Differences in the Biomarker Profile of De Novo Acute Heart Failure versus Decompensation of Chronic Heart Failure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Study Design
2.3. Laboratory Measurements in Peripheral Blood
2.4. Study Outcomes
- In-hospital mortality;
- One-year mortality;
- Composite endpoint of one-year mortality and rehospitalization for heart failure.
2.5. Clinical Follow-Up
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Comparison of Clinical and Basic Laboratory Characteristics
3.3. Comparison of Comorbidity and Risk Factors
Parameter | Population | De Novo AHF (n = 104) | ADHF (n = 144) | p |
---|---|---|---|---|
Sex (male) | 182 (73.4%) | 68 (65.4%) | 114 (79.2%) | 0.020 |
Age (years) | 70.1 ± 12.6 | 71.0 ± 12.6 | 69.4 ± 12.6 | 0.310 |
Heart rate (beat/minute) | 90 ± 24 | 95 ± 25 | 87 ± 23 | 0.007 |
Systolic blood pressure at admission (mmHg) | 134 ± 31 | 145 ± 33 | 126 ± 27 | <0.001 |
Diastolic blood pressure at admission (mmHg) | 79 ± 16 | 85 ± 16 | 75 ± 15 | <0.001 |
Left Ventricle Ejection Fraction (%) | 37 ± 14 | 40 ± 13 | 35 ± 14 | 0.039 |
Ejection Fraction (≤40%) | 159 (64%) | 54 (52%) | 105 (73%) | <0.001 |
Dyspnea at admission (points) | 8.1 ± 2.2 | 8.2 ± 2.4 | 7.9 ± 2.1 | 0.257 |
Ischemic etiology of heart failure | 124 (50%) | 35 (33.6%) | 89 (61.8%) | <0.001 |
Blood Count: | ||||
Hemoglobin (g/dL) | 13.3 ± 2.0 | 13.3 ± 1.9 | 13.3 ± 2.0 | 0.966 |
WBC (G/L) | 9.2 ± 4.5 | 9.5 ± 3.9 | 9.1 ± 4.8 | 0.526 |
PLT (G/L) | 210 ± 88 | 209 ± 86 | 210 ± 90 | 0.948 |
AST (IU/L) | 28 (22–41) | 31 (24–49) | 26 (21–39) | 0.034 |
ALT (IU/L) | 31 (21–56) | 34 (23–60) | 30 (21–48) | 0.218 |
Bilirubin (mg/dL) | 1.4 ± 1.3 | 1.2 ± 0.8 | 1.6 ± 1.6 | 0.011 |
Na (mmol/L) | 139 ± 4 | 140 ± 4 | 138 ± 5 | 0.013 |
Creatinine (mg/dL) | 1.36 ± 0.52 | 1.30 ± 0.55 | 1.41 ± 0.49 | 0.095 |
Blood Urea (mg/dL) | 59.7 ± 31.3 | 56 ± 34 | 62 ± 29 | 0.132 |
C-reactive protein (mg/L) | 7.7 (4.1–18.9) | 7.2 (3.4–18.6) | 7.75 (4.4–19.5) | 0.541 |
NTproBNP(pg/mL) | 5618 (3431–11,750) | 5108 (2593–11,579) | 5797 (3829–11,920) | 0.06 |
Troponin I (ng/mL) | 0.06 (0.03–0.16) | 0.05 (0.02–0.18) | 0.06 (0.03–0.14) | 0.49 |
Systolic blood pressure at 24 h (mmHg) | 122 ± 23 | 145 ± 33 | 126 ± 27 | <0.0001 |
Creatinine at 24 h (mg/dL) | 1.31 ± 0.49 | 1.3 ± 0.55 | 1.4 ± 0.48 | 0.10 |
Lactate on admission (mmol/L) | 2.0 (1.5–2.6) | 2.2 ± 0.9 | 2.3 ± 1.3 | 0.667 |
Lactate at 24 (mmol/L) | 1.8 (1.5–2.4) | 2.0 ± 0.6 | 2.3 ± 1.7 | 0.021 |
Length of hospitalization (days) | 7 (5–9) | 7 (5–8) | 7 (5–11) | 0.140 |
Comorbidity/risk factors: | ||||
Coronary artery disease | 140 (56%) | 40 (38.5%) | 100 (69.4%) | <0.001 |
Hypertension | 198 (79.8%) | 86 (82.7%) | 112 (77.8%) | 0.34 |
Cigarette smoking | 111 (44.8%) | 49 (47%) | 62 (43%) | 0.53 |
Diabetes mellitus | 94 (37.8) | 37 (36%) | 57 (39.6%) | 0.52 |
Chronic obstructive pulmonary disease | 30 (12.1%) | 12 (12%) | 18 (13%) | 0.82 |
Liver disease | 22 (8.9%) | 10 (9.6%) | 12 (8.3%) | 0.42 |
3.4. Administered Drug Class and Invasive Procedures—Before and during Hospitalization
3.5. Comparison of Selected Biomarkers—De Novo AHF and ADHF
Variable | De Novo AHF | ADHF | p |
---|---|---|---|
Infection/inflammation: | |||
C-reactive protein (mg/L) | 7.2 (3.4–18.6) | 7.8 (4.4–19.5) | 0.541 |
IL-6 (pg/mL) | 8.0 (1.1–21.7) | 9.1 (0.5–20.0) | 0.695 |
IL-22 (pg/mL) | 9.0 (1.0–23.0) | 5.0 (1.0–18.0) | 0.328 |
WBC (G/L) | 9.5 ± 3.9 | 9.1 ± 4.8 | 0.526 |
Liver function tests: | |||
AST at admission (IU/L) | 31 (24–49) | 26 (21–39) | 0.034 |
ALT at admission (IU/L) | 34 (23–60) | 30 (21–48) | 0.218 |
Total bilirubin at admission (mg/dL) | 1.2 ± 0.8 | 1.6 ± 1.6 | 0.011 |
Perfusion and congestion markers: | |||
Lactate at admission (mmol/L) | 2.2 ± 0.9 | 2.3 ± 1.3 | 0.667 |
Lactate at day-1 (mmol/L) | 2.0 ± 0.8 | 2.2 ± 1.4 | 0.087 |
Lactate at discharge(mmol/L) | 1.9 ± 0.6 | 2.1 ± 1.1 | 0.031 |
NTproBNP at admission (pg/mL) | 5108 (2593–11,579) | 5797 (3829–11,920) | 0.06 |
NTproBNP at discharge (pg/mL) | 2743 (1531.5–4798.5) | 3601 (2084–7284) | 0.01 |
Remodeling and other markers: | |||
MMP-9 (ng/mL) | 383.1 ± 363.0 | 313.0 ± 265.6 | 0.162 |
Follistatin (pg/mL) | 2739.5 ± 1952.6 | 2319.9 ± 1493.6 | 0.057 |
Selectin (ng/mL) | 32.1 ± 15.7 | 34.1 ± 18.1 | 0.365 |
Lipocalin/NGAL (ng/mL) | 82.3 ± 53.7 | 87.7 ± 54.4 | 0.542 |
PF4 (ng/mL) | 6549.0 ± 3658.0 | 6833.9 ± 3132.2 | 0.513 |
Myostatin (pg/mL) | 1818.8 ± 1029.5 | 1784.9 ± 1175.4 | 0.815 |
ICAM-1 (ng/mL) | 367.5 ± 152.4 | 416.7 ± 195.8 | 0.035 |
GDF-15 (pg/mL) | 4474.8 ± 1830.9 | 4752.1 ± 1453.7 | 0.478 |
Galectin-3 (ng/mL) | 19.2 (13.7–33.8) | 21.0 (12.2–32.1) | 0.740 |
Iron status: | |||
Fe (µg/dL) | 56.3 ± 33.7 | 55.6 ± 26.4 | 0.870 |
Total iron binding capacity (µg/dL) | 336.6 ± 70.0 | 353.8 ± 67.6 | 0.068 |
sTfR at admission (mg/L) | 1.8 ± 0.8 | 2.2 ± 0.9 | <0.001 |
Ferritin (µg/L) | 203.1 ± 163.6 | 156.6 ± 134.5 | 0.025 |
3.6. In-Hospital Mortality and Biomarkers of Interest
3.7. Comparison of Selected Biomarkers between Patients Who Experienced an Event (Death or Heart Failure Rehospitalization, Whichever Occurred First) and the One-Year Event-Free Group
3.8. Differences in One-Year Outcomes between De Novo AHF and ADHF
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Chapman, B.; Devore, A.D.; Mentz, R.J.; Metra, M. Clinical profiles in acute heart failure: An urgent need for a new approach. ESC Heart Fail. 2019, 6, 464–474. [Google Scholar] [CrossRef] [Green Version]
- Biegus, J.; Zymliński, R.; Testani, J.; Marciniak, D.; Zdanowicz, A.; Jankowska, E.A.; Banasiak, W.; Ponikowski, P. Renal profiling based on estimated glomerular filtration rate and spot urine sodium identifies high-risk acute heart failure patients. Eur. J. Heart Fail. 2021, 23, 729–739. [Google Scholar] [CrossRef]
- Biegus, J.; Zymliński, R.; Sokolski, M.; Todd, J.; Cotter, G.; Metra, M.; Jankowska, E.A.; Banasiak, W.; Ponikowski, P. Serial assessment of spot urine sodium predicts effectiveness of decongestion and outcome in patients with acute heart failure. Eur. J. Heart Fail. 2019, 21, 624–633. [Google Scholar] [CrossRef] [PubMed]
- Fudim, M.; Hernandez, A.F.; Felker, G.M. Role of Volume Redistribution in the Congestion of Heart Failure. J. Am. Heart Assoc. 2017, 6, e006817. [Google Scholar] [CrossRef] [PubMed]
- Biegus, J.; Zymliński, R.; Sokolski, M.; Nawrocka, S.; Siwołowski, P.; Szachniewicz, J.; Jankowska, E.a.; Banasiak, W.; Ponikowski, P. Liver function tests in patients with acute heart failure. Pol. Arch. Med. Wewnętrznej 2012, 122, 471–479. [Google Scholar] [CrossRef] [Green Version]
- Zymliński, R.; Sokolski, M.; Biegus, J.; Siwołowski, P.; Nawrocka-Millward, S.; Sokolska, J.; Dudkowiak, M.; Marciniak, D.; Todd, J.; Jankowska, E.A.; et al. Multi-organ dysfunction/injury on admission identifies acute heart failure patients at high risk of poor outcome. Eur. J. Heart Fail. 2019, 21, 744–750. [Google Scholar] [CrossRef]
- Solomon, S.D.; Desai, A.S. Acute Heart Failure. J. Am. Coll. Cardiol. 2017, 69, 3040–3041. [Google Scholar] [CrossRef]
- Hummel, A.; Empen, K.; Dörr, M.; Felix, S.B. De Novo Acute Heart Failure and Acutely Decompensated Chronic Heart Failure. Dtsch. Aerzteblatt Online 2015, 112, 298–310. [Google Scholar] [CrossRef] [Green Version]
- Metra, M.; Ponikowski, P.; Cotter, G.; Davison, B.A.; Felker, G.M.; Filippatos, G.; Greenberg, B.H.; Hua, T.A.; Severin, T.; Unemori, E.; et al. Effects of serelaxin in subgroups of patients with acute heart failure: Results from RELAX-AHF. Eur. Heart J. 2013, 34, 3128–3136. [Google Scholar] [CrossRef]
- Lassus, J.P.; Siirilä-Waris, K.; Nieminen, M.S.; Tolonen, J.; Tarvasmäki, T.; Peuhkurinen, K.; Melin, J.; Pulkki, K.; Harjola, V.-P. Long-term survival after hospitalization for acute heart failure—Differences in prognosis of acutely decompensated chronic and new-onset acute heart failure. Int. J. Cardiol. 2013, 168, 458–462. [Google Scholar] [CrossRef] [PubMed]
- McMurray, J.J.; Adamopoulos, S.; Anker, S.D.; Auricchio, A.; Böhm, M.; Dickstein, K.; Falk, V.; Filippatos, G.; Fonseca, C.; Gomez-Sanchez, M.A.; et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012. Eur. J. Heart Fail. 2012, 14, 803–869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.F.; Coats, A.J.S.; Falk, V.; González-Juanatey, J.R.; Harjola, V.-P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2016, 37, 2129–2200. [Google Scholar] [CrossRef] [PubMed]
- Niessen, H.; Lagrand, W.; Visser, C.; Meijer, C.; Hack, C. Upregulation of ICAM-1 on cardiomyocytes in jeopardized human myocardium during infarction. Cardiovasc. Res. 1999, 41, 603–610. [Google Scholar] [CrossRef] [Green Version]
- Demissei, B.G.; Valente, M.A.; Cleland, J.G.; O’Connor, C.M.; Metra, M.; Ponikowski, P.; Teerlink, J.R.; Cotter, G.; Davison, B.; Givertz, M.M.; et al. Optimizing clinical use of biomarkers in high-risk acute heart failure patients. Eur. J. Heart Fail. 2015, 18, 269–280. [Google Scholar] [CrossRef]
- Tromp, J.; Khan, M.A.; Mentz, R.J.; O’Connor, C.M.; Metra, M.; Dittrich, H.C.; Ponikowski, P.; Teerlink, J.R.; Cotter, G.; Davison, B.; et al. Biomarker Profiles of Acute Heart Failure Patients With a Mid-Range Ejection Fraction. JACC Heart Fail. 2017, 5, 507–517. [Google Scholar] [CrossRef]
- Iyer, R.P.; Jung, M.; Lindsey, M.L. MMP-9 signaling in the left ventricle following myocardial infarction. Am. J. Physiol. Circ. Physiol. 2016, 311, H190–H198. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, K.; Valero-Muñoz, M.; Wilson, R.M.; Essick, E.E.; Fowler, C.T.; Nakamura, K.; Hoff, M.V.D.; Ouchi, N.; Sam, F. Follistatin-Like 1 Regulates Hypertrophy in Heart Failure with Preserved Ejection Fraction. JACC Basic Transl. Sci. 2016, 1, 207–221. [Google Scholar] [CrossRef] [Green Version]
- Gruson, D.; Ahn, S.A.; Rousseau, M.F. Biomarkers of inflammation and cardiac remodeling: The quest of relevant companions for the risk stratification of heart failure patients is still ongoing. Biochem. Med. 2011, 21, 254–263. [Google Scholar] [CrossRef] [Green Version]
- Baán, J.A.; Varga, Z.V.; Leszek, P.; Kuśmierczyk, M.; Baranyai, T.; Dux, L.; Ferdinandy, P.; Braun, T.; Mendler, L. Myostatin and IGF-I signaling in end-stage human heart failure: A qRT-PCR study. J. Transl. Med. 2015, 13, 1. [Google Scholar] [CrossRef] [Green Version]
- Salvador, A.M.; Nevers, T.; Velázquez, F.; Aronovitz, M.; Wang, B.; Molina, A.A.; Jaffe, I.Z.; Karas, R.H.; Blanton, R.M.; Alcaide, P. Intercellular Adhesion Molecule 1 Regulates Left Ventricular Leukocyte Infiltration, Cardiac Remodeling, and Function in Pressure Overload–Induced Heart Failure. J. Am. Heart Assoc. 2016, 5, e003126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieminen, M.S.; Brutsaert, D.; Dickstein, K.; Drexler, H.; Follath, F.; Harjola, V.-P.; Hochadel, M.; Komajda, M.; Lassus, J.; Lopez-Sendon, J.L.; et al. EuroHeart Failure Survey II (EHFS II): A survey on hospitalized acute heart failure patients: Description of population. Eur. Heart J. 2006, 27, 2725–2736. [Google Scholar] [CrossRef] [Green Version]
- Raffaello, W.M.; Henrina, J.; Huang, I.; Lim, M.A.; Suciadi, L.P.; Siswanto, B.B.; Pranata, R. Clinical Characteristics of De Novo Heart Failure and Acute Decompensated Chronic Heart Failure: Are They Distinctive Phenotypes That Contribute to Different Outcomes? Card. Fail. Rev. 2021, 7, e02. [Google Scholar] [CrossRef] [PubMed]
- Biegus, J.; Hillege, H.L.; Postmus, D.; Valente, M.A.; Bloomfield, D.M.; Cleland, J.G.; Cotter, G.; Davison, B.A.; Dittrich, H.C.; Fiuzat, M.; et al. Abnormal liver function tests in acute heart failure: Relationship with clinical characteristics and outcome in the PROTECT study. Eur. J. Heart Fail. 2016, 18, 830–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Givertz, M.M.; Postmus, D.; Hillege, H.L.; Mansoor, G.A.; Massie, B.M.; Davison, B.A.; Ponikowski, P.; Metra, M.; Teerlink, J.R.; Cleland, J.G.; et al. Renal Function Trajectories and Clinical Outcomes in Acute Heart Failure. Circ. Heart Fail. 2014, 7, 59–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biegus, J.; Demissei, B.; Postmus, D.; Cotter, G.; Davison, B.A.; Felker, G.M.; Filippatos, G.; Gimpelewicz, C.; Greenberg, B.; Metra, M.; et al. Hepatorenal dysfunction identifies high-risk patients with acute heart failure: Insights from the RELAX-AHF trial. ESC Heart Fail. 2019, 6, 1188–1198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biegus, J.; Niewinski, P.; Josiak, K.; Kulej, K.; Ponikowska, B.; Nowak, K.; Zymlinski, R.; Ponikowski, P. Pathophysiology of Advanced Heart Failure: What Knowledge Is Needed for Clinical Management? Heart Fail. Clin. 2021, in press. [Google Scholar] [CrossRef]
- Metra, M.; Cotter, G.; Davison, B.; Felker, G.M.; Filippatos, G.; Greenberg, B.H.; Ponikowski, P.; Unemori, E.; Voors, A.A.; Adams, K.F.; et al. Effect of Serelaxin on Cardiac, Renal, and Hepatic Biomarkers in the Relaxin in Acute Heart Failure (RELAX-AHF) Development Program: Correlation with outcomes. J. Am. Coll. Cardiol. 2013, 61, 196–206. [Google Scholar] [CrossRef] [Green Version]
- Biegus, J.; Zymlinski, R.; Sokolski, M.; Siwołowski, P.; Gajewski, P.; Nawrocka-Millward, S.; Poniewierka, E.; Jankowska, E.A.; Banasiak, W.; Ponikowski, P. Impaired hepato-renal function defined by the MELD XI score as prognosticator in acute heart failure. Eur. J. Heart Fail. 2016, 18, 1518–1521. [Google Scholar] [CrossRef]
- Zymliński, R.; Ponikowski, P.; Biegus, J. Looking at the heart failure through the prism of liver dysfunction. Eur. J. Heart Fail. 2020, 22, 1672–1674. [Google Scholar] [CrossRef]
- Allen, L.A.; Felker, G.M.; Pocock, S.; Mcmurray, J.; Pfeffer, M.A.; Swedberg, K.; Wang, D.; Yusuf, S.; Michelson, E.L.; Granger, C.B.; et al. Liver function abnormalities and outcome in patients with chronic heart failure: Data from the Candesartan in Heart Failure: Assessment of Reduction in Mortality and Morbidity (CHARM) program. Eur. J. Heart Fail. 2009, 11, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Kubo, S.H.; Walter, B.A.; John, D.H.A.; Clark, M.; Cody, R.J. Liver Function Abnormalities in Chronic Heart Failure. Arch. Intern. Med. 1987, 147, 1227–1230. [Google Scholar] [CrossRef]
- Biegus, J.; Zymliński, R.; Sokolski, M.; Gajewski, P.; Banasiak, W.; Ponikowski, P. Clinical, respiratory, haemodynamic, and metabolic determinants of lactate in heart failure. Kardiol. Pol. 2019, 77, 47–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zymlinski, R.; Biegus, J.; Sokolski, M.; Siwołowski, P.; Nawrocka-Millward, S.; Todd, J.; Jankowska, E.A.; Banasiak, W.; Cotter, G.; Cleland, J.G.; et al. Increased blood lactate is prevalent and identifies poor prognosis in patients with acute heart failure without overt peripheral hypoperfusion. Eur. J. Heart Fail. 2018, 20, 1011–1018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biegus, J.; Zymliński, R.; Sokolski, M.; Jankowska, E.A.; Banasiak, W.; Ponikowski, P. Elevated lactate in acute heart failure patients with intracellular iron deficiency as identifier of poor outcome. Kardiol. Pol. 2019, 77, 347–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schumacher, Y.O.; Schmid, A.; Konig, D.; Berg, A.P.V.D. Effects of exercise on soluble transferrin receptor and other variables of the iron status. Br. J. Sports Med. 2002, 36, 195–199. [Google Scholar] [CrossRef] [Green Version]
- Skikne, B.; Flowers, C.; Cook, J. Serum transferrin receptor: A quantitative measure of tissue iron deficiency. Blood 1990, 75, 1870–1876. [Google Scholar] [CrossRef] [Green Version]
- Jankowska, E.A.; Kasztura, M.; Sokolski, M.; Bronisz, M.; Nawrocka, S.; Oleśkowska-Florek, W.; Zymlinski, R.; Biegus, J.; Siwołowski, P.; Banasiak, W.; et al. Iron deficiency defined as depleted iron stores accompanied by unmet cellular iron requirements identifies patients at the highest risk of death after an episode of acute heart failure. Eur. Heart J. 2014, 35, 2468–2476. [Google Scholar] [CrossRef]
- Yang, L.; Froio, R.M.; Sciuto, T.E.; Dvorak, A.M.; Alon, R.; Luscinskas, F.W. ICAM-1 regulates neutrophil adhesion and transcellular migration of TNF-α-activated vascular endothelium under flow. Blood 2005, 106, 584–592. [Google Scholar] [CrossRef] [Green Version]
- Felker, G.M.; Fiuzat, M.; Shaw, L.K.; Clare, R.; Whellan, D.J.; Bettari, L.; Shirolkar, S.C.; Donahue, M.; Kitzman, D.W.; Zannad, F.; et al. Galectin-3 in Ambulatory Patients With Heart Failure. Circ. Heart Fail. 2012, 5, 72–78. [Google Scholar] [CrossRef] [Green Version]
- Morishita, T.; Uzui, H.; Mitsuke, Y.; Amaya, N.; Kaseno, K.; Ishida, K.; Fukuoka, Y.; Ikeda, H.; Tama, N.; Yamazaki, T.; et al. Association between matrix metalloproteinase-9 and worsening heart failure events in patients with chronic heart failure. ESC Heart Fail. 2017, 4, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Weil, B.R.; Neelamegham, S. Selectins and Immune Cells in Acute Myocardial Infarction and Post-infarction Ventricular Remodeling: Pathophysiology and Novel Treatments. Front. Immunol. 2019, 10, 300. [Google Scholar] [CrossRef] [Green Version]
- Breitbart, A.; Auger-Messier, M.; Molkentin, J.; Heineke, J. Myostatin from the heart: Local and systemic actions in cardiac failure and muscle wasting. Am. J. Physiol. Circ. Physiol. 2011, 300, H1973–H1982. [Google Scholar] [CrossRef] [PubMed]
- Mao, S.; Liang, Y.; Chen, P.; Zhang, Y.; Yin, X.; Zhang, M. In-depth proteomics approach reveals novel biomarkers of cardiac remodelling after myocardial infarction: An exploratory analysis. J. Cell. Mol. Med. 2020, 24, 10042–10051. [Google Scholar] [CrossRef] [PubMed]
Drug Class or Procedure | Population | De Novo AHF | ADHF | p |
---|---|---|---|---|
Before hospitalization: | ||||
ACEI/ARB | 157 (63%) | 48 (46%) | 118 (82%) | <0.001 |
Beta-blocker | 150 (61%) | 43 (41%) | 107 (74%) | <0.005 |
MRA | 60 (24%) | 10 (9.6%) | 50 (35%) | <0.001 |
During hospitalization: | ||||
Intravenous nitrates | 129 (52%) | 63 (61%) | 66 (46%) | 0.02 |
Inotropes | 26 (10%) | 6 (6%) | 20 (14%) | 0.03 |
ACEI/ARB | 216 (87%) | 91 (88%) | 125 (87%) | 0.87 |
Beta-blocker | 233 (93%) | 97 (93%) | 136 (94%) | 0.20 |
MRA | 107 (43%) | 45 (43%) | 62 (43%) | 0.97 |
Intravenous furosemide | 248 (100%) | 104 (100%) | 144 (100%) | 1.0 |
Invasive procedures: | ||||
Thoracentesis | 14 (6%) | 4 (4%) | 10 (7%) | 0.27 |
Peritoneocentesis | 6 (2%) | 1 (1%) | 5 (4%) | 0.19 |
CPAP | 19 (7%) | 9 (9%) | 9 (6%) | 0.51 |
Variable | Event-Free Patients | Death or Rehospitalization | p |
---|---|---|---|
Inflammation: | |||
C-reactive protein (mg/L) | 6.4 (3.4–15.4) | 11.0 (5.2–27.4) | 0.014 |
IL-6 (pg/mL) | 7.8 (0.5–16.0) | 11.0 (0.5–30.3) | 0.110 |
IL-22 (pg/mL) | 5.5 (0.0–19.0) | 8.0 (1.0–22.0) | 0.345 |
WBC (G/L) | 8.9 ± 3.4 | 9.8 ± 5.7 | 0.107 |
Liver function tests: | |||
AST at admission (IU/L) | 30 (22–43) | 27 (21–40) | 0.447 |
ALT at admission (IU/L) | 32 (22–57) | 29 (21–50) | 0.560 |
Total bilirubin at admission (mg/dL) | 1.3 ± 1.1 | 1.5 ± 1.6 | 0.280 |
Perfusion and congestion markers: | |||
Lactate at admission (mmol/L) | 2.1 ± 0.9 | 2.4 ± 1.5 | 0.042 |
Lactate at day-1 (mmol/L) | 2.0 ± 0.6 | 2.3 ± 1.7 | 0.021 |
Lactate at discharge(mmol/L) | 2.0 ± 0.8 | 1.9 ± 0.8 | 0.571 |
NTproBNP at admission (pg/mL) | 5080 (2944–9101) | 6312 (4083–13,944) | 0.004 |
NTproBNP at discharge (pg/mL) | 2636 (1499–4802) | 4318 (2616–8210) | <0.0005 |
Remodeling and other markers: | |||
MMP-9 (ng/mL) | 329.4 ± 310.8 | 354.6 ± 306.2 | 0.611 |
Follistatin (pg/mL) | 3484.5 ± 1699.3 | 2508.0 ± 1729.4 | 0.916 |
Selectin (ng/mL) | 32.8 ± 16.2 | 33.9 ± 18.5 | 0.647 |
Lipocalin/NGAL (ng/mL) | 77.9 ± 51.8 | 95.7 ± 55.6 | 0.039 |
PF4 (ng/mL) | 6692.4 ± 3543.3 | 6751.1 ± 3068.9 | 0.893 |
Myostatin (pg/mL) | 1870.3 ± 1117.7 | 1691.2 ± 1108.3 | 0.218 |
ICAM-1 (ng/mL) | 387.6 ± 171.9 | 409.5 ± 192.8 | 0.353 |
GDF-15 (pg/mL) | 4640.4 ± 1598.1 | 4697.6 ± 1566.0 | 0.875 |
Galectin-3 (ng/mL) | 19.0 (12.6–31.6) | 21.9 (12.7–35.2) | 0.56 |
Iron status: | |||
Fe (µg/dL) | 58.0 ± 31.7 | 53.0 ± 26.7 | 0.223 |
Total iron binding capacity (µg/dL) | 350.5 ± 71.5 | 341.0 ± 65.6 | 0.319 |
sTfR at admission (mg/L) | 1.9 ± 0.7 | 2.2 ± 0.9 | 0.006 |
Ferritin (µg/L) | 184.7 ± 151.6 | 164.3 ± 145.0 | 0.325 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nawrocka-Millward, S.; Biegus, J.; Hurkacz, M.; Guzik, M.; Rosiek-Biegus, M.; Jankowska, E.A.; Ponikowski, P.; Zymliński, R. Differences in the Biomarker Profile of De Novo Acute Heart Failure versus Decompensation of Chronic Heart Failure. Biomolecules 2021, 11, 1701. https://doi.org/10.3390/biom11111701
Nawrocka-Millward S, Biegus J, Hurkacz M, Guzik M, Rosiek-Biegus M, Jankowska EA, Ponikowski P, Zymliński R. Differences in the Biomarker Profile of De Novo Acute Heart Failure versus Decompensation of Chronic Heart Failure. Biomolecules. 2021; 11(11):1701. https://doi.org/10.3390/biom11111701
Chicago/Turabian StyleNawrocka-Millward, Sylwia, Jan Biegus, Magdalena Hurkacz, Mateusz Guzik, Marta Rosiek-Biegus, Ewa Anita Jankowska, Piotr Ponikowski, and Robert Zymliński. 2021. "Differences in the Biomarker Profile of De Novo Acute Heart Failure versus Decompensation of Chronic Heart Failure" Biomolecules 11, no. 11: 1701. https://doi.org/10.3390/biom11111701
APA StyleNawrocka-Millward, S., Biegus, J., Hurkacz, M., Guzik, M., Rosiek-Biegus, M., Jankowska, E. A., Ponikowski, P., & Zymliński, R. (2021). Differences in the Biomarker Profile of De Novo Acute Heart Failure versus Decompensation of Chronic Heart Failure. Biomolecules, 11(11), 1701. https://doi.org/10.3390/biom11111701