Biocatalytic Production of Aldehydes: Exploring the Potential of Lathyrus cicera Amine Oxidase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. LCAO Chromatography-Free Purification
2.3. LCAO Acitivity
2.4. Enzymatic Synthesis of Aldehydes
2.5. Purpald® Colorimetric Assay
3. Results and Discussion
3.1. LCAO Purification
3.2. Exploring LCAO Activity toward Aliphatic and Aromatic Primary Amines
3.3. Biocatalytic Production of Aldehydes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van den Biggelaar, L.; Soumillion, P.; Debecker, D.P. Enantioselective Transamination in Continuous Flow Mode with Transaminase Immobilized in a Macrocellular Silica Monolith. Catalysts 2017, 7, 54. [Google Scholar] [CrossRef]
- Porta, R.; Benaglia, M.; Puglisi, A.; Mandoli, A.; Gualandi, A.; Cozzi, P.G. A Catalytic Reactor for the Organocatalyzed Enantioselective Continuous Flow Alkylation of Aldehydes. ChemSusChem 2014, 7, 3534–3540. [Google Scholar] [CrossRef] [PubMed]
- Scott, W.L.; Martynow, J.G.; Huffman, J.C.; O’Donnell, M.J. Solid-Phase Synthesis of Multiple Classes of Peptidomimetics from Versatile Resin-Bound Aldehyde Intermediates. J. Am. Chem. Soc. 2007, 129, 7077–7088. [Google Scholar] [CrossRef] [PubMed]
- Lehwald, P.; Richter, M.; Röhr, C.; Liu, H.; Müller, M. Enantioselective Intermolecular Aldehyde–Ketone Cross-Coupling through an Enzymatic Carboligation Reaction. Angew. Chem. 2010, 49, 2389–2392. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Shiraishia, R. Clean and efficient condensation reactions of aldehydes and amines in a water suspension medium. Green Chem. 2000, 2, 272. [Google Scholar] [CrossRef]
- Xia, L.; Du, Y.; Xiao, X.; Li, G. One-step membrane protected micro-solid-phase extraction and derivatization coupling to high-performance liquid chromatography for selective determination of aliphatic aldehydes in cosmetics and food. Talanta 2019, 202, 580–590. [Google Scholar] [CrossRef]
- Ribeaucourt, D.; Bissaro, B.; Lambert, F.; Lafond, M.; Berrin, J. Biocatalytic oxidation of fatty alcohols into aldehydes for the flavors and fragrances industry. Biotechnol. Adv. 2021, 107787, 9734–9750. [Google Scholar] [CrossRef]
- Rugard, M.; Jaylet, T.; Taboureau, O.; Tromelin, A.; Audouze, K. Smell compounds classification using UMAP to increase knowledge of odors and molecular structures linkages. PLoS ONE 2021. [CrossRef]
- Naimi-Jamal, M.R.; Hamzeali, H.; Mokhtari, J.; Boy, J.; Kaupp, G. Sustainable Synthesis of Aldehydes, Ketones or Acids from Neat Alcohols Using Nitrogen Dioxide Gas, and Related Reactions. ChemSusChem 2009, 2, 83–88. [Google Scholar] [CrossRef]
- Li, C. Exploration of New Chemical Reactivities for Sustainable Molecular Transformations. Chem 2016, 1, 423–437. [Google Scholar] [CrossRef] [Green Version]
- Gholami, Z.; Tišler, Z.; Vondrová, P.; Velvarská, R.; Štěpánek, K. Solvent-Free Synthesis of Jasminaldehyde in a Fixed-Bed Flow Reactor over Mg-Al Mixed Oxide. Catalysts 2020, 10, 1033. [Google Scholar] [CrossRef]
- Kunjapur, A.M.; Prather, K.L.J. Microbial Engineering for Aldehyde Synthesis. Appl. Environ. Microbiol. 2015, 81, 1892–1901. [Google Scholar] [CrossRef] [Green Version]
- Qiao, Y.; Wang, C.; Zeng, Y.; Wang, T.; Qiao, J.; Lu, C.; Wang, Z.; Ying, X. Efficient whole-cell oxidation of α,β-unsaturated alcohols to α,β-unsaturated aldehydes through the cascade biocatalysis of alcohol dehydrogenase, NADPH oxidase and hemoglobin. Microb. Cell Fact. 2021, 20, 17. [Google Scholar] [CrossRef]
- Kazimírová, V.; Rebroš, M. Production of Aldehydes by Biocatalysis. Int. J. Mol. Sci. 2021, 22, 4949. [Google Scholar] [CrossRef]
- Kunjapur, A.M.; Tarasova, Y.; Prather, K.L.J. Synthesis and Accumulation of Aromatic Aldehydes in an Engineered Strain of Escherichia coli. J. Am. Chem. Soc. 2014, 136, 11644–11654. [Google Scholar] [CrossRef]
- Rodriguez, G.M.; Atsumi, S. Isobutyraldehyde production from Escherichia coli by removing aldehyde reductase activity. Microb. Cell Fact. 2012, 11, 90. [Google Scholar] [CrossRef] [Green Version]
- Arthur-Santiago, M.A.; Oliart-Ros, R.M.; Sánchez-Otero, M.G.; Valerio-Alfaro, G. Mechanochemo-enzymatic Synthesis of Aromatic Aldehyde Oxime Esters. Nat. Prod. Commun. 2018, 13, 875–878. [Google Scholar] [CrossRef] [Green Version]
- Guo, F.; Berglund, P. Transaminase biocatalysis: Optimization and application. Green Chem. 2017, 19, 333–360. [Google Scholar] [CrossRef] [Green Version]
- Bonamore, A.; Calisti, L.; Calcaterra, A.; Ismail, O.H.; Gargano, M.; D’Acquarica, I.; Botta, B.; Boffi, A.; Macone, A. A Novel Enzymatic Strategy for the Synthesis of Substituted Tetrahydroisoquinolines. ChemistrySelect 2016, 1, 1525–1528. [Google Scholar] [CrossRef]
- Puetz, H.; Puchľová, E.; Vranková, K.; Hollmann, F. Biocatalytic Oxidation of Alcohols. Catalysts 2020, 10, 952. [Google Scholar] [CrossRef]
- Galletti, P.; Funiciello, F.; Soldati, R.; Giacomini, D. Selective Oxidation of Amines to Aldehydes or Imines using Laccase-Mediated Bio-Oxidation. Adv. Synth. Catal. 2015, 357, 1840–1848. [Google Scholar] [CrossRef]
- Strohmeier, G.A.; Eiteljçrg, I.C.; Schwarz, A.; Winkler, M. Enzymatic One-Step Reduction of Carboxylates to Aldehydes with Cell-Free Regeneration of ATP and NADPH. Chem. Eur. J. 2019, 25, 6119–6123. [Google Scholar] [CrossRef] [Green Version]
- Akhtar, M.K.; Turner, N.J.; Jones, P.R. Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities. Proc. Natl. Acad. Sci. USA 2013, 110, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Stolterfoht, H.; Schwendenwein, D.; Sensen, C.W.; Rudroff, F.; Winkler, M. Four distinct types of E.C. 1.2.1.30 enzymes can catalyze the reduction of carboxylic acids to aldehydes. J. Biotechnol. 2017, 222–232. [Google Scholar] [CrossRef]
- Urlacher, V.B.; Koschorreck, K. Pecularities and applications of aryl-alcohol oxidases from fungi. Appl. Microbiol. Biotechnol. 2021, 105, 4111–4126. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.K.; Goswami, P. Purification and properties of a novel broad substrate specific alcohol oxidase from Aspergillus terreus MTCC 6324. Biochim. Biophys. Acta 2008, 1784, 1552–1559. [Google Scholar] [CrossRef] [PubMed]
- Pickl, M.; Fuchs, M.; Glueck, S.M.; Faber, K. The substrate tolerance of alcohol oxidases. Appl. Microbiol. Biotechnol. 2015, 99, 6617–6642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sgalla, S.; Fabrizi, G.; Cirilli, R.; Macone, A.; Bonamore, A.; Boffi, A.; Cacchi, S. Chiral (R)- and (S)-allylic alcohols via a one-pot chemoenzymatic synthesis. Tetrahedron Asymmetry 2007, 18, 2791–2796. [Google Scholar] [CrossRef]
- Finnigan, W.; Thomas, A.; Cromar, H.; Gough, B.; Snajdrova, R.; Adams, J.P.; Littlechild, J.A.; Harmer, N.J. Characterization of Carboxylic Acid Reductases as Enzymes in the Toolbox for Synthetic Chemistry. ChemCatChem 2017, 9, 1005–1017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kramer, L.; Hankore, E.D.; Liu, Y.; Liu, K.; Jimenez, E.; Guo, J.; Niu, W. Characterization of Carboxylic Acid Reductases for Biocatalytic Synthesis of Industrial Chemicals. ChemBioChem 2018, 19, 1452–1460. [Google Scholar] [CrossRef] [PubMed]
- Boffi, A.; Favero, G.; Federico, R.; Macone, A.; Antiochia, R.; Tortolini, C.; Sanzó, G.; Mazzei, F. Amine oxidase-based biosensors for spermine and spermidine determination. Anal. Bioanal. Chem. 2015, 407, 1131–1137. [Google Scholar] [CrossRef] [PubMed]
- Bonaiuto, E.; Magro, M.; Baratella, D.; Jakubec, P.; Sconcerle, E.; Terzo, M.; Miotto, G.; Macone, A.; Agostinelli, E.; Fasolato, S.; et al. Ternary Hybrid g-Fe2O3/CrVI/Amine Oxidase Nanostructure for Electrochemical Sensing: Application for Polyamine Detection in Tumor Tissue. Chem. Eur. J. 2016, 22, 6846–6852. [Google Scholar] [CrossRef] [PubMed]
- Cona, A.; Rea, G.; Angelini, R.; Federico, R.; Tavladoraki, P. Functions of amine oxidases in plant development and defence. Trends Plant Sci. 2006, 11, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Tavladoraki, P.; Cona, A.; Angelini, R. Copper-Containing Amine Oxidases and FAD-Dependent Polyamine Oxidases Are Key Players in Plant Tissue Differentiation and Organ Development. Front. Plant Sci. 2016. [CrossRef] [Green Version]
- Padiglia, A.; Cogoni, A.; Floris, G. Characterization of amine oxidases from pisum, lens, Lathyrus and Cicer. Phytochemistry 1991, 3895–3897. [Google Scholar] [CrossRef]
- Pietrangeli, P.; Federico, R.; Mondovì, B.; Morpurgo, L. Substrate specificity of copper-containing plant amine oxidases. J. Inorg. Biochem. 2007, 101, 997–1004. [Google Scholar] [CrossRef]
- Pasquo, A.; Bonamore, A.; Franceschini, S.; Macone, A.; Boffi, A.; Ilari, A. Cloning, expression, crystallization and preliminary X-ray data analysis of norcoclaurine synthase from Thalictrum flavum. Acta Cryst. 2008, F64, 281–283. [Google Scholar] [CrossRef] [Green Version]
- Omar, A.M.; Abdulmalik, O.; Ghatge, M.S.; Muhammad, Y.A.; Paredes, S.D.; El-Araby, M.E.; Safo, M.K. An Investigation of Structure-Activity Relationships of Azolylacryloyl Derivatives Yielded Potent and Long-Acting Hemoglobin Modulators for Reversing Erythrocyte Sickling. Biomolecules 2020, 10, 1508. [Google Scholar] [CrossRef]
- Palombarini, F.; Ghirga, F.; Boffi, A.; Macone, A.; Bonamore, A. Application of crossflow ultrafiltration for scaling up the purification of a recombinant ferritin. Protein Express. Purif. 2019, 163, 105451. [Google Scholar] [CrossRef]
- Pietrangeli, P.; Nocera, S.; Mondovì, B.; Morpurgo, L. Is the catalytic mechanism of bacteria, plant, and mammal copper-TPQ amine oxidases identical? Biochim. Biophys. Acta 2003, 11, 152–156. [Google Scholar] [CrossRef]
- Lichman, B.R.; Lamming, E.D.; Pesnot, T.; Smith, J.M.; Hailes, H.C.; Ward, J.M. One-pot triangular chemoenzymatic cascades for the syntheses of chiral alkaloids from dopamine. Green Chem. 2015, 17, 852–855. [Google Scholar] [CrossRef] [Green Version]
- Gorgas, N.; Ilic, A.; Kirchner, K. Chemoselective transfer hydrogenation of aldehydes in aqueous media catalyzed by a well-defined iron(II) hydride complex. Monatsh. Chem. 2019, 150, 121–126. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Wang, S.; Qin, X.; Li, J. Reaction of Aldehydes and Pyrazolones in the Presence of Sodium Dodecyl Sulfate in Aqueous Media. Synth. Commun. 2005, 35, 263–1269. [Google Scholar] [CrossRef]
- Kobayashi, S.; Endo, T.; Yoshino, T.; Schneider, U.; Ueno, M. Allylation Reactions of Aldehydes with Allylboronates in Aqueous Media: Unique Reactivity and Selectivity that are Only Observed in the Presence of Water. Chem.—Asian J. 2013, 8, 2033–2045. [Google Scholar] [CrossRef]
Purification Step | Total Activity (Units) | Total Protein (mg) | Specific Activity (units × mg−1 Protein) | Recovery (%) | Purification (-fold) |
---|---|---|---|---|---|
Crude extract | 2630 | 2706 | 0.97 | 100 | 1 |
Filtration on Celpure® C300 | 2590 | 1546 | 1.68 | 98.47 | 1.73 |
Vivaflow200 diafiltration/ultrafiltration | 2606 | 217 | 12.01 | 99.08 | 12.38 |
Heat treatment (65 °C) | 2100 | 97.3 | 21.58 | 79.85 | 22.24 |
pH 7 | pH 8 | ||||||||
---|---|---|---|---|---|---|---|---|---|
n. | Structure | KM (mM) | kcat (s−1) | kcat/KM (M−1s−1) | Relative Activity (%) | KM (mM) | kcat (s−1) | kcat/KM (M−1s−1) | Relative Activity (%) |
1a | | 0.60 | 29.24 | 49.00 | 100 | 0.49 | 13.30 | 26.94 | 100 |
2a | | 1.20 | 18.35 | 14.25 | 62.8 | 0.60 | 9.16 | 15.92 | 68.9 |
3a | | 1.58 | 0.27 | 0.21 | 0.9 | 1.66 | 0.17 | 0.10 | 1.3 |
4a | | 1.31 | 2.00 | 1.53 | 6.8 | 1.35 | 0.96 | 0.69 | 7.2 |
5a | | 1.00 | 1.54 | 1.53 | 5.3 | 1.80 | 2.31 | 1.26 | 17.4 |
6a | | 5.37 | 2.53 | 0.45 | 8.7 | 5.60 | 4.02 | 0.70 | 30.2 |
7a | | 0.47 | 6.20 | 13.04 | 21.2 | 1.20 | 1.80 | 1.48 | 13.5 |
8a | | 3.83 | 2.95 | 0.77 | 10.1 | 1.44 | 1.21 | 0.78 | 9.1 |
9a | | ND | ND | 0.49 | ND | ND | ND | ND | ND |
10a | | 3.38 | 10.15 | 3.15 | 34.7 | 1.30 | 1.98 | 1.45 | 14.9 |
11a | | 0.42 | 5.53 | 0.79 | 18.9 | 0.70 | 0.73 | 0.23 | 5.5 |
12a | | 6.46 | 5.63 | 0.72 | 19.3 | 0.75 | 0.17 | 0.41 | 1.3 |
13a | | 1.44 | 1.06 | 0.79 | 3.6 | 0.70 | 0.29 | 0.80 | 2.2 |
14a | | 1.90 | 1.47 | 12.93 | 5.0 | 0.23 | 0.19 | 1.04 | 1.4 |
15a | | 17.00 | 1.27 | 0.07 | 4.3 | ND | ND | 0.00 | ND |
16a | | 0.61 | 2.77 | 4.92 | 9.5 | 0.25 | 0.40 | 1.60 | 3.0 |
17a | | 2.30 | 5.08 | 2.14 | 17.4 | ND | ND | 0.46 | 0.0 |
18a | | 0.23 | 1.27 | 2.05 | 4.3 | 0.11 | 2.20 | 2.19 | 16.5 |
19a | | 8.80 | 17.9 | 1.29 | 61.2 | 0.33 | 0.73 | 5.47 | 5.5 |
20a | | 2.59 | 3.51 | 5.35 | 12.0 | 2.12 | 11.8 | 20.00 | 88.7 |
n. | Reaction Product | LCAO(Total Units) | Conversion (%) | |||
---|---|---|---|---|---|---|
0.5 h | 1 h | 2 h | 3 h | |||
1b | | 25 | 99 | |||
2b | | 25 | 98 | |||
3b | | 45 | 95 | |||
4b | | 45 | 97 | |||
5b | | 45 | 96 | |||
6b | | 45 | 98 | |||
7b | | 45 | 99 | |||
8b | | 45 | 95 | |||
10b | | 20 | 98 | |||
11b | | 25 | 98 | |||
12b | | 35 | 99 | |||
13b | | 45 | 98 | |||
14b | | 45 | 97 | |||
15b | | 35 | 96 | |||
16b | | 35 | 96 | |||
17b | | 35 | 97 | |||
18b | | 45 | 98 | |||
19b | | 20 | 99 | |||
20b | | 25 | 99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Fabio, E.; Incocciati, A.; Boffi, A.; Bonamore, A.; Macone, A. Biocatalytic Production of Aldehydes: Exploring the Potential of Lathyrus cicera Amine Oxidase. Biomolecules 2021, 11, 1540. https://doi.org/10.3390/biom11101540
Di Fabio E, Incocciati A, Boffi A, Bonamore A, Macone A. Biocatalytic Production of Aldehydes: Exploring the Potential of Lathyrus cicera Amine Oxidase. Biomolecules. 2021; 11(10):1540. https://doi.org/10.3390/biom11101540
Chicago/Turabian StyleDi Fabio, Elisa, Alessio Incocciati, Alberto Boffi, Alessandra Bonamore, and Alberto Macone. 2021. "Biocatalytic Production of Aldehydes: Exploring the Potential of Lathyrus cicera Amine Oxidase" Biomolecules 11, no. 10: 1540. https://doi.org/10.3390/biom11101540
APA StyleDi Fabio, E., Incocciati, A., Boffi, A., Bonamore, A., & Macone, A. (2021). Biocatalytic Production of Aldehydes: Exploring the Potential of Lathyrus cicera Amine Oxidase. Biomolecules, 11(10), 1540. https://doi.org/10.3390/biom11101540