [Google Scholar] [CrossRef]
- Hermida, R.C.; Ayala, D.E.; Mojón, A.; Fernández, J.R. Influence of Circadian Time of Hypertension Treatment on Cardiovascular Risk: Results of the MAPEC Study. Chronobiol. Int. 2010, 27, 1629–1651. [Google Scholar] [CrossRef]
- Bonten, T.N.; Snoep, J.D.; Assendelft, W.J.J.; Zwaginga, J.J.; Eikenboom, J.; Huisman, M.V.; Rosendaal, F.R.; van der Bom, J.G. Time-Dependent Effects of Aspirin on Blood Pressure and Morning Platelet Reactivity. Hypertension 2015, 65, 743–750. [Google Scholar] [CrossRef] [PubMed]
- Hermida, R.C.; Mojón, A.; Hermida-Ayala, R.G.; Smolensky, M.H.; Fernández, J.R. Extent of Asleep Blood Pressure Reduction by Hypertension Medications Is Ingestion-Time Dependent: Systematic Review and Meta-Analysis of Published Human Trials. Sleep Med. Rev. 2021, 59, 101454. [Google Scholar] [CrossRef]
- Montaigne, D.; Staels, B. Time to Check the Clock in Cardiovascular Research and Medicine. Circ. Res. 2018, 123, 648–650. [Google Scholar] [CrossRef] [PubMed]
- Lefer David, J. Is There a Better Time of Day to Have a Heart Attack? Circ. Res. 2010, 106, 430–431. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.A.; DiPietro Mager, N.A. Women’s Involvement in Clinical Trials: Historical Perspective and Future Implications. Pharm. Pract. 2016, 14, 708. [Google Scholar] [CrossRef] [Green Version]
- Holdcroft, A. Gender Bias in Research: How Does It Affect Evidence Based Medicine? J. R. Soc. Med. 2007, 100, 2–3. [Google Scholar] [CrossRef]
- Gibson, C.L.; Attwood, L. The Impact of Gender on Stroke Pathology and Treatment. Neurosci. Biobehav. Rev. 2016, 67, 119–124. [Google Scholar] [CrossRef]
- Herson, P.S.; Palmateer, J.; Hurn, P.D. Biological Sex and Mechanisms of Ischemic Brain Injury. Transl. Stroke Res. 2013, 4, 413–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Appelros, P.; Stegmayr, B.; Terént, A. Sex Differences in Stroke Epidemiology: A Systematic Review. Stroke 2009, 40, 1082–1090. [Google Scholar] [CrossRef] [PubMed]
- Girijala, R.L.; Sohrabji, F.; Bush, R.L. Sex Differences in Stroke: Review of Current Knowledge and Evidence. Vasc. Med. 2017, 22, 135–145. [Google Scholar] [CrossRef]
- Barrett-Connor, E. Sex Differences in Coronary Heart Disease. Why Are Women so Superior? The 1995 Ancel Keys Lecture. Circulation 1997, 95, 252–264. [Google Scholar] [CrossRef]
- Fels, J.A.; Manfredi, G. Sex Differences in Ischemia/Reperfusion Injury: The Role of Mitochondrial Permeability Transition. Neurochem. Res. 2019, 44, 2336–2345. [Google Scholar] [CrossRef]
- Murphy, E.; Steenbergen, C. Gender-Based Differences in Mechanisms of Protection in Myocardial Ischemia–reperfusion Injury. Cardiovasc. Res. 2007, 75, 478–486. [Google Scholar] [CrossRef] [Green Version]
- Ostadal, B.; Ostadal, P. Sex-Based Differences in Cardiac Ischaemic Injury and Protection: Therapeutic Implications: Sex Differences in Cardiac Ischaemic Injury. Br. J. Pharmacol. 2014, 171, 541–554. [Google Scholar] [CrossRef] [PubMed]
- Blum, A.; Blum, N. Coronary Artery Disease: Are Men and Women Created Equal? Gend. Med. 2009, 6, 410–418. [Google Scholar] [CrossRef]
- Hayward, C.S.; Kelly, R.P.; Collins, P. The Roles of Gender, the Menopause and Hormone Replacement on Cardiovascular Function. Cardiovasc. Res. 2000, 46, 28–49. [Google Scholar] [CrossRef] [Green Version]
- Mendelsohn, M.E.; Karas, R.H. The Protective Effects of Estrogen on the Cardiovascular System. N. Engl. J. Med. 1999, 340, 1801–1811. [Google Scholar] [CrossRef]
- Murphy, E. Estrogen Signaling and Cardiovascular Disease. Circ. Res. 2011, 109, 687–696. [Google Scholar] [CrossRef] [Green Version]
- Rossouw, J.E.; Anderson, G.L.; Prentice, R.L.; LaCroix, A.Z.; Kooperberg, C.; Stefanick, M.L.; Jackson, R.D.; Beresford, S.A.A.; Howard, B.V.; Johnson, K.C.; et al. Risks and Benefits of Estrogen plus Progestin in Healthy Postmenopausal Women: Principal Results From the Women’s Health Initiative Randomized Controlled Trial. JAMA 2002, 288, 321–333. [Google Scholar] [CrossRef] [Green Version]
- Schuit, S.C.E.; de Jong, F.H.; Stolk, L.; Koek, W.N.H.; van Meurs, J.B.J.; Schoofs, M.W.C.J.; Zillikens, M.C.; Hofman, A.; van Leeuwen, J.P.T.M.; Pols, H.A.P.; et al. Estrogen Receptor Alpha Gene Polymorphisms Are Associated with Estradiol Levels in Postmenopausal Women. Eur. J. Endocrinol. 2005, 153, 327–334. [Google Scholar] [CrossRef] [Green Version]
- Shearman, A.M.; Cooper, J.A.; Kotwinski, P.J.; Miller, G.J.; Humphries, S.E.; Ardlie, K.G.; Jordan, B.; Irenze, K.; Lunetta, K.L.; Schuit, S.C.E.; et al. Estrogen Receptor α Gene Variation Is Associated With Risk of Myocardial Infarction in More Than Seven Thousand Men From Five Cohorts. Circ. Res. 2006, 98, 590–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grohe, C.; Kahlert, S.; Lobbert, K.; Vetter, H. Expression of Oestrogen Receptor Alpha and Beta in Rat Heart: Role of Local Oestrogen Synthesis. J. Endocrinol. 1998, 156, R1–R7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, S.S.; Lyden, P.D. Overview of Therapeutic Hypothermia. Curr. Treat. Options Neurol. 2012, 14, 541–548. [Google Scholar] [CrossRef]
- Hypothermia after Cardiac Arrest Study Group. Mild Therapeutic Hypothermia to Improve the Neurologic Outcome after Cardiac Arrest. N. Engl. J. Med. 2002, 346, 549–556. [Google Scholar] [CrossRef]
- Seupaul, R.A.; Wilbur, L.G. Does Therapeutic Hypothermia Benefit Survivors of Cardiac Arrest? Ann. Emerg. Med. 2011, 58, 282–283. [Google Scholar] [CrossRef] [PubMed]
- Fillbrandt, A.; Frank, B. Gender Differences in Cognitive Outcome after Cardiac Arrest: A Retrospective Cohort Study. Brain Inj. 2020, 34, 122–130. [Google Scholar] [CrossRef]
- Kim, M.J.; Do Shin, S.; McClellan, W.M.; McNally, B.; Ro, Y.S.; Song, K.J.; Lee, E.J.; Lee, Y.J.; Kim, J.Y.; Hong, S.O.; et al. Neurological Prognostication by Gender in out-of-Hospital Cardiac Arrest Patients Receiving Hypothermia Treatment. Resuscitation 2014, 85, 1732–1738. [Google Scholar] [CrossRef]
- Getz, G.S.; Reardon, C.A. Animal Models of Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 1104–1115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamm, T.E., Jr.; Kaplan, J.R.; Clarkson, T.B.; Bullock, B.C. Effects of Gender and Social Behavior on the Development of Coronary Artery Atherosclerosis in Cynomolgus Macaques. Atherosclerosis 1983, 48, 221–233. [Google Scholar] [CrossRef]
- Adams, M.R.; Kaplan, J.R.; Clarkson, T.B.; Koritnik, D.R. Ovariectomy, Social Status, and Atherosclerosis in Cynomolgus Monkeys. Arteriosclerosis 1985, 5, 192–200. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, T.; Fukuto, J.M.; Ignarro, L.J.; Chaudhuri, G. Gender Differences in Atherosclerosis: Possible Role of Nitric Oxide. J. Cardiovasc. Pharmacol. 1995, 26, 792–802. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.S.; Moore, R.L.; Brown, D.A. Sex Differences in Myocardial Infarct Size Are Abolished by Sarcolemmal KATP Channel Blockade in Rat. Am. J. Physiol. Heart Circ. Physiol. 2006, 290, H2644–H2647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCully, J.D.; Toyoda, Y.; Wakiyama, H.; Rousou, A.J.; Parker, R.A.; Levitsky, S. Age- and Gender-Related Differences in Ischemia/reperfusion Injury and Cardioprotection: Effects of Diazoxide. Ann. Thorac. Surg. 2006, 82, 117–123. [Google Scholar] [CrossRef] [Green Version]
- Ross, J.L.; Howlett, S.E. Age and Ovariectomy Abolish Beneficial Effects of Female Sex on Rat Ventricular Myocytes Exposed to Simulated Ischemia and Reperfusion. PLoS ONE 2012, 7, e38425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hale, S.L.; Birnbaum, Y.; Kloner, R.A. β-Estradiol, but Not α-Estradiol, Reduces Myocardial Necrosis in Rabbits after Ischemia and Reperfusion. Am. Heart J. 1996, 132, 258–262. [Google Scholar] [CrossRef]
- Xu, S.; Xie, F.; Tian, L.; Fallah, S.; Babaei, F.; Manno, S.H.C.; Manno, F.A.M.; Zhu, L.; Wong, K.F.; Liang, Y.; et al. Estrogen Accelerates Heart Regeneration by Promoting the Inflammatory Response in Zebrafish. J. Endocrinol. 2020, 245, 39–51. [Google Scholar] [CrossRef] [Green Version]
- Kushwaha, R.S.; Hazzard, W.R. Exogenous Estrogens Attenuate Dietary Hypercholesterolemia and Atherosclerosis in the Rabbit. Metabolism 1981, 30, 359–366. [Google Scholar] [CrossRef]
- Nasser, S.A.; Afify, E.A.; Kobeissy, F.; Hamam, B.; Eid, A.H.; El-Mas, M.M. Inflammatory Basis of Atherosclerosis: Modulation by Sex Hormones. Curr. Pharm. Des. 2021, 27, 2099–2111. [Google Scholar] [CrossRef]
- Nofer, J.-R. Estrogens and Atherosclerosis: Insights from Animal Models and Cell Systems. J. Mol. Endocrinol. 2012, 48, R13–R29. [Google Scholar] [CrossRef] [Green Version]
- Emini Veseli, B.; Perrotta, P.; De Meyer, G.R.A.; Roth, L.; Van der Donckt, C.; Martinet, W.; De Meyer, G.R.Y. Animal Models of Atherosclerosis. Eur. J. Pharmacol. 2017, 816, 3–13. [Google Scholar] [CrossRef]
- Walton, J.C.; Walker, W.H., 2nd; Bumgarner, J.R.; Meléndez-Fernández, O.H.; Liu, J.A.; Hughes, H.L.; Kaper, A.L.; Nelson, R.J. Circadian Variation in Efficacy of Medications. Clin. Pharmacol. Ther. 2020, 1457–1488. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.L.; Yue, Z.; Arnold, D.M.; Artiushin, G.; Sehgal, A. A Circadian Clock in the Blood-Brain Barrier Regulates Xenobiotic Efflux. Cell 2018, 173, 130–139.e10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.L.; Lahens, N.F.; Yue, Z.; Arnold, D.M.; Pakstis, P.P.; Schwarz, J.E.; Sehgal, A. A Circadian Clock Regulates Efflux by the Blood-Brain Barrier in Mice and Human Cells. Nat. Commun. 2021, 12, 617. [Google Scholar] [CrossRef] [PubMed]
Gene | Effect | Reference |
---|---|---|
Per2 mutation | Reduced NO production; decreased vasodilatory prostaglandins and increased vasoconstrictors | [81] |
Global KO PPAR𝜸 | Decreased variation in diel heart rate; abolished regulation of mean arterial pressure and HR | [82,83] |
Germline deletion of Bmal1 | Abolished diel fluctuations in HR and BP; disrupted metabolism; impaired contractile function; cardiac damage; early cardiac aging | [84,85,86] |
Cry1/2 double deletion | Salt sensitive hypertension; enhanced baroreflex sensitivity | [87] |
Per1 deletion | Non-dipping hypertension in male, but not female mice; very low BP; elevated endothelin-1 | [88,89,90] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meléndez-Fernández, O.H.; Walton, J.C.; DeVries, A.C.; Nelson, R.J. Clocks, Rhythms, Sex, and Hearts: How Disrupted Circadian Rhythms, Time-of-Day, and Sex Influence Cardiovascular Health. Biomolecules 2021, 11, 883. https://doi.org/10.3390/biom11060883
Meléndez-Fernández OH, Walton JC, DeVries AC, Nelson RJ. Clocks, Rhythms, Sex, and Hearts: How Disrupted Circadian Rhythms, Time-of-Day, and Sex Influence Cardiovascular Health. Biomolecules. 2021; 11(6):883. https://doi.org/10.3390/biom11060883
Chicago/Turabian StyleMeléndez-Fernández, O. Hecmarie, James C. Walton, A. Courtney DeVries, and Randy J. Nelson. 2021. "Clocks, Rhythms, Sex, and Hearts: How Disrupted Circadian Rhythms, Time-of-Day, and Sex Influence Cardiovascular Health" Biomolecules 11, no. 6: 883. https://doi.org/10.3390/biom11060883
APA StyleMeléndez-Fernández, O. H., Walton, J. C., DeVries, A. C., & Nelson, R. J. (2021). Clocks, Rhythms, Sex, and Hearts: How Disrupted Circadian Rhythms, Time-of-Day, and Sex Influence Cardiovascular Health. Biomolecules, 11(6), 883. https://doi.org/10.3390/biom11060883