Relationship of Zonulin with Serum PCSK9 Levels after a High Fat Load in a Population of Obese Subjects
Abstract
1. Introduction
2. Material and Methods
2.1. Patients
2.2. Study Protocol
2.3. Ethics
2.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Higgins, V.; Adeli, K. Postprandial Dyslipidemia: Pathophysiology and Cardiovascular Disease Risk Assessment. EJIFCC 2017, 28, 168–184. [Google Scholar] [PubMed]
- Wojczynski, M.K.; Glasser, S.P.; Oberman, A.; Kabagambe, E.K.; Hopkins, P.N.; Tsai, M.Y.; Straka, R.J.; Ordovas, J.M.; Arnett, D.K. High-fat meal effect on LDL, HDL, and VLDL particle size and number in the Genetics of Lipid-Lowering Drugs and Diet Network (GOLDN): An interventional study. Lipids Health Dis. 2011. [Google Scholar] [CrossRef] [PubMed]
- Tada, H.; Nohara, A.; Inazu, A.; Mabuchi, H.; Kawashiri, M.A. Remnant lipoproteins and atherosclerotic cardiovascular disease. Clin. Chim. Acta 2019. [Google Scholar] [CrossRef] [PubMed]
- Cariou, B.; Si-Tayeb, K.; Le May, C. Role of PCSK9 beyond liver involvement. Curr. Opin. Lipidol. 2015, 26, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Stoekenbroek, R.M.; Lambert, G.; Cariou, B.; Hovingh, G.K. Inhibiting PCSK9-biology beyond LDL control. Nat. Rev. Endocrinol. 2018, 15, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Dijk, W.; Le May, C.; Cariou, B. Beyond LDL: What Role for PCSK9 in Triglyceride- Rich Lipoprotein Metabolism? Trends Endocrinol. Metab. 2018, 29, 420–434. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, K.; Tokita, Y.; Tanaka, A.; Takahashi, S. The VLDL receptor plays a key role in the metabolism of postprandial remnant lipoproteins. Clin. Chim. Acta 2019, 495, 382–393. [Google Scholar] [CrossRef]
- Cariou, B.; Langhi, C.; Le Bras, M.; Bortolotti, M.; Lê, K.A.; Theytaz, F.; Le May, C.; Guyomarc’h-Delasalle, B.; Zaïr, Y.; Kreis, R.; et al. Plasma PCSK9 concentrations during an oral fat load and after short term high-fat, high-fat high-protein and high-fructose diets. Nutr. Metab. (Lond) 2013, 10, 4. [Google Scholar] [CrossRef]
- Chan, D.C.; Wong, A.T.Y.; Pang, J.; Barrett, P.H.; Watts, G.F. Inter-relationships between proprotein convertase subtilisin/kexin type 9, apolipoprotein C-III and plasma apolipoprotein B-48 transport in obese subjects: A stable isotope study in the postprandial state. Clin. Sci. (Lond) 2015, 128, 379–385. [Google Scholar] [CrossRef]
- Ooi, T.C.; Krysa, J.A.; Chaker, S.; Abujrad, H.; Mayne, J.; Henry, K.; Cousins, M.; Raymond, A.; Favreau, C.; Taljaard, M.; et al. The Effect of PCSK9 Loss-of-Function Variants on the Postprandial Lipid and ApoB-Lipoprotein Response. J. Clin. Endocrinol. Metab. 2017, 102, 3452–3460. [Google Scholar] [CrossRef]
- Genga, K.R.; Shimada, T.; Boyd, J.H.; Walley, K.R.; Russell, J.A. The Understanding and Management of Organism Toxicity in Septic Shock. J. Innate. Immun. 2018, 10, 502–514. [Google Scholar] [CrossRef] [PubMed]
- Walley, K.R.; Thain, K.R.; Russell, J.A.; Reilly, M.P.; Meyer, N.J.; Ferguson, J.F.; Christie, J.D.; Nakada, T.A.; Fjell, C.D.; Thair, S.A.; et al. PCSK9 is a critical regulator of the innate immune response and septic shock outcome. Sci. Transl. Med. 2014, 6, 258ra143. [Google Scholar] [CrossRef] [PubMed]
- Grin, P.M.; Dwivedi, D.J.; Chathely, K.M.; Trigatti, B.L.; Prat, A.; Seidah, N.G.; Liaw, P.C.; Fox-Robichaud, A.E. Low-density lipoprotein (LDL)-dependent uptake of Gram-positive lipoteichoic acid and Gram-negative lipopolysaccharide occurs through LDL receptor. Sci. Rep. 2018, 8, 10496. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Sakata, Y.; Tso, P. Nutrient-induced inflammation in the intestine. Curr. Opin. Clin. Nutr. Metab. Care 2011, 14, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Genser, L.; Aguanno, D.; Soula, H.A.; Dong, L.; Trystram, L.; Assmann, K.; Salem, J.E.; Vaillant, J.C.; Oppert, J.M.; Laugerette, F.; et al. Increased jejunal permeability in human obesity is revealed by a lipid challenge and is linked to inflammation and type 2 diabetes. J. Pathol. 2018, 246, 217–230. [Google Scholar] [CrossRef] [PubMed]
- Vors, C.; Pineau, G.; Drai, J.; Meugnier, E.; Pesenti, S.; Laville, M.; Laugerette, F.; Malpuech-Brugère, C.; Vidal, H.; Michalski, M.C. Postprandial Endotoxemia Linked With Chylomicrons and Lipopolysaccharides Handling in Obese Versus Lean Men: A Lipid Dose-Effect Trial. J. Clin. Endocrinol. Metab. 2015, 100, 3427–3435. [Google Scholar] [CrossRef]
- Cardona, F.; Tinahones, F.J. Composition Useful for the Detection of Postprandial Hypertriglyceridemia. Patent number P20103 0776, 2011. [Google Scholar]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low- density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef]
- Conway, V.; Couture, P.; Richard, C.; Gauthier, S.F.; Pouliot, Y.; Lamarche, B. Impact of buttermilk consumption on plasma lipids and surrogate markers of cholesterol homeostasis in men and women. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 1255–1262. [Google Scholar] [CrossRef] [PubMed]
- Rohr, M.W.; Narasimhulu, C.A.; Rudeski-Rohr, T.A.; Parthasarathy, S. Negative Effects of a High-Fat Diet on Intestinal Permeability: A Review. Adv. Nutr. 2020, 11, 77–91. [Google Scholar] [CrossRef] [PubMed]
- Erridge, C.; Attina, T.; Spickett, C.M.; Webb, D.J. A high-fat meal induces low-grade endotoxemia: Evidence of a novel mechanism of postprandial inflammation. Am. J. Clin. Nutr. 2007, 86, 1286–1292. [Google Scholar] [CrossRef] [PubMed]
- Ghanim, H.; Abuaysheh, S.; Sia, C.L.; Korzeniewski, K.; Chaudhuri, A.; Fernandez-Real, J.M.; Dandona, P. Increase in plasma endotoxin concentrations and the expression of Toll-like receptors and suppressor of cytokine signaling-3 in mononuclear cells after a high-fat, high-carbohydrate meal: Implications for insulin resistance. Diabetes Care 2009, 32, 2281–2287. [Google Scholar] [CrossRef] [PubMed]
- Lyte, J.M.; Gabler, N.K.; Hollis, J.H. Postprandial serum endotoxin in healthy humans is modulated by dietary fat in a randomized, controlled, cross-over study. Lipids Health Dis. 2016, 15, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Clemente-Postigo, M.; Queipo-Ortuño, M.I.; Murri, M.; Boto-Ordoñez, M.; Perez-Martinez, P.; Andres-Lacueva, C.; Cardona, F.; Tinahones, F.J. Endotoxin increase after fat overload is related to postprandial hypertriglyceridemia in morbidly obese patients. J. Lipid Res. 2012, 53, 973–978. [Google Scholar] [CrossRef] [PubMed]
- Harte, A.L.; Varma, M.C.; Tripathi, G.; McGee, K.C.; Al-Daghri, N.M.; Al-Attas, O.S.; Sabico, S.; O’Hare, J.P.; Ceriello, A.; Saravanan, P.; et al. High fat intake leads to acute postprandial exposure to circulating endotoxin in type 2 diabetic subjects. Diabetes Care 2012, 35, 375–382. [Google Scholar] [CrossRef]
- Cai, Y.; Lu, D.; Zou, Y.; Zhou, C.; Liu, H.; Tu, C.; Li, F.; Liu, L.; Zhang, S. Curcumin Protects Against Intestinal Origin Endotoxemia in Rat Liver Cirrhosis by Targeting PCSK9. J. Food Sci. 2017, 82, 772–780. [Google Scholar] [CrossRef]
- Topchiy, E.; Cirstea, M.; Kong, H.J.; Boyd, J.H.; Wang, Y.; Russell, J.A.; Walley, K.R. Lipopolysaccharide Is Cleared from the Circulation by Hepatocytes via the Low Density Lipoprotein Receptor. PLoS ONE 2016, 11, e0155030. [Google Scholar] [CrossRef]
- Leung, A.K.K.; Genga, K.R.; Topchiy, E.; Cirstea, M.; Shimada, T.; Fjell, C.; Russell, J.A.; Boyd, J.H.; Walley, K.R. Reduced Proprotein convertase subtilisin/kexin 9 (PCSK9) function increases lipoteichoic acid clearance and improves outcomes in Gram positive septic shock patients. Sci. Rep. 2019, 9, 10588. [Google Scholar] [CrossRef]
- Sullivan, S.; Fabbrini, E.; Horton, J.D.; Korenblat, K.; Patterson, B.W.; Klein, S. Lack of a relationship between plasma PCSK9 concentrations and hepatic lipoprotein kinetics in obese people. Transl. Res. 2011, 158, 302–306. [Google Scholar] [CrossRef][Green Version]
- Vergès, B.; Duvillard, L.; Brindisi, M.C.; Gautier, E.; Krempf, M.; Costet, P.; Cariou, B. Lack of association between plasma PCSK9 and LDL-apoB100 catabolism in patients with uncontrolled type 2 diabetes. Atherosclerosis 2011, 219, 342–348. [Google Scholar] [CrossRef] [PubMed]
Baseline | 3 h | p-Value | |
---|---|---|---|
Age (years) | 43.4 ± 9.2 | - | - |
Sex (men/women) | 13/26 | - | - |
BMI (kg/m2) | 49.3 ± 7.2 | - | - |
Fasting glucose (mg/dL) | 102.2 ± 14.5 | - | - |
HOMA-IR | 5 ± 2.5 | - | - |
HbA1c (%) | 5.7 ± 0.3% | - | - |
TC (mg/dl) | 192.6 ± 37.8 | - | - |
HDL-C (mg/dL) | 44.9 ± 8.8 | 45.4 ± 10.4 | 0.666 |
LDL-C (mg/dL) | 120.4 ± 31.7 | 121 ± 30.8 | 0.162 |
TG (mg/dL) | 134.7 ± 59.2 | 206.1 ± 69.8 | <0.001 |
Total Apo-B (mg/dL) | 56.9 ± 32.5 | 61.3 ± 33.5 | 0.210 |
Apo-CIII (mg/dL) | 19.6 ± 8 | 20.5 ± 7.1 | 0.300 |
Apo-AI (mg/dL) | 153.3 ± 79.4 | 165.8 ± 95.6 | 0.020 |
PCSK9 (ng/mL) | 187.2 ± 76.1 | 165.3 ± 70.8 | <0.001 |
Zonulin (ng/mL) | 545.3 ± 122.9 | 621.3 ± 278.6 | 0.040 |
LPS (EU/mL) | 0.425 ± 0.007 | 0.433 ± 0.007 | <0.001 |
LBP (µg/mL) | 12.9 ± 0.8 | 13.3 ± 0.5 | <0.001 |
PCSK9 Baseline | PCSK9 3 h | |
---|---|---|
Age (years) | 0.133 | 0.247 |
Antropometrics | ||
BMI (kg/m2) | 0.027 | 0.050 |
WC (cm) | −0.058 | −0.045 |
Insulin resistance | ||
Glucose (mg/dL) | 0.050 | 0.011 |
HOMA-IR | −0.011 | −0.095 |
Plasma lipids | ||
TC baseline (mg/dL) | 0.484 ** | - |
TC 3 h (mg/dL) | - | 0.466 ** |
HDL-C baseline (mg/dL) | 0.398 * | - |
HDL-C 3 h (mg/dL) | - | 0.478 * |
LDL-C (mg/dL) | 0.459 ** | - |
LDL-C 3 h (mg/dL) | - | 0.411 * |
TG baseline (mg/dL) | −0.014 | - |
TG 3 h (mg/dL) | - | −0.057 |
Total Apo-B baseline (mg/dL) | 0.219 | - |
Total Apo-B 3 h (mg/dL) | - | 0.246 |
Apo-CIII baseline (mg/dL) | 0.262 | - |
Apo-CIII 3 h (mg/dL) | - | 0.062 |
Apo-AI baseline (mg/dL) | 0.058 | - |
Apo-AI 3 h (mg/dL) | - | 0.009 |
Intestinal permeability | ||
Zonulin baseline (ng/mL) | 0.184 | - |
Zonulin 3 h (ng/mL) | - | 0.480 * |
Endotoxemia | ||
LPS baseline (EU/mL) | −0.004 | - |
LPS 3 h (EU/mL) | - | −0.067 |
LBP baseline (µg/mL) | 0.038 | - |
LBP 3 h (µg/mL) | - | −0.009 |
PCKS9 Baseline | |||
---|---|---|---|
β | CI 95% | p-Value | |
Age (years) | 0.027 | −3.012–3.352 | 0.873 |
Sex | −0.299 | −96.789–2.010 | 0.083 |
LDL-C (mg/dL) | 0.370 | 0.014–1.942 | 0.030 |
TG baseline (mg/dL) | −0.007 | −0.664–0.510 | 0.964 |
Zonulin baseline (ng/mL) | 0.052 | −0.172–0.448 | 0.760 |
PCKS9 3 h | |||
---|---|---|---|
β | CI 95% | p-Value | |
Age (years) | 0.073 | −1.557–3.668 | 0.624 |
Sex | −0.249 | −15.543–100.035 | 0.073 |
LDL-C 3 h (mg/dL) | 0.330 | 0.031–1.807 | 0.043 |
TG 3 h (mg/dL) | 0.110 | −0.199–0.438 | 0.441 |
Zonulin 3 h (ng/mL) | 0.328 | −0.193–0.149 | 0.035 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molina-Vega, M.; Castellano-Castillo, D.; Sánchez-Alcoholado, L.; Plaza-Andrade, I.; Perera-Martin, G.; Cabrera-Mulero, A.; Fernández-García, J.C.; Ramos-Molina, B.; Cardona, F.; Tinahones, F.J. Relationship of Zonulin with Serum PCSK9 Levels after a High Fat Load in a Population of Obese Subjects. Biomolecules 2020, 10, 748. https://doi.org/10.3390/biom10050748
Molina-Vega M, Castellano-Castillo D, Sánchez-Alcoholado L, Plaza-Andrade I, Perera-Martin G, Cabrera-Mulero A, Fernández-García JC, Ramos-Molina B, Cardona F, Tinahones FJ. Relationship of Zonulin with Serum PCSK9 Levels after a High Fat Load in a Population of Obese Subjects. Biomolecules. 2020; 10(5):748. https://doi.org/10.3390/biom10050748
Chicago/Turabian StyleMolina-Vega, María, Daniel Castellano-Castillo, Lidia Sánchez-Alcoholado, Isaac Plaza-Andrade, Gabriel Perera-Martin, Amanda Cabrera-Mulero, Jose Carlos Fernández-García, Bruno Ramos-Molina, Fernando Cardona, and Francisco J. Tinahones. 2020. "Relationship of Zonulin with Serum PCSK9 Levels after a High Fat Load in a Population of Obese Subjects" Biomolecules 10, no. 5: 748. https://doi.org/10.3390/biom10050748
APA StyleMolina-Vega, M., Castellano-Castillo, D., Sánchez-Alcoholado, L., Plaza-Andrade, I., Perera-Martin, G., Cabrera-Mulero, A., Fernández-García, J. C., Ramos-Molina, B., Cardona, F., & Tinahones, F. J. (2020). Relationship of Zonulin with Serum PCSK9 Levels after a High Fat Load in a Population of Obese Subjects. Biomolecules, 10(5), 748. https://doi.org/10.3390/biom10050748