Effects on Lignin Redistribution in Eucalyptus globulus Fibres Pre-Treated by Steam Explosion: A Microscale Study to Cellulose Accessibility
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Steam Explosion Process
2.3. Chemical Characterisation of Samples
2.4. Scanning Electronic Microscopy (SEM)
2.5. Laser-Scanning Confocal Fluorescence Microscopy (LSCM)
2.6. FT-IR Microimaging
2.7. Chemometric Analysis
2.8. Enzymatic Hydrolysis
3. Results and Discussion
3.1. Characterisation of Wood and Pre-Treated Materials
3.2. Enzymatic Hydrolysis
3.3. Microscopic Characterisation of Pre-Treated Material
3.4. Study of Micro-Accessibility of E. globulus Pre-Treated by Steam Explosion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nielsen, F.; Galbe, M.; Zacchi, G.; Wallberg, O. The effect of mixed agricultural feedstocks on steam pretreatment, enzymatic hydrolysis, and cofermentation in the lignocellulose-to-ethanol process. Biomass Convers. Biorefinery 2019. [Google Scholar] [CrossRef]
- Jacquet, N.; Haubruge, E.; Richel, A. Production of biofuels and biomolecules in the framework of circular economy: A regional case study. Waste Manag. Res. 2015, 33, 1121–1126. [Google Scholar] [CrossRef] [PubMed]
- Matsakas, L.; Raghavendran, V.; Yakimenko, O.; Persson, G.; Olsson, E.; Rova, U.; Olsson, L.; Christakopoulos, P. Lignin-first biomass fractionation using a hybrid organosolv—Steam explosion pretreatment technology improves the saccharification and fermentability of spruce biomass. Bioresour. Technol. 2019, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Montipó, S.; Ballesteros, I.; Martins, A.F.; Ballesteros, M.; Camassola, M. Optimisation of uncatalysed steam explosion of lignocellulosic biomasses to obtain both C6- and C5-sugars. Waste Biomass Valorization 2018, 11, 1–14. [Google Scholar] [CrossRef]
- Liu, Z.H.; Qin, L.; Pang, F.; Jin, M.J.; Li, B.Z.; Kang, Y.; Dale, B.E.; Yuan, Y.J. Effects of biomass particle size on steam explosion pretreatment performance for improving the enzyme digestibility of corn stover. Ind. Crops Prod. 2013, 44, 176–184. [Google Scholar] [CrossRef]
- Sui, W.; Chen, H. Study on loading coefficient in steam explosion process of corn stalk. Bioresour. Technol. 2015, 179, 534–542. [Google Scholar] [CrossRef]
- Walker, D.J.; Gallagher, J.; Winters, A.; Somani, A.; Ravella, S.R.; Bryant, D.N. Process optimization of steam explosion parameters on multiple lignocellulosic biomass using taguchi method—A critical appraisal. Front. Energy Res. 2018, 6, 1–13. [Google Scholar] [CrossRef]
- Reinerte, S.; Andzs, M.; Tupciauskas, R.; Veveris, A.; Gravitis, J. Steam explosion as a pre-treatment method for bio-refined hybrid aspen lignocellulose. Environ. Technol. Resour. Proc. Int. Sci. Pract. Conf. 2017, 3, 276. [Google Scholar] [CrossRef]
- Rodríguez, F.; Sanchez, A.; Parra, C. Role of steam explosion on enzymatic digestibility, xylan extraction, and lignin release of lignocellulosic biomass. ACS Sustain. Chem. Eng. 2017, 5, 5234–5240. [Google Scholar] [CrossRef]
- Vargas, R.; Vecchietti, A. Modeling the thermochemical pretreatment of eucalyptus globulus for bioethanol production. Ind. Eng. Chem. Res. 2018, 57, 12458–12467. [Google Scholar] [CrossRef]
- Castro, J.F.; Parra, C.; Yáñez-S, M.; Rojas, J.; Teixeira Mendoncìa, R.; Baeza, J.; Freer, J. Optimal pretreatment of eucalyptus globulus by hydrothermolysis and alkaline extraction for microbial production of ethanol and xylitol. Ind. Eng. Chem. Res. 2013, 52, 5713–5720. [Google Scholar] [CrossRef]
- Marzialetti, T.; Salazar, J.P.; Ocampos, C.; Chandra, R.; Chung, P.; Saddler, J.; Parra, C. Second-generation ethanol in chile: Optimisation of the autohydrolysis of eucalyptus globulus. Biomass Convers. Biorefinery 2014, 4, 125–135. [Google Scholar] [CrossRef]
- Leschinsky, M.; Sixta, H.; Patt, R. Detailed mass balances of the autohydrolysis of eucalyptus globulus at 170 °C. Biouresources 2009, 4, 687–703. [Google Scholar]
- Ramos, L.P.; Breuil, C.; Saddler, J.N.; Kushner, D.J. Steam pretreatment conditions for effective enzymatic hydrolysis and recovery yields of eucalyptus viminalis wood chips. Holzforschung 1992, 46, 149–154. [Google Scholar] [CrossRef]
- Martín-Sampedro, R.; Eugenio, M.E.; García, J.C.; Lopez, F.; Villar, J.C.; Diaz, M.J. Steam explosion and enzymatic pre-treatments as an approach to improve the enzymatic hydrolysis of eucalyptus globulus. Biomass Bioenergy 2012, 42, 97–106. [Google Scholar] [CrossRef]
- Ramos, L.P. The chemistry involved in the steam treatment of lignocellulosic materials. Quim. Nova 2003, 26, 863–871. [Google Scholar] [CrossRef]
- Auxenfans, T.; Crônier, D.; Chabbert, B.; Paës, G. Understanding the Structural and Chemical Changes of Plant Biomass Following Steam Explosion Pretreatment. Biotechnol. Biofuels 2017, 10, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Donohoe, B.S.; Decker, S.R.; Tucker, M.P.; Himmel, M.E.; Vinzant, T.B. Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment. Biotechnol. Bioeng. 2008, 101, 913–925. [Google Scholar] [CrossRef]
- Araya, F.; Troncoso, E.; Mendonça, R.T.; Freer, J. Condensed lignin structures and re-localization achieved at high severities in autohydrolysis of eucalyptus globulus wood and their relationship with cellulose accessibility. Biotechnol. Bioeng. 2015, 112, 1783–1791. [Google Scholar] [CrossRef]
- Arévalo, C.; Freer, J.; Naulin, P.A.; Barrera, N.P.; Troncoso, E.; Araya, J.; Peña-Farfal, C.; Castillo, R.P. Study of the ultrastructure of eucalyptus globulus wood substrates subjected to auto-hydrolysis and diluted acid hydrolysis pre-treatments and its influence on enzymatic hydrolysis. Bioenergy Res. 2017, 10, 714–727. [Google Scholar] [CrossRef]
- Sannigrahi, P.; Kim, D.H.; Jung, S.; Ragauskas, A. Pseudo-lignin and pretreatment chemistry. Energy Environ. Sci. 2011, 4, 1306–1310. [Google Scholar] [CrossRef]
- Kumar, R.; Hu, F.; Sannigrahi, P.; Jung, S.; Ragauskas, A.J.; Wyman, C.E. Carbohydrate derived-pseudo-lignin can retard cellulose biological conversion. Biotechnol. Bioeng. 2013, 110, 737–753. [Google Scholar] [CrossRef]
- Hu, F.; Jung, S.; Ragauskas, A. Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresour. Technol. 2012, 117, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Pu, Y.; Kumar, R.; Ragauskas, A.J.; Wyman, C.E. Investigation of lignin deposition on cellulose during hydrothermal pretreatment, its effect on cellulose hydrolysis, and underlying mechanisms. Biotechnol. Bioeng. 2014, 111, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Castillo, R.P.; Araya, J.; Troncoso, E.; Vinet, S.; Freer, J. Fourier transform infrared imaging and microscopy studies of pinus radiata pulps regarding the simultaneous saccharification and fermentation process. Anal. Chim. Acta 2015, 866, 10–20. [Google Scholar] [CrossRef]
- Kim, Y.; Kreke, T.; Mosier, N.S.; Ladisch, M.R. Severity factor coefficients for subcritical liquid hot water pretreatment of hardwood chips. Biotechnol. Bioeng. 2014, 111, 254–263. [Google Scholar] [CrossRef]
- Mendonça, R.T.; Jara, J.F.; González, V.; Elissetche, J.P.; Freer, J. Evaluation of the white-rot fungi ganoderma australe and ceriporiopsis subvermispora in biotechnological applications. J. Ind. Microbiol. Biotechnol. 2008, 35, 1323–1330. [Google Scholar] [CrossRef]
- Reyes, P.; Márquez, N.; Troncoso, E.; Parra, C.; Teixeira Mendonça, R.; Rodríguez, J. Evaluation of combined dilute acid-kraft and steam explosion-kraft processes as pretreatment for enzymatic hydrolysis of pinus radiata wood chips. BioResources 2015, 11, 612–625. [Google Scholar] [CrossRef][Green Version]
- Chen, X.; Lawoko, M.; Heiningen, A. Van kinetics and mechanism of autohydrolysis of hardwoods. Bioresour. Technol. 2010, 101, 7812–7819. [Google Scholar] [CrossRef]
- Ruiz, E.; Cara, C.; Manzanares, P.; Ballesteros, M.; Castro, E. Evaluation of steam explosion pre-treatment for enzymatic hydrolysis of sunflower stalks. Enzym. Microb. Technol. 2008, 42, 160–166. [Google Scholar] [CrossRef]
- Gourlay, K.; Arantes, V.; Saddler, J.N. Use of substructure-specific carbohydrate binding modules to track changes in cellulose accessibility and surface morphology during the amorphogenesis step of enzymatic hydrolysis. Biotechnol. Biofuels 2012, 5, 1–14. [Google Scholar] [CrossRef]
- Troncoso, E.; Castillo, R.; Valenzuela, R.; Reyes, P.; Freer, J.; Norambuena, M.; Rodríguez, J.; Parra, C. Chemical and microstructural changes in eucalyptus globulus fibers subjected to four different pretreatments and their influence on the enzymatic hydrolysis. J. Chil. Chem. Soc. 2017, 62, 3442–3446. [Google Scholar] [CrossRef]
- Popescu, C.M.; Larsson, P.T.; Olaru, N.; Vasile, C. Spectroscopic study of acetylated kraft pulp fibers. Carbohydr. Polym. 2012, 88, 530–536. [Google Scholar] [CrossRef]
- Pandey, K.K.; Pitman, A.J. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int. Biodeterior. Biodegrad. 2003, 52, 151–160. [Google Scholar] [CrossRef]
- Faix, O. Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung 1991, 45, 21–28. [Google Scholar] [CrossRef]
- Kumar, R.; Mago, G.; Balan, V.; Wyman, C.E. Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresour. Technol. 2009, 100, 3948–3962. [Google Scholar] [CrossRef]
- Uematsu, M.; Frank, E.U. Static dielectric constant of water and steam. J. Phys. Chem. Ref. Data 1980, 9, 1291–1306. [Google Scholar] [CrossRef]
Pre-Treated Materials | ||||||
---|---|---|---|---|---|---|
Sample | Raw Material | 1 | 2 | 3 | 4 | 5 |
Temperature, °C | -- | 180 | 180 | 200 | 220 | 220 |
Time, min | -- | 9.5 | 36 | 9.5 | 2.0 | 9.5 |
S0, ω = 4.6 | -- | 8.5 | 9.1 | 10.4 | 11.6 | 12.3 |
Solids recovered, % | 86.6 | 77.1 | 72.3 | 69.4 | 67.3 | |
Glucans, % | 45.5 | 44.3 ± 0.8 | 44.5 ± 0.3 | 43.4 ± 0.8 | 42.1 ± 1.0 | 41.1 ± 0.5 |
Xylans, % | 15.3 | 7.1 ± 0.9 | 5.9 ± 0.3 | 3.4 ± 0.4 | 2.0 ± 0.1 | 0.3 ± 0.1 |
Lignin, % | 23.5 | 23.9 ± 0.4 | 23.0 ± 0.1 | 22.5 ± 0.8 | 25.1 ± 0.4 | 25.9 ± 0.1 |
Acetyl groups, % | 3.6 | nd | nd | nd | nd | nd |
Liquid phase | ||||||
Glucans, % | -- | 0.1± 0.0 | 0.3 ± 0.0 | 0.4 ± 0.0 | 0.1 ± 0.0 | 1.1 ± 0.0 |
Xylans, % | -- | 3.5 ± 0.1 | 8.5 ± 0.1 | 11.2 ± 0.2 | 13.8 ± 0.2 | 15.6 ± 0.1 |
Arabinans, % | -- | 0.1 ± 0.0 | 0.1 ± 0.0 | 0.3 ± 0.0 | 0.2 ± 0.0 | 0.1 ± 0.0 |
Acetyl groups, % | 0.6 ± 0.0 | 2.0 ± 0.1 | 3.0 ± 0.0 | 3.4 ± 0.1 | 3.2 ± 0.1 | |
Lignin, % | -- | 1.0 ± 0.1 | 2.4 ± 0.3 | 2.3 ± 0.3 | 1.5 ± 0.2 | 2.1 ± 0.1 |
Formic acid | -- | nd | 0.2 ± 0.0 | 0.5 ± 0.0 | 0.2 ± 0.0 | 0.3 ± 0.0 |
HMF | -- | nd | 0.1 ± 0.0 | 0.2 ± 0.0 | 0.2 ± 0.0 | 0.2 ± 0.0 |
Furfural | -- | 0.1 ± 0.0 | 0.6 ± 0.0 | 1.7 ± 0.1 | 1.1 ± 0.1 | 0.7 ± 0.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Troncoso-Ortega, E.; Castillo, R.d.P.; Reyes-Contreras, P.; Castaño-Rivera, P.; Teixeira Mendonça, R.; Schiappacasse, N.; Parra, C. Effects on Lignin Redistribution in Eucalyptus globulus Fibres Pre-Treated by Steam Explosion: A Microscale Study to Cellulose Accessibility. Biomolecules 2021, 11, 507. https://doi.org/10.3390/biom11040507
Troncoso-Ortega E, Castillo RdP, Reyes-Contreras P, Castaño-Rivera P, Teixeira Mendonça R, Schiappacasse N, Parra C. Effects on Lignin Redistribution in Eucalyptus globulus Fibres Pre-Treated by Steam Explosion: A Microscale Study to Cellulose Accessibility. Biomolecules. 2021; 11(4):507. https://doi.org/10.3390/biom11040507
Chicago/Turabian StyleTroncoso-Ortega, Eduardo, Rosario del P. Castillo, Pablo Reyes-Contreras, Patricia Castaño-Rivera, Regis Teixeira Mendonça, Nicolás Schiappacasse, and Carolina Parra. 2021. "Effects on Lignin Redistribution in Eucalyptus globulus Fibres Pre-Treated by Steam Explosion: A Microscale Study to Cellulose Accessibility" Biomolecules 11, no. 4: 507. https://doi.org/10.3390/biom11040507
APA StyleTroncoso-Ortega, E., Castillo, R. d. P., Reyes-Contreras, P., Castaño-Rivera, P., Teixeira Mendonça, R., Schiappacasse, N., & Parra, C. (2021). Effects on Lignin Redistribution in Eucalyptus globulus Fibres Pre-Treated by Steam Explosion: A Microscale Study to Cellulose Accessibility. Biomolecules, 11(4), 507. https://doi.org/10.3390/biom11040507