Identification and Biochemical Characterization of a Novel Hormone-Sensitive Lipase Family Esterase Est19 from the Antarctic Bacterium Pseudomonas sp. E2-15
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Expression Vector
2.2. Sequence and Phylogenetic Analyses
2.3. Cloning, Overexpression and Purification of Recombinant Est19 and Its Mutants
2.4. Esterase Assay
2.5. Effect of NaCl Concentration, Inhibitors, Metal Ions, and Organic Solvents on the Esterase Activity
2.6. Kinetic Parameters of Est19 and Its Mutant
2.7. Modeling and Docking Analysis
3. Results
3.1. Sequence Analysis and Multiple Alignment of Est19
3.2. Cloning, Expression, and Purification of Recombinant Est19
3.3. Substrate Specificity and Kinetic Parameters
3.4. Effect of Temperature and pH on Esterase Activity and Stability
3.5. Effect of NaCl Concentration, Inhibitors, Metal Ions, and Organic Solvents on the Esterase Activity
3.6. Modeling and Docking Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.; Li, M.; Li, J.; Wang, G.; Liu, Y. Purification and properties of a novel quizalofop-p-ethyl-hydrolyzing esterase involved in quizalofop-p-ethyl degradation by Pseudomonas sp. J-2. Microb. Cell Fact. 2017, 16, 80. [Google Scholar] [CrossRef] [PubMed]
- Rong, Z.; Huo, Y.Y.; Jian, S.L.; Wu, Y.H.; Xu, X.W. Characterization of a novel alkaline esterase from Altererythrobacter epoxidivorans CGMCC 1.7731(T). Prep. Biochem. Biotechnol. 2018, 48, 113–120. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Y.; Zhang, Y.; Sun, A.; Hu, Y. Functional characterization of salt-tolerant microbial esterase WDEst17 and its use in the generation of optically pure ethyl (R)-3-hydroxybutyrate. Chirality 2018, 30, 769–776. [Google Scholar] [CrossRef]
- Yu, N.; Yang, J.C.; Yin, G.T.; Li, R.S.; Zou, W.T.; He, C. Identification and characterization of a novel esterase from Thauera sp. Biotechnol. Appl. Biochem. 2018, 65, 748–755. [Google Scholar] [CrossRef]
- Zhang, Y.; Ji, F.; Wang, J.; Pu, Z.; Jiang, B.; Bao, Y. Purification and characterization of a novel organic solvent-tolerant and cold-adapted lipase from Psychrobacter sp. ZY124. Extremophiles 2018, 22, 287–300. [Google Scholar] [CrossRef]
- Tutuncu, H.E.; Balci, N.; Tuter, M.; Karaguler, N.G. Recombinant production and characterization of a novel esterase from a hypersaline lake, Acigol, by metagenomic approach. Extremophiles 2019, 23, 507–520. [Google Scholar] [CrossRef]
- Mogodiniyai Kasmaei, K.; Sundh, J. Identification of novel putative bacterial feruloyl esterases from anaerobic ecosystems by use of whole-genome shotgun metagenomics and genome binning. Front. Microbiol. 2019, 10, 2673. [Google Scholar] [CrossRef] [Green Version]
- Curci, N.; Strazzulli, A.; De Lise, F.; Iacono, R.; Maurelli, L.; Dal Piaz, F.; Cobucci-Ponzano, B.; Moracci, M. Identification of a novel esterase from the thermophilic bacterium Geobacillus thermodenitrificans NG80-2. Extremophiles 2019, 23, 407–419. [Google Scholar] [CrossRef]
- Kim, B.Y.; Yoo, W.; Huong Luu Le, L.T.; Kim, K.K.; Kim, H.W.; Lee, J.H.; Kim, Y.O.; Kim, T.D. Characterization and mutation anaylsis of a cold-active bacterial hormone-sensitive lipase from Salinisphaera sp. P7-4. Arch. Biochem. Biophys 2019, 663, 132–142. [Google Scholar] [CrossRef]
- Arnling Baath, J.; Mazurkewich, S.; Poulsen, J.N.; Olsson, L.; Lo Leggio, L.; Larsbrink, J. Structure-function analyses reveal that a glucuronoyl esterase from Teredinibacter turnerae interacts with carbohydrates and aromatic compounds. J. Biol. Chem. 2019, 294, 6635–6644. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Zhang, S.; Gao, H.; Hu, N. Characterization of a cold-active esterase from Serratia sp. and improvement of thermostability by directed evolution. BMC Biotechnol. 2016, 16, 7. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; He, Y.; Xu, L.; Zhang, H.; Yan, Y. A new extracellular thermo-solvent-stable lipase from Burkholderia ubonensis SL-4: Identification, characterization and application for biodiesel production. J. Mol. Catal B Enzym. 2016, 126, 76–89. [Google Scholar] [CrossRef]
- Zhao, J.; Ma, M.; Zeng, Z.; Yu, P.; Gong, D.; Deng, S. Production, purification and biochemical characterisation of a novel lipase from a newly identified lipolytic bacterium Staphylococcus caprae NCU S6. J. Enzym. Inhib. Med. Chem. 2021, 36, 248–256. [Google Scholar] [CrossRef]
- Ali, Y.B.; Verger, R.; Abousalham, A. Lipases or esterases: Does it really matter? Toward a new bio-physico-chemical classification. Methods Mol. Biol. 2012, 861, 31–51. [Google Scholar]
- Arpigny, J.L.; Jaeger, K.E. Bacterial lipolytic enzymes: Classification and properties. Biochem. J. 1999, 343 Pt 1, 177–183. [Google Scholar] [CrossRef]
- Jia, M.L.; Zhong, X.L.; Lin, Z.W.; Dong, B.X.; Li, G. Expression and characterization of an esterase belonging to a new family via isolation from a metagenomic library of paper mill sludge. Int. J. Biol. Macromol. 2019, 126, 1192–1200. [Google Scholar] [CrossRef]
- Holmquist, M. Alpha/Beta-hydrolase fold enzymes: Structures, functions and mechanisms. Curr. Protein Pept. Sci. 2000, 1, 209–235. [Google Scholar] [CrossRef]
- Kryukova, M.V.; Petrovskaya, L.E.; Kryukova, E.A.; Lomakina, G.Y.; Yakimov, S.A.; Maksimov, E.G.; Boyko, K.M.; Popov, V.O.; Dolgikh, D.A.; Kirpichnikov, M.P. Thermal inactivation of a cold-active esterase PMGL3 isolated from the permafrost metagenomic library. Biomolecules 2019, 9, 880. [Google Scholar] [CrossRef] [Green Version]
- Sayali, P.; Surekha, S. Microbial esterases: An overview. Int. J. Curr. Microbiol. Appl. Sci. 2013, 2, 135–146. [Google Scholar]
- Barzkar, N.; Sohail, M.; Tamadoni Jahromi, S.; Gozari, M.; Poormozaffar, S.; Nahavandi, R.; Hafezieh, M. Marine bacterial esterases: Emerging biocatalysts for industrial applications. Appl. Biochem. Biotechnol. 2021, 193, 1187–1214. [Google Scholar] [CrossRef]
- Kim, T.D. Bacterial Hormone-Sensitive Lipases (bHSLs): Emerging enzymes for biotechnological applications. J. Microbiol. Biotechnol. 2017, 27, 1907–1915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le, L.; Yoo, W.; Lee, C.; Wang, Y.; Jeon, S.; Kim, K.K.; Lee, J.H.; Kim, T.D. Molecular characterization of a novel cold-active Hormone-Sensitive Lipase (HaHSL) from Halocynthiibacter arcticus. Biomolecules 2019, 9, 704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.Y.; Ji, P.; Li, C.Y.; Zhang, Y.; Wang, G.L.; Zhang, X.Y.; Xie, B.B.; Qin, Q.L.; Chen, X.L.; Zhou, B.C.; et al. Structural basis for dimerization and catalysis of a novel esterase from the GTSAG motif subfamily of the bacterial hormone-sensitive lipase family. J. Biol. Chem. 2014, 289, 19031–19041. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Liu, W.; Xing, S.; Zhang, X.; He, H.; Chen, J.; Bielicki, J.K.; Zhou, M. Diversity of protease-producing bacteria in the soils of the South Shetland Islands, Antarctica. Antonie Van Leeuwenhoek 2021, 114, 457–464. [Google Scholar] [CrossRef]
- Almagro Armenteros, J.J.; Tsirigos, K.D.; Sonderby, C.K.; Petersen, T.N.; Winther, O.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 2019, 37, 420–423. [Google Scholar] [CrossRef] [PubMed]
- Lenfant, N.; Hotelier, T.; Velluet, E.; Bourne, Y.; Marchot, P.; Chatonnet, A. ESTHER, the database of the alpha/beta-hydrolase fold superfamily of proteins: Tools to explore diversity of functions. Nucleic Acids Res. 2013, 41, D423–D429. [Google Scholar] [CrossRef] [Green Version]
- Jeanmougin, F.; Thompson, J.D.; Gouy, M.; Higgins, D.G.; Gibson, T.J. Multiple sequence alignment with Clustal X. Trends Biochem. Sci. 1998, 23, 403–405. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Li, P.Y.; Zhang, Y.Q.; Zhang, Y.; Jiang, W.X.; Wang, Y.J.; Zhang, Y.S.; Sun, Z.Z.; Li, C.Y.; Zhang, Y.Z.; Shi, M.; et al. Study on a novel cold-active and halotolerant monoacylglycerol lipase widespread in marine bacteria reveals a new group of bacterial monoacylglycerol lipases containing unusual C(A/S)HSMG catalytic motifs. Front. Microbiol. 2020, 11, 9. [Google Scholar] [CrossRef]
- Stivala, A.; Wybrow, M.; Wirth, A.; Whisstock, J.C.; Stuckey, P.J. Automatic generation of protein structure cartoons with Pro-origami. Bioinformatics 2011, 27, 3315–3316. [Google Scholar] [CrossRef]
- Hashim, N.H.F.; Mahadi, N.M.; Illias, R.M.; Feroz, S.R.; Abu Bakar, F.D.; Murad, A.M.A. Biochemical and structural characterization of a novel cold-active esterase-like protein from the psychrophilic yeast Glaciozyma antarctica. Extremophiles 2018, 22, 607–616. [Google Scholar] [CrossRef]
- Ke, M.; Ramesh, B.; Hang, Y.; Liu, Z. Engineering and characterization of a novel low temperature active and thermo stable esterase from marine Enterobacter cloacae. Int. J. Biol. Macromol. 2018, 118, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Johan, U.U.M.; Rahman, R.; Kamarudin, N.H.A.; Ali, M.S.M. An integrated overview of bacterial carboxylesterase: Structure, function and biocatalytic applications. Colloids Surf. B Biointerfaces 2021, 205, 111882. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Chen, H.; Ni, Z.; Tian, R.; Jia, J.; Chen, Z.; Yang, S. Expression and characterization of a new thermostable esterase from Clostridium thermocellum. Appl. Biochem. Biotechnol. 2015, 177, 1437–1446. [Google Scholar] [CrossRef] [PubMed]
- Mazlan, S.N.S.H.; Ali, M.S.M.; Rahman, R.; Sabri, S.; Jonet, M.A.; Leow, T.C. Crystallization and structure elucidation of GDSL esterase of Photobacterium sp. J15. Int. J. Biol. Macromol. 2018, 119, 1188–1194. [Google Scholar] [CrossRef] [PubMed]
- Koudelakova, T.; Chaloupkova, R.; Brezovsky, J.; Prokop, Z.; Sebestova, E.; Hesseler, M.; Khabiri, M.; Plevaka, M.; Kulik, D.; Kuta Smatanova, I.; et al. Engineering enzyme stability and resistance to an organic cosolvent by modification of residues in the access tunnel. Angew. Chem. Int. Ed. Engl. 2013, 52, 1959–1963. [Google Scholar] [CrossRef]
- Miguel-Ruano, V.; Rivera, I.; Rajkovic, J.; Knapik, K.; Torrado, A.; Otero, J.M.; Beneventi, E.; Becerra, M.; Sanchez-Costa, M.; Hidalgo, A.; et al. Biochemical and structural characterization of a novel thermophilic esterase EstD11 provide catalytic insights for the HSL family. Comput. Struct. Biotechnol. J. 2021, 19, 1214–1232. [Google Scholar] [CrossRef]
- Petrovskaya, L.E.; Novototskaya-Vlasova, K.A.; Spirina, E.V.; Durdenko, E.V.; Lomakina, G.Y.; Zavialova, M.G.; Nikolaev, E.N.; Rivkina, E.M. Expression and characterization of a new esterase with GCSAG motif from a permafrost metagenomic library. FEMS Microbiol. Ecol. 2016, 92, fiw046. [Google Scholar] [CrossRef] [Green Version]
- Boyko, K.M.; Kryukova, M.V.; Petrovskaya, L.E.; Kryukova, E.A.; Nikolaeva, A.Y.; Korzhenevsky, D.A.; Lomakina, G.Y.; Novototskayavlasova, K.A.; Rivkina, E.M.; Dolgikh, D.A. Structural and biochemical characterization of a cold-active PMGL3 esterase with unusual oligomeric structure. Biomolecules 2021, 11, 57. [Google Scholar] [CrossRef]
Enzyme | Km (μM) | Vmax (μM/min/mg) | kcat (s−1) | kcat/Km (s−1mM−1) |
---|---|---|---|---|
Est19 | 147 ± 28 | 37423 ± 2478 | 21.86 ± 1.45 | 148.68 |
E154D mutant | 187 ± 28 | 25671 ± 1321 | 14.99 ± 0.77 | 80.14 |
Additive | Residual Activity | ||
---|---|---|---|
NaCl | NaCl | 0.5 M | 1 M |
87.52 ± 5.50 | 86.50 ± 6.04 | ||
Inhibitor | 1 mM | 10 mM | |
EDTA | 108.59 ± 5.68 | 102.75 ± 1.93 | |
PMSF | 75.52 ± 2.76 | 13.33 ± 2.64 | |
DTT | 128.93 ± 7.49 | 132.97 ± 3.19 | |
1% | 5% | ||
SDS | 18.71 ± 3.46 | 5.50 ± 1.24 | |
TWEEN 80 | 30.87 ± 1.98 | 9.81 ± 1.06 | |
Organic regent | 20% (v/v) | 40% (v/v) | |
Methanol | 23.21 ± 2.87 | 27.99 ± 2.30 | |
Formaldehyde | 1.15 ± 0.05 | 0 | |
Ethanol | 1.19 ± 0.22 | 0 | |
Acetonitrile | 28.74 ± 0.73 | 9.97 ± 0.04 | |
Acetone | 33.41 ± 0.22 | 17.18 ± 0.32 | |
Isopropanol | 33.66 ± 1.31 | 18.37 ± 0.33 | |
DMSO | 92.94 ± 0.50 | 45.54 ± 0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Zhou, M.; Xing, S.; Wu, T.; He, H.; Bielicki, J.K.; Chen, J. Identification and Biochemical Characterization of a Novel Hormone-Sensitive Lipase Family Esterase Est19 from the Antarctic Bacterium Pseudomonas sp. E2-15. Biomolecules 2021, 11, 1552. https://doi.org/10.3390/biom11111552
Liu X, Zhou M, Xing S, Wu T, He H, Bielicki JK, Chen J. Identification and Biochemical Characterization of a Novel Hormone-Sensitive Lipase Family Esterase Est19 from the Antarctic Bacterium Pseudomonas sp. E2-15. Biomolecules. 2021; 11(11):1552. https://doi.org/10.3390/biom11111552
Chicago/Turabian StyleLiu, Xiaoyu, Mingyang Zhou, Shu Xing, Tao Wu, Hailun He, John Kevin Bielicki, and Jianbin Chen. 2021. "Identification and Biochemical Characterization of a Novel Hormone-Sensitive Lipase Family Esterase Est19 from the Antarctic Bacterium Pseudomonas sp. E2-15" Biomolecules 11, no. 11: 1552. https://doi.org/10.3390/biom11111552
APA StyleLiu, X., Zhou, M., Xing, S., Wu, T., He, H., Bielicki, J. K., & Chen, J. (2021). Identification and Biochemical Characterization of a Novel Hormone-Sensitive Lipase Family Esterase Est19 from the Antarctic Bacterium Pseudomonas sp. E2-15. Biomolecules, 11(11), 1552. https://doi.org/10.3390/biom11111552