Proteomic Analysis of Blood Exosomes from Healthy Females and Breast Cancer Patients Reveals an Association between Different Exosomal Bioactivity on Non-tumorigenic Epithelial Cell and Breast Cancer Cell Migration in Vitro
Abstract
:1. Introduction
2. Material and Methods
2.1. Ethics Statement
2.2. Exosome Isolation
2.3. Electron Microscopy of Exosomes
2.4. Nanoparticle Tracking Analysis
2.5. Protein Quantification
2.6. Flow Cytometry Analysis
2.7. Cell Lines
2.8. Cell Migration Assay
2.9. Mass Spectrometry Analysis
2.10. Bioinformatics and Gene Ontology (GO) Analysis of Proteomic Profiles
2.11. Statistical Analysis
3. Results
3.1. Characterization of Plasma and Total Blood Vesicles as Exosomes
3.2. Quantitative and Sub-Population Analysis of Exosomes from Plasma and Total Blood
3.3. Exosomes from Plasma and Total Blood Increase Cell Migration Activities
3.4. Mass-spectrometry Analysis of the Exosomal Proteome Reveals Proteins Associated with Cell Motility and Invasiveness
3.5. ADAM-10 Expression Levels are Increased in Exosomes from BCP Luminal Subtype Blood
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Osaki, M.; Okada, F. Exosomes and their role in cancer progression. Yonago Acta Med. 2019, 62, 182–190. [Google Scholar] [CrossRef] [Green Version]
- Whiteside, T.L. The potential of tumor-derived exosomes for noninvasive cancer monitoring: An update. Expert Rev. Mol. Diagn. 2018, 18, 1029–1040. [Google Scholar] [CrossRef] [PubMed]
- Lawson, J.; Dickman, C.; Towle, R.; Jabalee, J.; Javer, A.; Garnis, C. Extracellular vesicle secretion of miR-142-3p from lung adenocarcinoma cells induces tumor promoting changes in the stroma through cell-cell communication. Mol. Carcinog. 2019, 58, 376–387. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Tao, Y.; Wang, X.; Jiang, P.; Li, J.; Peng, M.; Zhang, X.; Chen, K.; Liu, H.; Zhen, P.; et al. Tumor-secreted exosomal miR-222 promotes tumor progression via regulating P27 expression and re-localization in pancreatic cancer. Cell Physiol. Biochem. 2018, 51, 610–629. [Google Scholar] [CrossRef] [PubMed]
- Harris, D.A.; Patel, S.H.; Gucek, M.; Hendrix, A.; Westbroek, W.; Taraska, J.W. Exosomes released from breast cancer carcinomas stimulate cell movement. PLoS ONE 2015, 10, e0117495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, R.; Wang, Y.; Zhang, X.; Feng, M.; Ma, J.; Li, J.; Yang, X.; Fang, F.; Xia, Q.; Zhang, Z.; et al. Exosome-mediated secretion of LOXL4 promotes hepatocellular carcinoma cell invasion and metastasis. Mol. Cancer 2019, 18, e18. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Zeng, C.; Nong, Q.; Long, F.; Liu, J.; Mu, Z.; Chen, B.; Wu, D.; Wu, H. Exosomal leucine-rich-alpha2-glycoprotein 1 derived from non-small-cell lung cancer cells promotes angiogenesis via TGF-β signal pathway. Mol. Ther. Oncolytics 2019, 14, 313–322. [Google Scholar] [CrossRef] [Green Version]
- Groza, M.; Zimta, A.A.; Irimie, A.; Achimas-Cadariu, P.; Cenariu, D.; Stanta, G.; Berindan-Neagoe, I. Recent advancements in the study of breast cancer exosomes as mediators of intratumoral communication. J. Cell. Physiol. 2020, 235, 691–705. [Google Scholar] [CrossRef]
- Mathieu, M.; Martin-Jaular, L.; Lavieu, G.; Théry, C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell Biol. 2019, 21, 9–17. [Google Scholar] [CrossRef]
- Buzas, E.I.; Toth, E.A.; Sodar, B.W.; Szabo-Taylor, K.E. Molecular interactions at the surface of extracellular vesicles. Semin. Immunopathol. 2018, 40, 453–464. [Google Scholar] [CrossRef] [Green Version]
- Tamkovich, S.; Tutanov, O.; Efimenko, A.; Grigor’eva, A.; Ryabchikova, E.; Kirushina, N.; Vlassov, V.; Tkachuk, V.; Laktionov, P. Blood circulating exosomes contain distinguishable fractions of free and cell-surface-associated vesicles. Curr. Mol. Med. 2019, 19, 273–285. [Google Scholar] [CrossRef] [PubMed]
- Tamkovich, S.N.; Bakakina, Y.S.; Tutanov, O.S.; Somov, A.K.; Kirushina, N.A.; Dubovskaya, L.V.; Volotovski, I.D.; Laktionov, P.P. Proteome analysis of circulating exosomes in health and breast cancer. Russ. J. Bioorg. Chem. 2017, 43, 126–134. [Google Scholar] [CrossRef]
- Yunusova, N.V.; Patysheva, M.R.; Molchanov, S.V.; Zambalova, E.A.; Grigor’eva, A.E.; Kolomiets, L.A.; Ochirov, M.O.; Tamkovich, S.N.; Kondakova, I.V. Metalloproteinases at the surface of small extrcellular vesicles in advanced ovarian cancer: Relationships with ascites volume and peritoneal canceromatosis index. Clin. Chim. Acta 2019, 494, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Tamkovich, S.N.; Tutanov, O.S.; Serdukov, D.S.; Belenikin, M.S.; Shlikht, A.G.; Kirushina, N.A.; Voytsitskiy, V.E.; Tsentalovich, Y.P.; Tkachuk, V.A.; Laktionov, P.P. Protein content of circulating nucleoprotein complexes. Adv. Exp. Med. Biol. 2016, 924, 133–136. [Google Scholar]
- Pathan, M.; Keerthikumar, S.; Chisanga, D.; Alessandro, R.; Ang, C.S.; Askenase, P.; Batagov, A.O.; Benito-Martin, A.; Camussi, G.; Clayton, A.; et al. A novel community driven software for functional enrichment analysis of extracellular vesicles data. J. Extracell. Vesicles 2017, 6, e1321455. [Google Scholar] [CrossRef] [Green Version]
- Binns, D.; Dimmer, E.; Huntley, R.; Barrell, D.; O’Donovan, C.; Apweiler, R. QuickGO: A web-based tool for gene ontology searching. Bioinformatics 2009, 25, 3045–3046. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Zhang, Y.; Cui, H.; Chen, L.; Zhao, Y.; Lin, Y.; Zhang, M.; Xie, L. dbDEPC 3.0: The database of differentially expressed proteins in human cancer with multi-level annotation and drug indication. Database (Oxford) 2018, 2018, bay015. [Google Scholar] [CrossRef] [Green Version]
- Akers, J.C.; Ramakrishnan, V.; Nolan, J.P.; Duggan, E.; Fu, C.C.; Hochberg, F.H.; Chen, C.C.; Carter, B.S. Comparative analysis of technologies for quantifying extracellular vesicles (EVs) in clinical cerebrospinal fluids (CSF). PLoS ONE 2016, 11, e0149866. [Google Scholar] [CrossRef]
- Van der Pol, E.; Coumans, F.A.; Grootemaat, A.E.; Gardiner, C.; Sargent, I.L.; Harrison, P.; Sturk, A.; van Leeuwen, T.G.; Nieuwland, R. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J. Thromb. Haemost. 2014, 12, 1182–1192. [Google Scholar] [CrossRef]
- Witwer, K.W.; Buzas, E.I.; Bemis, L.T.; Bora, A.; Lässer, C.; Lötvall, J.; Nolte-’t Hoen, E.N.; Piper, M.G.; Sivaraman, S.; Skog, J.; et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J. Extracell. Vesicles 2013, 2, 20360. [Google Scholar] [CrossRef]
- Yanez-Mo, M.; Siljander, P.R.; Andreu, Z.; Zavec, A.B.; Borra, F.E.; Buzas, E.I.; Buzas, K.; Casal, E.; Cappello, F.; Carvalho, J.; et al. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles 2015, 4, 27066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, J.B.; von Furstenberg, R.J.; Smith, B.J.; McNaughton, K.K.; Galanko, J.A.; Henning, S.J. CD24 can be used to isolate Lgr5+ putative colonic epithelial stem cells in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 303, G443–G452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreu, Z.; Yanez-Mo, M. Tetraspanins in extracellular vesicle formation and function. Front. Immunol. 2014, 5, 442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soule, H.D.; Maloney, T.M.; Wolman, S.R.; Peterson, W.D.; Brenz, R.; McGrath, C.M.; Russo, J.; Pauley, R.J.; Jones, R.F.; Brooks, S.C. Isolation and characterization of a spontaneously immortalized human breast epithelial cell line MCF-10. Cancer Res. 1990, 50, 6075–6086. [Google Scholar] [PubMed]
- Pencheva, N.; Tran, H.; Buss, C.; Huh, D.; Drobnjak, M.; Busam, K.; Tavazoie, S.F. Convergent multi-miRNA targeting of ApoE drives LRP1/LRP8-dependent melanoma metastasis and angiogenesis. Cell 2012, 151, 1068–1082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luoa, C.; Wang, F.; Rena, X.; Ke, T.; Xu, C.; Tang, B.; Qin, S.; Yao, Y.; Chen, Q.; Wang, Q.K. Identification of a molecular signaling gene-gene regulatory network between GWAS susceptibility genes ADTRP and MIA3/TANGO1 for coronary artery disease. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 1640–1653. [Google Scholar] [CrossRef]
- Suzuki, Y.; Ohga, N.; Morishita, Y.; Hida, K.; Miyazono, K.; Watabe, T. BMP-9 induces proliferation of multiple types of endothelial cells in vitro and in vivo. J. Cell Sci. 2010, 123, 1684–1692. [Google Scholar] [CrossRef] [Green Version]
- Shimoda, M.; Khokha, R. Metalloproteinases in extracellular vesicles. Biochim. Biophys. Acta Mol. Cell Res. 2017, 1864 Pt A, 1989–2000. [Google Scholar] [CrossRef]
- Matthews, A.L.; Noy, P.J.; Reyat, J.S.; Tomlinson, M.G. Regulation of a disintegrin and metalloproteinase (ADAM) family sheddases ADAM10 and ADAM17: The emerging role oftetraspanins and rhomboids. Platelets 2017, 28, 333–341. [Google Scholar] [CrossRef] [Green Version]
- Nazarenko, I. Extracellular vesicles: Recent developments in technology and perspectives for cancer liquid biopsy. Recent Results Cancer Res. 2020, 215, 319–344. [Google Scholar]
- Danesh, A.; Inglis, H.C.; Jackman, R.P.; Wu, S.; Deng, X.; Muench, M.O.; Heitman, J.W.; Norris, P.J. Exosomes from red blood cell units bind to monocytes and induce proinflammatory cytokines, boosting T-cell responses in vitro. Blood 2014, 123, 687–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minciacchi, V.R.; Freeman, M.R.; Di Vizio, D. Extracellular vesicles in cancer: Exosomes, microvesicles and the emerging role of large oncosomes. Semin. Cell Dev. Biol. 2015, 40, 41–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nawaz, M.; Shah, N.; Zanetti, B.R.; Maugeri, M.; Silvestre, R.N.; Fatima, F.; Neder, L.; Valadi, H. Extracellular vesicles and matrix remodeling enzymes: The emerging roles in extracellular matrix remodeling, progression of diseases and tissue repair. Cells 2018, 7, 167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arduise, C.; Abache, T.; Li, L.; Chabanon, A.; Ludwig, A.; Mauduit, P.; Boucheix, C.; Rubinstein, E.; Le Naour, F. Tetraspanins regulate ADAM10-mediated cleavage of TNF-alpha and epidermal growth factor. J. Immunol. 2008, 181, 7002–7013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, I.-H.; Xue, L.; Hsu, C.-C.; Paez, J.S.; Pan, L.; Andaluz, H.; Wendt, M.K.; Iliuk, A.B.; Zhu, J.K.; Tao, W.A. Phosphoproteins in extracellular vesicles as candidate markers for breast cancer. Proc. Natl. Acad. Sci USA 2017, 114, 3175–3180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vardaki, I.; Ceder, S.; Rutishauser, D.; Baltatzis, G.; Foukakis, T.; Panaretakis, T. Periostin is identified as a putative metastatic marker in breast cancer-derived exosomes. Oncotarget 2016, 7, 74966–74978. [Google Scholar] [CrossRef] [Green Version]
- Staubach, S.; Razawi, H.; Hanisch, F.-G. Proteomics of MUC1-containing lipid rafts from plasma membranes and exosomes of human breast carcinoma cells MCF-7. Proteomics 2009, 9, 2820–2835. [Google Scholar] [CrossRef]
No (%) | ||
---|---|---|
Tumor Stage | T1 | 11 (48) |
T2 | 9 (39) | |
T3 | 1 (4) | |
T4 | 2 (9) | |
Nodal Status | N0 | 14 (61) |
N1 | 7 (30) | |
N2 | 1 (4) | |
N3 | 1 (4) | |
M0 | 23 (100) | |
Receptor Status | ER and/or Pr + | 15 (65) |
ER and Pr - | 5 (22) | |
Unknown | 3 (13) | |
HER2 Status | Positive | 15 (65) |
Negative | 5 (22) | |
Unknown | 3 (13) | |
Ki-67 | < 10 | 4 (17) |
10 ≤ ≤ 20 | 6 (26) | |
> 20 | 10 (43) | |
Unknown | 3 (13) | |
Histologic Grade | II | 16 (70) |
III | 2 (9) | |
Unknown | 5 (22) | |
Infiltrative Ductal Carcinoma | 23 (100%) | |
Total Patients | 23 (100%) |
1. Source of Exosomes | Median and Range of Exosomes Concentration × 107/ml of blood | Median ± SE of Exosome Size, nm | |
---|---|---|---|
HFs | Plasma | 8 4–10 | 96 ± 16 |
Total Blood | 26 25–27 | 130 ± 5 | |
BCPs Luminal Subtype | Plasma | 23 5–88 | 127 ± 7 |
Total Blood | 24 7–92 | 129 ± 12 | |
BCPs Triple-negative Subtype | Plasma | 19 9–30 | 103 ± 72 |
Total Blood | 31 28–63 | 131 ± 95 |
2. Source of Exosomes | CD9-Positive Exosomes | CD24-Positive Exosomes | |||
---|---|---|---|---|---|
CD 63 Expression | CD 81 Expression | CD 9 Expression | CD 63 Expression | ||
HFs | Plasma | 513 ± 76 | 645 ± 97 | 1048 ± 120 | 523 ± 75 |
Total blood | 523 ± 42 | 698 ± 63 | 832 ± 81 | 540 ± 44 | |
BCPs Luminal Subtype | Plasma | 464 ± 48 | 630 ± 67 | 1078 ± 116 | 470 ± 56 |
Total blood | 493 ± 47 | 689 ± 70 | 1153 ± 110 | 494 ± 48 | |
BCPs Triple-negative Subtype | Plasma | 515 ± 52 | 688 ± 48 | 859 ± 85 | 550 ± 53 |
Total blood | 543 ± 43 | 704 ± 49 | 742 ± 67 | 527 ± 58 |
Source of Exosomes | Percentage of Migrating Cells, Median and 25–75% Percentile | |
---|---|---|
MCF10A Cells | SKBR-3 Cells | |
Negative Control | 6.5 3.0–7.3 – | 2.0 0.5–3 – |
Positive Control | 96.5 95.8–100 p < 0.0001 | 15.0 14.0–16.0 p = 0.0024 |
from HF Plasma | 9.0 7.3–11.5 p = 0.0399 | 6.5 3.3–9.8 NS |
from HF Total Blood | 12.0 4.3–13.5 NS | 5.0 1.5–6.5 NS |
from BCP Plasma | 17.0 4.3–17.8 p = 0.0179 | 6.0 4.5–8.0 NS |
from BCP Total Blood | 24.0 13.8–26.3 p = 0.0097 | 5.0 1.0–6.0 NS |
Uniprot ID | Protein Name | Gene Name | ExoCarta | Score |
---|---|---|---|---|
O14672 | Disintegrin and metalloproteinase domain-containing protein 10 | ADAM10 | + | 60 |
O43399 | Tumor protein D54 | TPD52L2 | + | 61 |
O75531 | Barrier-to-autointegration factor | BANF1 | + | 57 |
P00738 | Haptoglobin | HP | + | 74 |
P00739 | Haptoglobin-related protein | HPR | − | 60 |
P01024 | Complement C3 | C3 | + | 137 |
P01834 | Ig kappa chain C region | IGKC | + | 59 |
P01859 | Ig gamma-2 chain C region | IGHG2 | + | 59 |
P02647 | Apolipoprotein A-I | APOA1 | + | 176 |
P02671 | Fibrinogen alpha chain | FGA | + | 57 |
P02675 | Fibrinogen beta chain | FGB | + | 60 |
P02679 | Fibrinogen gamma chain | FGG | + | 67 |
P02750 | Leucine-rich alpha-2-glycoprotein | LRG | − | 60 |
P02760 | Alpha-1-microglycoprotein | AMBP | + | 60 |
P02765 | Alpha-2-HS-glycoprotein | AHSG | + | 60 |
P02766 | Transthyretin | TTR | + | 58 |
P02768 | Serum albumin | ALB | + | 149 |
P02787 | Serotransferrin | TF | − | 137 |
P02790 | Hemopexin | HPX | + | 60 |
P04114 | Apolipoprotein B-100 | APOB | + | 56 |
P06396 | Gelsolin | GSN | − | 60 |
P06727 | Apolipoprotein A-IV | APOA4 | + | 60 |
P08962 | CD63 antigen | CD63 | + | 60 |
P10909 | Clusterin | CLU | + | 60 |
P21926 | CD9 antigen | CD9 | + | 60 |
P25063 | Signal transducer CD24 | CD24 | + | 60 |
P60033 | CD81 antigen | CD81 | + | 60 |
P68871 | Hemoglobin subunit beta | HBB | + | 72 |
Q08426 | Peroxisomalbifunctional enzyme | EHHADH | + | 56 |
Q13424 | Alpha-1-syntrophin | SNTA1 | + | 60 |
Q15776 | Zinc finger protein with KRAB and SCAN domains 8 | ZKSCAN8 | − | 56 |
Q8TES7 | Fas-binding factor 1 | FBF1 | + | 56 |
Q96PX6 | Coiled-coil domain-containing protein 85A | CCDC85A | − | 64 |
Q9H6Z4 | Ran-binding protein 3 | RANBP3 | + | 56 |
Uniprot ID | Protein Name | Gene Name | ExoCarta | Score |
---|---|---|---|---|
A6NCL7 | Ankyrin repeat domain-containing protein 33B | ANKRD33B | − | 57 |
A8MU93 | Uncharacterizedprotein C17orf100 | C17orf100 | − | 56 |
O15054 | Lysine-specific demethylase 6B | KDM6B | + | 58 |
O60832 | H/ACA ribonucleoprotein complex subunit 4 | DKC1 | + | 56 |
O95602 | DNA-directed RNA polymerase I subunit RPA1 | POLR1A | − | 57 |
P02545 | Prelamin-A/C | LMNA | + | 59 |
P05976 | Myosin light chain 1/3, skeletal muscle isoform | MYL1 | + | 56 |
P26440 | Isovaleryl-CoA dehydrogenase, mitochondrial | IVD | − | 57 |
P31327 | Carbamoyl-phosphate synthase [ammonia], mitochondrial | CPS1 | + | 62 |
P31749 | RAC-alpha serine/threonine-protein kinase | AKT1 | + | 62 |
P48506 | Glutamate-cysteine ligase catalytic subunit | GCLC | − | 56 |
P49748 | Very long-chain specific acyl-CoA dehydrogenase, mitochondrial | ACADVL | − | 56 |
P49763 | Placenta growth factor | PGF | − | 56 |
P53674 | Beta-crystallin B1 | CRYBB1 | − | 80 |
Q11201 | CMP-N-acetylneuraminate-beta-galactosamide-alpha-2,3-sialyltransferase 1 | ST3GAL1 | − | 58 |
Q49A33 | Putative zinc finger protein 876 | ZNF876P | − | 56 |
Q49MG5 | Microtubule-associated protein 9 | MAP9 | − | 58 |
Q504T8 | Midnolin | MIDN | − | 56 |
Q69YQ0 | Cytospin-A | SPECC1L | + | 68 |
Q6P1J9 | Parafibromin | CDC73 | − | 60 |
Q6ZS02 | Putative GED domain-containing protein DNM1P46 | DNM1P46 | − | 57 |
Q7Z553 | MAM domain-containing glycosylphosphatidylinositol anchor protein 2 | MDGA2 | − | 56 |
Q86VE0 | Myb-related transcription factor, partner of profilin | MYPOP | − | 57 |
Q8N8C0 | Zinc finger protein 781 | ZNF781 | − | 65 |
Q9HBI5 | Uncharacterized protein C3orf14 | C3orf14 | − | 56 |
Q9P2W7 | Galactosylgalactosylxylosylprotein 3-beta-glucuronosyltransferase 1 | B3GAT1 | − | 56 |
Q9UK05 | Growth/differentiation factor 2 | GDF2 | + | 59 |
UniprotID | Protein Name | Gene Name | Exocarta | Score |
---|---|---|---|---|
A0A0B4J1X5 | Immunoglobulin heavy variable 3-74 | IGHV3-74 | − | 56 |
A0A1B0GVM6 | Uncharacterized protein C11orf97 | C11orf97 | − | 56 |
A0A589 | T cell receptor beta variable | TRBV4-3 | − | 56 |
O14543 | Suppressor of cytokine signaling 3 | SOCS3 | − | 63 |
O15018 | PDZ domain-containing protein 2 | PDZD2 | − | 57 |
O15020 | Spectrin beta chain, non-erythrocytic 2 | SPTBN2 | + | 66 |
O15083 | ERC protein 2 | ERC2 | − | 56 |
O60397 | Putative cytochrome c oxidase subunit 7A3, mitochondrial | COX7A2P2 | − | 58 |
O75635 | Serpin B7 | SERPINB7 | − | 56 |
O95243 | Methyl-CpG-binding domain protein 4 | MBD4 | − | 56 |
O95613 | Pericentrin | PCNT | − | 71 |
P02538 | Keratin, type II cytoskeletal 6A | KRT6A | + | 62 |
P04217 | Alpha-1B-glycoprotein | A1BG | + | 128 |
P04259 | Keratin, type II cytoskeletal 6B | KRT6B | + | 58 |
P04264 | Keratin, type II cytoskeletal 1 | KRT1 | − | 81 |
P09601 | Heme oxygenase 1 | HMOX1 | − | 56 |
P13497 | Bone morphogenetic protein 1 | BMP1 | − | 60 |
P16233 | Pancreatic triacylglycerol lipase | PNLIP | − | 56 |
P35527 | Keratin, type I cytoskeletal 9 | KRT9 | + | 57 |
P48167 | Glycine receptor subunit beta | GLRB | − | 56 |
P49761 | Dual specificity protein kinase CLK3 | CLK3 | − | 56 |
P50440 | Glycine amidinotransferase, mitochondrial | GATM | − | 56 |
P55199 | RNA polymerase II elongation factor ELL | ELL | − | 56 |
P62987 | Ubiquitin-60S ribosomal protein L40 | UBA52 | − | 57 |
Q13522 | Protein phosphatase 1A | PPM1A | + | 56 |
Q13535 | Serine/threonine-protein kinase ATR | ATR | − | 58 |
Q14005 | Pro-interleukin-16 | IL16 | − | 56 |
Q14320 | Protein FAM50A | FAM50A | − | 61 |
Q14571 | Inositol 1,4,5-trisphosphate receptor type 2 | ITPR2 | + | 67 |
Q14624 | Inter-alpha-trypsin inhibitor heavy chain H4 | ITIH4 | + | 80 |
Q15024 | Exosome complex component RRP42 | EXOSC7 | + | 56 |
Q15477 | Helicase SKI2W | SKIV2L | + | 65 |
Q16775 | Hydroxyacylglutathione hydrolase, mitochondrial | HAGH | + | 56 |
Q16890 | Tumor protein D53 | TPD52L1 | − | 56 |
Q2M218 | Zinc finger protein 630 | ZNF630 | − | 80 |
Q4G0S7 | Coiled-coil domain-containing protein 152 | CCDC152 | − | 63 |
Q52M93 | Zinc finger protein 585B | ZNF585B | − | 57 |
Q5R372 | Rab GTPase-activating protein 1-like | RABGAP1L | − | 56 |
Q5VWM5 | PRAME family member 9/15 | PRAMEF9 | − | 58 |
Q68J44 | Dual specificity phosphatase DUPD1 | DUPD1 | − | 57 |
Q6P1J6 | Phospholipase B1, membrane-associated | PLB1 | − | 56 |
Q7L5N7 | Lysophosphatidylcholine acyltransferase 2 | LPCAT2 | − | 56 |
Q7L5Y9 | E3 ubiquitin-protein transferase MAEA | MAEA | − | 56 |
Q7RTT3 | Putative protein SSX9 | SSX9P | − | 189 |
Q8IUS5 | Epoxide hydrolase 4 | EPHX4 | − | 57 |
Q8IYA6 | Cytoskeleton-associated protein 2-like | CKAP2L | − | 65 |
Q8IYE0 | Coiled-coil domain-containing protein 146 | CCDC146 | − | 57 |
Q8NDD1 | Uncharacterizedprotein C1orf131 | C1orf131 | − | 56 |
Q8NEQ6 | Steroid receptor-associated and regulated protein | SRARP | − | 59 |
Q8WXR4 | Myosin-IIIb | MYO3B | + | 56 |
Q8WXS5 | Voltage-dependent calcium channel gamma-8 subunit | CACNG8 | − | 63 |
Q92622 | Run domain Beclin-1-interacting and cysteine-rich domain-containing protein | RUBCN | − | 56 |
Q92624 | Amyloid protein-binding protein 2 | APPBP2 | − | 61 |
Q99623 | Prohibitin-2 | PHB2 | + | 74 |
Q9H497 | Torsin-3A | TOR3A | + | 63 |
Q9H4Q4 | PR domain zinc finger protein 12 | PRDM12 | − | 56 |
Q9H9E3 | Conserved oligomeric Golgi complex subunit 4 | COG4 | − | 56 |
Q9NQG6 | Mitochondrial dynamics protein MID51 | MIEF1 | − | 60 |
Q9NSD9 | Phenylalanine-tRNA ligase beta subunit | FARSB | + | 56 |
Q9NZJ4 | Sacsin | SACS | − | 56 |
Q9NZU7 | Calcium-binding protein 1 | CABP1 | − | 56 |
Q9Y4E5 | E3 SUMO-protein ligase ZNF451 | ZNF451 | + | 69 |
4. Source of Exosomes | CD9+ | CD24+ | |
---|---|---|---|
HFs | Plasma | 844 ± 99 | 884 ± 124 |
Total blood | 804 ± 79 | 920 ± 91 | |
BCPs Luminal subtype | Plasma | 1531 ± 162* | 926 ± 94 |
Total blood | 1026 ± 100* | 1103 ± 99 | |
BCPs Triple-negative subtype | Plasma | 962 ± 88 | 908 ± 109 |
Total blood | 862 ± 69 | 969 ± 106 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tutanov, O.; Orlova, E.; Proskura, K.; Grigor’eva, A.; Yunusova, N.; Tsentalovich, Y.; Alexandrova, A.; Tamkovich, S. Proteomic Analysis of Blood Exosomes from Healthy Females and Breast Cancer Patients Reveals an Association between Different Exosomal Bioactivity on Non-tumorigenic Epithelial Cell and Breast Cancer Cell Migration in Vitro. Biomolecules 2020, 10, 495. https://doi.org/10.3390/biom10040495
Tutanov O, Orlova E, Proskura K, Grigor’eva A, Yunusova N, Tsentalovich Y, Alexandrova A, Tamkovich S. Proteomic Analysis of Blood Exosomes from Healthy Females and Breast Cancer Patients Reveals an Association between Different Exosomal Bioactivity on Non-tumorigenic Epithelial Cell and Breast Cancer Cell Migration in Vitro. Biomolecules. 2020; 10(4):495. https://doi.org/10.3390/biom10040495
Chicago/Turabian StyleTutanov, Oleg, Evgeniya Orlova, Ksenia Proskura, Alina Grigor’eva, Natalia Yunusova, Yuri Tsentalovich, Antonina Alexandrova, and Svetlana Tamkovich. 2020. "Proteomic Analysis of Blood Exosomes from Healthy Females and Breast Cancer Patients Reveals an Association between Different Exosomal Bioactivity on Non-tumorigenic Epithelial Cell and Breast Cancer Cell Migration in Vitro" Biomolecules 10, no. 4: 495. https://doi.org/10.3390/biom10040495
APA StyleTutanov, O., Orlova, E., Proskura, K., Grigor’eva, A., Yunusova, N., Tsentalovich, Y., Alexandrova, A., & Tamkovich, S. (2020). Proteomic Analysis of Blood Exosomes from Healthy Females and Breast Cancer Patients Reveals an Association between Different Exosomal Bioactivity on Non-tumorigenic Epithelial Cell and Breast Cancer Cell Migration in Vitro. Biomolecules, 10(4), 495. https://doi.org/10.3390/biom10040495