Development of Active Packaging Based on Agar-Agar Incorporated with Bacteriocin of Lactobacillus sakei
Abstract
:1. Introduction
2. Methodology
2.1. Bacteriocin Production by Lactobacillus sakei
2.2. Production and Characterization of Active Bioplastic Films Incorporated of Bacteriocin
2.2.1. Thickness
2.2.2. Water Vapor Permeability (WVP)
2.2.3. Solubility in Water (WS)
2.2.4. Mechanical Properties
2.2.5. Microbiological Characterization of Films
2.3. Application of Active Bioplastic Film in Curd Cheese and Monitoring of Microbiological Stability
2.4. Statistical Analysis of Results
3. Results and Discussions
Microbiological Monitoring of the Packed Curd Cheese with the Active Film
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Peelman, N.; Ragaert, P.; Meulenaer, B.; Adons, D.; Peeters, R.; Cardon, L.; Van Impe, F.; Devlieghere, F. Application of bioplastics for food packaging. Trends Food Sci. Technol. 2013, 32, 128–141. [Google Scholar] [CrossRef] [Green Version]
- Mateescu, A.; Wang, Y.; Dostalek, J.; Jonas, U. Thin Hydrogel Films for Optical Biosensor Applications. Membranes 2012, 2, 40–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latos-Brozio, M.; Masek, A. The application of natural food colorants as indicator substances in intelligent biodegradable packaging materials. Food Chem. Toxicol. 2020, 135, 110975. [Google Scholar] [CrossRef] [PubMed]
- Zacharof, M.P.; Lovitt, R.W. Bacteriocins Produced by Lactic Acid Bacteria a Review Article. APCBEE Procedia 2012, 2, 50–56. [Google Scholar] [CrossRef] [Green Version]
- Gálvez, A.; Abriouel, H.; López, R.L.; Omar, N.B. Bacteriocin-based strategies for food biopreservation. Int. J. Food Microbiol. 2007, 120, 51–70. [Google Scholar] [CrossRef]
- Field, D.; Ross, R.P.; Hill, C. Developing bacteriocins of lactic acid bacteria into next generation biopreservatives. Curr. Opin. Food Sci. 2018, 20, 1–6. [Google Scholar] [CrossRef]
- Marsh, K.; Bugusu, B. Food Packaging—Roles, Materials, and Environmental Issues. J. Food Sci. 2007, 72, 39–55. [Google Scholar] [CrossRef]
- Cao, N.; Fu, Y.; He, J. Preparation and physical properties of soy protein isolate and gelatin composite films. Food Hydrocoll. 2007, 21, 1153–1162. [Google Scholar] [CrossRef]
- ASTM. E 96/E96M–14: Standard Test Methods for Water Vapor Transmission of Materials; ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar]
- Gontard, N.; Duchez, C.; Cuq, J.L.; Guilbert, S. Edible composite films of wheat gluten and lipids: Water vapour permeability and other physical properties. Int. J. Food Sci. Technol. 1994, 29, 39–50. [Google Scholar] [CrossRef]
- ASTM. D 882–12: Standard Test Method for Tensile Properties of Thin Plastic Sheeting; ASTM International: West Conshohocken, PA, USA, 2014. [Google Scholar]
- NCCLS. Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard. NCCLS document M2-A8. Pennsylvania, USA. 2013. Available online: http://www.anvisa.gov.br/servicosaude/manuais/clsi/clsi_OPASM2-A8.pdf (accessed on 16 February 2021).
- Da Silva, N.; Junqueira, V.C.A.; de Arruda Silveira, N.F.; Taniwaki, M.H.; Gomes, R.A.R.; Okazaki, M.M. Manual de Métodos de Análise Microbiológica de Alimentos e Água. (Manual of Microbiological Food and Water Analysis Methods); Varela: São Paulo, Brazil, 2012; 624p. [Google Scholar]
- Riaz, A.; Lagnika, C.; Luo, H.; Dai, Z.; Nie, M.; Hashim, M.M.; Liu, C.; Song, J.; Li, D. Chitosan-based biodegradable active food packaging film containing Chinese chive (Allium tuberosum) root extract for food application. Int. J. Biol. Macromol. 2020, 150, 595–604. [Google Scholar] [CrossRef] [PubMed]
- Crizel, T.M.; Rios, A.O.; Alves, V.D.; Bandarra, N.; Moldão-Martins, M.; Flôres, S.H. Active food packaging prepared with chitosan and olive pomace. Food Hydrocoll. 2018, 74, 139–150. [Google Scholar] [CrossRef]
- Rhim, J.W. Effect of clay contents on mechanical and water vapor barrier properties of agar-based nanocomposite films. Carbohydr. Polym. 2011, 86, 691–699. [Google Scholar] [CrossRef]
- Casariego, A.; Souza BW, S.; Cerqueira, M.A.; Teixeira, J.A.; Cruz, L.; Díaz, R.; Vicente, A.A. Chitosan/clay films’ properties as affected by biopolymer and clay micro/nanoparticles’ concentrations. Food Hydrocoll. 2009, 23, 1895–1902. [Google Scholar] [CrossRef] [Green Version]
- Sothornvit, R.; Hong, S.I.; An, D.J.; Rhim, J.W. Effect of clay content on the physical and antimicrobial properties of whey protein isolate/organo-clay composite films. LWT-Food Sci. Technol. 2010, 43, 279–284. [Google Scholar] [CrossRef]
- Rhim, J.W.; Wang, L.F. Mechanical and water barrier properties of agar/κ-carrageenan/konjac glucomannan ternary blend biohydrogel films. Carbohydr. Polym. 2013, 96, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Shankar, S.; Rhim, J.W. Preparation of nanocellulose from micro-crystalline cellulose: The effect on the performance and properties of agar-based composite films. Carbohydr. Polym. 2016, 135, 18–26. [Google Scholar] [CrossRef]
- Shahbazi, Y.; Shavisi, N.; Mohebi, E. Effects of Ziziphora clinopodioides Essential Oil and Nisin, Both Separately and in Combination, to Extend Shelf Life and Control Escherichia coli O157:H7 and Staphylococcus aureus in Raw Beef Patty during Refrigerated Storage. J. Food Saf. 2015, 36, 227–236. [Google Scholar] [CrossRef]
- Sobrino-López, A.; Martín-Belloso, O. Use of nisin and other bacteriocins for preservation of dairy products. Int. Dairy J. 2008, 18, 329–343. [Google Scholar] [CrossRef]
- Meira, S.M.M.; Zehetmeyer, G.; Werner, J.O.; Brandelli, A. A novel active packaging material based on starch-halloysite nanocomposites incorporating antimicrobial peptides. Food Hydrocoll. 2017, 63, 561–570. [Google Scholar] [CrossRef]
- Santiago-Silva, P.; Soares, N.F.F.; Nóbrega, J.E.; Junior, M.A.W.; Barbosa, K.B.F.; Volp, A.C.P.; Zerdas, E.R.M.A.; Wurlitzer, N.J. Antimicrobial efficiency of film incorporated with pediocin (ALTA® 2351) on preservation of sliced ham. Food Control 2009, 20, 85–89. [Google Scholar] [CrossRef]
- Xiong, Y.; Chen, M.; Warner, R.D.; Fang, Z. Incorporating nisin and grape seed extract in chitosan-gelatine edible coating and its effect on cold storage of fresh pork. Food Control 2020, 110, 107018. [Google Scholar] [CrossRef]
- Deegan, L.H.; Cotter, P.D.; Hill, C.; Ross, P. Bacteriocins: Biological tools for bio-preservation and shelf-life extension. Int. Dairy J. 2006, 16, 1058–1071. [Google Scholar] [CrossRef]
- Jay, J.M. Microbiologia de Alimentos, 6th ed.; Artmed: Porto Alegre, Brazil, 2005. [Google Scholar]
- Botelho, J.; Araújo, L.P.P.; Pereira, J.P.F.; Taveira, L.B.; Furtado, M.A.M.; Pinto, M.A.O. Microbiological quality of milk products rated by laboratory analysis of food and water from the Faculty of Pharmacy/UFJF. Rev. Inst. Laticínios Cândido Tostes 2010, 65, 12–17. [Google Scholar]
- Lancette, G.A.; Bennett, R.W. Staphylococcus aureus and staphylococcal enterotoxins. In Compendium of Methods for the Microbiological Examination of Foods, 4th ed.; Downes, F.P., Ito, K., Eds.; APHA: Washington, DC, USA, 2001; cap. 39; pp. 387–403. [Google Scholar]
- Abdollahzadeh, E.; Hosseini, H.M.; Fooladi, A.A.I. Antibacterial activity of agar-based films containing nisin, cinnamon EO, and ZnO nanoparticles. J. Food Saf. 2018, 38, e12440. [Google Scholar] [CrossRef]
- Capelezzo, A.P.; Mohr, L.C.; Dalcanton, F.; Barreta, C.R.D.M.; Martins, M.A.P.M.; Fiori, M.A.; Mello, J.M.M. Antimicrobial biodegradable polymer through additivation with zinc based compounds. QUÍMICA NOVA 2018, 41, 367–374. [Google Scholar] [CrossRef]
- Hennekinne, J.A.; Buyser, M.L.; Dragacci, S. Staphylococcus aureus and its food poisoning toxins: Characterization and outbreak investigation. FEMS Microbiol. Rev. 2012, 36, 815–836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Film | Thickness (mm) | WVP (× 10−7 g m−1 Pa−1 s−1) | Solubility (%) | TR (MPa) | E (%) |
---|---|---|---|---|---|
AA0 | 0.07 ± 0.01 a | 1.06 ± 1.07 a | 23.80 ± 0.42 a | 3.25 ± 0.39 a | 25.9 ± 0.40 b |
A25 | 0.06 ± 0.01 a | 0.65 ± 0.09 b | 43.24 ± 0.37 b | 4.70 ± 0.42 c | 48.24 ± 0.39 a |
A50 | 0.24 ± 0.02 b | 0.16 ± 0.19 c | 59.43 ± 0.45 c | 1.67 ± 0.23 b | 44.42 ± 0.41 a |
A75 | 0.29 ± 0.00 c | 0.11 ± 0.01 d | 77.18 ± 0.36 d | 2.20 ± 0.35 ab | 94.1 ± 2.54 c |
Inhibition Halos (mm) | ||||
---|---|---|---|---|
Escherichia coli | Staphylococcus aureus | Salmonella enteritidis | Listeria monocytogenes | |
AA0 | There were no inhibition halos | |||
A25 | 7.34 ± 0.01 a | 8.37 ± 0.02 a | 7.32 ± 0.03 a | 7.98 ± 0.32 a |
A50 | 8.69 ± 0.01 b | 8.41 ± 0.15 a | 7.32 ± 0.13 a | 8.97 ± 0.42 ab |
A75 | 9.33 ± 0.02 c | 8.52 ± 0.03 a | 8.05 ± 0.26 b | 9.02 ± 0.30 b |
Days of Analysis | AA0 | A25 |
---|---|---|
Time 0 | 1100 ± 0.00 a | |
7th Day | 210 ± 0.00 bA | 15 ± 0.00 bB |
21st Day | 43 ± 0.00 cA | 9.2 ± 0.00 cB |
28th Day | 39 ± 0.00 dA | 7 ± 0.00 dB |
Days of Analysis | AA0 | A25 |
---|---|---|
Time 0 | 5 × 105 CFU/g ± 1.2 × 105 a | |
7th Day | 1.1 × 105 ± 1.0 × 105 bA | 1.1 × 104 ± 1.3 × 104 bB |
21st Day | 2.0 × 104 ± 1.2 × 104 cA | 1.3 × 104 ± 1.1 × 104 bB |
28 Day | 1.2 × 104 ± 1.1 × 104 dA | 1.7 × 103 ± 1.1 × 104 cB |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Contessa, C.R.; de Souza, N.B.; Gonçalo, G.B.; de Moura, C.M.; da Rosa, G.S.; Moraes, C.C. Development of Active Packaging Based on Agar-Agar Incorporated with Bacteriocin of Lactobacillus sakei. Biomolecules 2021, 11, 1869. https://doi.org/10.3390/biom11121869
Contessa CR, de Souza NB, Gonçalo GB, de Moura CM, da Rosa GS, Moraes CC. Development of Active Packaging Based on Agar-Agar Incorporated with Bacteriocin of Lactobacillus sakei. Biomolecules. 2021; 11(12):1869. https://doi.org/10.3390/biom11121869
Chicago/Turabian StyleContessa, Camila Ramão, Nathieli Bastos de Souza, Guilherme Battú Gonçalo, Catarina Motta de Moura, Gabriela Silveira da Rosa, and Caroline Costa Moraes. 2021. "Development of Active Packaging Based on Agar-Agar Incorporated with Bacteriocin of Lactobacillus sakei" Biomolecules 11, no. 12: 1869. https://doi.org/10.3390/biom11121869
APA StyleContessa, C. R., de Souza, N. B., Gonçalo, G. B., de Moura, C. M., da Rosa, G. S., & Moraes, C. C. (2021). Development of Active Packaging Based on Agar-Agar Incorporated with Bacteriocin of Lactobacillus sakei. Biomolecules, 11(12), 1869. https://doi.org/10.3390/biom11121869