Unusual Secondary Metabolites of the Aerial Parts of Dionysia diapensifolia Bioss. (Primulaceae) and Their Anti-Inflammatory Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Experimental Procedures
2.2. Plant Material and Chemicals
2.3. Extraction and Isolation
2.4. Physical and Spectroscopic Data of the New Isolated Compounds from Aerial Part of Dionysia diapensifolia
2.5. Cell Based Assays
2.5.1. J774A.1 Murine Macrophages Cell Line
2.5.2. Evaluation of Cytotoxic Activity
2.5.3. Measurement of NO Release
2.5.4. iNOS and COX-2 Determination by Cytofluorimetry
2.5.5. Data Analysis
3. Results and Discussion
3.1. Structure Elucidation
3.2. Investigation of Anti-Inflammatory Activity of Subfractions and Isolated Compounds on NO Release, iNOS Expression and COX-2 Expression Inhibition on J774.A.1 Macrophages
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nam, T.G.; Lim, T.-G.; Lee, B.H.; Lim, S.; Kang, H.; Eom, S.H.; Yoo, M.; Jang, H.W.; Kim, D.-O. Comparison of Anti-Inflammatory Effects of Flavonoid-Rich Common and Tartary Buckwheat Sprout Extracts in Lipopolysaccharide-Stimulated RAW 264.7 and Peritoneal Macrophages. Oxid. Med. Cell. Longev. 2017, 2017, 9658030. [Google Scholar] [CrossRef]
- Murakami, A.; Ohigashi, H. Targeting NOX, INOS and COX-2 in Inflammatory Cells: Chemoprevention Using Food Phytochemicals. Int. J. Cancer 2007, 121, 2357–2363. [Google Scholar] [CrossRef]
- Yun, J.M.; Im, S.B.; Roh, M.K.; Park, S.H.; Kwon, H.A.; Lee, J.Y.; Choi, H.Y.; Ham, I.H.; Kim, Y.B.; Lee, J.M.; et al. Prunus yedoensis Bark Inhibits Lipopolysaccharide-Induced Inflammatory Cytokine Synthesis by Iκbα Degradation and MAPK Activation in Macrophages. J. Med. Food 2014, 17, 407–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marzocco, S.; Adesso, S.; Alilou, M.; Stuppner, H.; Schwaiger, S. Anti-Inflammatory and Anti-Oxidant Potential of the Root Extract and Constituents of Doronicum austriacum. Molecules 2017, 22, 1003. [Google Scholar] [CrossRef] [PubMed]
- Serafini, M.; Peluso, I.; Raguzzini, A. Flavonoids as Anti-Inflammatory Agents. Proc. Nutr. Soc. 2010, 69, 273–278. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.P.; Son, K.H.; Chang, H.W.; Kang, S.S. Anti-Inflammatory Plant Flavonoids and Cellular Action Mechanisms. J. Pharmacol. Sci. 2004, 96, 229–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lidén, M. The Genus Dionysia (Primulaceae), a Synopsis and Five New Species. Willdenowia 2007, 37, 37–61. [Google Scholar] [CrossRef] [Green Version]
- Bhutia, T.D. Exudate flavonoids in Primulaceae: Comparative studies of chemodiversity aspects. Ph.D. Thesis, University of Vienna, Vienna, Austria, 2013. [Google Scholar]
- Amirghofran, Z.; Bahmani, M.; Azadmehr, A.; Ashouri, E.; Javidnia, K. Antitumor Activity and Apoptosis Induction in Human Cancer Cell Lines by Dionysia Termeana. Cancer Invest. 2007, 25, 550–554. [Google Scholar] [CrossRef]
- Bhutia, T.D.; Valant-Vetschera, K.M.; Lorbeer, E.; Brecker, L. Unusual Compounds from Exudates of Dionysia diapensifolia and D. gaubae var. megalantha (Primulaceae). Nat. Prod. Commun. 2011, 6, 621–624. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Li, T.; Li, J.; He, L.; Jia, X.; Yang, J. 2-Hydroxylation of 1,3-Diketones with Atmospheric Oxygen. Synlett 2015, 26, 2863–2865. [Google Scholar] [CrossRef] [Green Version]
- Martin, R. Aromatic Hydroxyketones: Preparation and Physical Properties; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar] [CrossRef]
- Pepe, G.; Sommella, E.; Ventre, G.; Scala, M.C.; Adesso, S.; Ostacolo, C.; Marzocco, S.; Novellino, E.; Campiglia, P. Antioxidant peptides released from gastrointestinal digestion of “Stracchino” soft cheese: Characterization, in vitro intestinal protection and bioavailability. J. Funct. Foods 2016, 26, 494–505. [Google Scholar] [CrossRef]
- Pepe, G.; Sommella, E.; Cianciarulo, D.; Ostacolo, C.; Manfra, M.; Di Sarno, V.; Musella, S.; Russo, M.; Messore, A.; Parrino, B.; et al. Polyphenolic Extract from Tarocco (Citrus sinensis l. Osbeck) Clone “Lempso” Exerts Anti-Inflammatory and Antioxidant Effects via NF-KB and Nrf-2 Activation in Murine Macrophages. Nutrients 2018, 10, 1961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adesso, S.; Russo, R.; Quaroni, A.; Autore, G.; Marzocco, S. Astragalus membranaceus Extract Attenuates Inflammation and Oxidative Stress in Intestinal Epithelial Cells via NF-ΚB Activation and Nrf2 Response. Int. J. Mol. Sci. 2018, 19, 800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valant-Vetschera, K.M.; Bhutia, T.D.; Wollenweber, E. Chemodiversity of Exudate Flavonoids in Dionysia (Primulaceae): A Comparative Study. Phytochemistry 2010, 71, 937–947. [Google Scholar] [CrossRef]
- Wollenweber, E.; Mann, K.; Iinuma, M.; Tanaka, T.; Mizuno, M. 5,2’,5’-Trihydroxyflavone and 2’,β-Dihydroxychalcone from Primula pulverulenta. Phytochemistry 1989, 28, 295–296. [Google Scholar] [CrossRef]
- Korenaga, T.; Hayashi, K.; Akaki, Y.; Maenishi, R. Highly Enantioselective and Efficient Synthesis of Flavanones Including Pinostrobin through the Rhodium - Catalyzed Asymmetric 1,4-Addition. Org. Lett. 2011, 13, 2022–2025. [Google Scholar] [CrossRef]
- Morimoto, M.; Fukumoto, H.; Hiratani, M.; Komai, K. Insect Antifeedants, Pterocarpans and Pterocarpol, in Heartwood of Pterocarpus. Biosci. Biotechnol. Biochem. 2006, 70, 1864–1868. [Google Scholar] [CrossRef] [Green Version]
- Paola, S.; Colombo, P.S.; Flamini, G.; Christodoulou, M.S.; Rodondi, G.; Vitalini, S.; Passarella, D.; Fico, G. Farinose alpine Primula species: Phytochemical and morphological investigations. Phytochemistry 2014, 98, 151–159. [Google Scholar] [CrossRef]
- Iinuma, M.; Matsuura, S.; Kusuda, K. 13C-nuclear magnetic resonance (NMR) spectra studies on polysubstituted flavonoids, I. 13C-NMR spectra of flavones. Chem. Pharm. Bull. 1980, 28, 708–716. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.; Moon, B.H.; Lee, E.; Lee, Y.; Yoon, Y.; Ahn, J.H.; Lim, Y. Spectral Assignments and Reference Data Derivatives. Magn. Reson. Chem. 2007, 45, 674–679. [Google Scholar] [CrossRef]
- Iinuma, M.; Tanaka, T.; Oyama, M.; Wollenweber, E. Two novel flavonoids from Primula palinuri. Nat. Prod. Com. 2006, 1, 949–952. [Google Scholar] [CrossRef]
- Moita, E.; Gil-Izquierdo, A.; Sousa, C.; Ferreres, F.; Silva, L.R.; Valentão, P.; Domínguez-Perles, R.; Baenas, N.; Andrade, P.B. Integrated Analysis of COX-2 and INOS Derived Inflammatory Mediators in LPS-Stimulated RAW Macrophages Pre-Exposed to Echium plantagineum L. Bee Pollen Extract. PLoS ONE 2013, 8, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mu, K.; Yu, S.; Kitts, D.D. The Role of Nitric Oxide in Regulating Intestinal Redox Status and Intestinal Epithelial Cell Functionality. Int. J. Mol. Sci. 2019, 20, 1755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cianchi, F.; Cuzzocrea, S.; Vinci, M.C.; Messerini, L.; Comin, C.E.; Navarra, G.; Perigli, G.; Centorrino, T.; Marzocco, S.; Lenzi, E.; et al. Heterogeneous expression of cyclooxygenase-2 and inducible nitric oxide synthase within colorectal tumors: correlation with tumor angiogenesis. Dig. Liver Dis. 2010, 42, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Davila-Gonzalez, D.; Chang, J.C.; Billiar, T.R. NO and COX2: Dual Targeting for Aggressive Cancers. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 13591–13593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Wang, Z.; Sidhu, P.S.; Desai, U.R.; Zhou, Q. 6-Hydroxyflavone and Derivatives Exhibit Potent Anti-Inflammatory Activity Among Mono-, Di- and Polyhydroxylated Flavones in Kidney Mesangial Cells. PLoS ONE 2015, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Salaritabar, A.; Darvishi, B.; Hadjiakhoond, F.; Manayi, A.; Suresa, A.; Nabavi, S.F.; Fitzpatrick, L.R.; Nabavi, S.M.; Bishayee, A. Therapeutic potential of flavonoids in inflammatory bowel disease: A comprehensive review. World J. Gastroenterol. 2017, 23, 5097–5114. [Google Scholar] [CrossRef]
- Kashyap, D.; Sharma, A.; Tuli, H.S.; Sak, K.; Garg, V.K.; Buttar, H.S.; Setzer, W.N.; Sethi, G. Apigenin: A Natural Bioactive Flavone-Type Molecule with Promising Therapeutic Function. J. Funct. Foods 2018, 48, 457–471. [Google Scholar] [CrossRef]
- Lin, C.C.; Liu, Y.; Ho, C.T.; Huang, M.T. Inhibitory Effects of 1,3-Bis-(2-Substituted-Phenyl)-Propane-1,3-Dione, β-Diketone Structural Analogues of Curcumin, on Chemical-Induced Tumor Promotion and Inflammation in Mouse Skin. Food Funct. 2011, 2, 78–83. [Google Scholar] [CrossRef]
Compound 1 | Compound 2 | ||||
---|---|---|---|---|---|
Position | δC (ppm) | δH (ppm, J in Hz) | Position | δC (ppm) | δH (ppm, J in Hz) |
1 | - | - | 1 | 65.4 | 5.64 (2H, s) |
2 | 84.8 | - | 2 | 196.3 | - |
3 | 56.2 | 4.22 (1H, s) | 1′ | 117.2 | - |
4 | 187.5 | - | 2′ | 162.6 | - |
4a | 121.6 | - | 3′ | 119.2 | 7.05 (1H, d, J =8.5) |
5 | 119.0 | 6.74 (1H, dd, J = 8.4, 0.6) | 4′ | 137.4 | 7.55 (1H, ddd, J = 8.1, 6.8, 1.2) |
6 | 122.0 | 7.0 (1H, ddd, J = 8.4, 7.7, 0.8) | 5′ | 119.7 | 6.98 (1H, m) |
7 | 136.7 | 7.35 (2H, m) | 6′ | 128.4 | 7.69 (1H, dd, J = 8.0, 1.6) |
8 | 126.7 | 8.0 (1H, dd, J = 7.8, 1.7) | 1′′ | 111.8 | - |
8a | 159.9 | - | 2′′ | 162.0 | - |
1′ | 140.8 | - | 3′′ | 117.9 | 7.02 (1H, d, J = 8.4) |
2′ | 125.9 | 7.58 (2H, d, J = 8.5) | 4′′ | 136.5 | 7.51 (1H, ddd, J = 9.3, 6.9, 1.3) |
3′ | 129.1 | 7.39 (2H, t, J = 7.7) | 5′′ | 119.6 | 6.95 (1H, m) |
4′ | 129.2 | 7.35 (2H, m) | 6′′ | 130.4 | 8.01 (1H, dd, J = 8.0, 1.7) |
5′ | 129.1 | 7.39 (2H, t, J = 7.7) | 7′′ | 169.4 | - |
6′ | 125.9 | 7.58 (2H, d, J = 8.5) | OH-2′ | - | 11.59 |
OH-2′′ | - | 10.39 |
Test Substance | 5 µg/mL | 2.5 µg/mL | 0.5 µg/mL | 0.05 µg/mL |
---|---|---|---|---|
MeOH extract | 34.33 ± 0.88 ** | 29.67 ± 0.88 ** | 13.33 ± 0.68 * | 2.33 ± 0.88 |
Diethyl ether | 3.03 ± 1.85 | 1.13 ± 1.13 | 1.47 ± 0.82 | 4.53 ± 2.54 |
EtOAc | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 3.47 ± 2.61 |
BuOH | 8.03 ± 0.60 | 2.63 ± 1.56 | 3.33 ± 3.33 | 2.23 ± 2.23 |
H2O | 0.57 ± 0.38 | 0.23 ± 0.23 | 0.33 ± 0.33 | 2.33 ± 1.25 |
6-mercaptopurin 1 | 27.86 ± 1.88 ** | 17.65 ± 0.91 ** | 13.23 ± 2.12 * | - |
% Inhibition of NO Release | % Inhibition of iNOS Expression | % Inhibition of COX-2 Expression | |||||||
---|---|---|---|---|---|---|---|---|---|
5 µg/mL | 2.5 µg/mL | 0.5 µg/mL | 5 µg/mL | 2.5 µg/mL | 0.5 µg/mL | 5 µg/mL | 2.5 µg/mL | 0.5 µg/mL | |
Diethyl ether | 78.91 ± 0.10 *** | 78.99 ± 0.00 *** | 73.22 ± 2.12 *** | 59.85 ± 8.95 *** | 59.60 ± 1.90 *** | 51.06 ± 2.44 *** | 31.80 ± 0.36 ** | 21.65 ± 3.13 * | 13.48 ± 5.13 |
EtOAc | 71.23 ± 0.17 *** | 64.53 ± 1.87 *** | 60.85 ± 1.05 *** | 72.51 ± 0.39 *** | 57.50 ± 2.59 *** | 44.34 ± 2.26 *** | 27.29 ± 0.97 ** | 20.19 ± 0.35 * | 10.15 ± 4.73 |
n-BuOH | 70.12 ± 0.81 *** | 61.08 ± 0.62 *** | 60.21 ± 0.88 *** | 73.02 ± 0.73 *** | 62.15 ± 4.27 *** | 56.80 ± 0.96 *** | 24.97 ± 1.16 ** | 14.71 ± 4.28 | 15.36 ± 0.16 |
H2O | 67.21 ± 0.22 *** | 59.12 ± 1.98 *** | 57.31 ± 2.00 *** | 68.38 ± 3.16 *** | 61.27 ± 0.37 *** | 54.02 ± 0.71 *** | 25.86 ± 0.48 ** | 17.85 ± 0.68 | 12.27 ± 1.41 |
Positive control 1,2 | 69.64 ± 0.61 *** | 54.81 ± 0.98 *** | 34.40 ± 0.00 ** | 56.98 ± 0.98 *** | 36.07 ± 1.95 *** | 21.94 ± 0.24 ** | 54.07 ± 0.71 *** | 47.18 ± 1.88 *** | 12.87 ± 1.60 ** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alilou, M.; Marzocco, S.; Batooli, H.; Troppmair, J.; Schwaiger, S.; Stuppner, H. Unusual Secondary Metabolites of the Aerial Parts of Dionysia diapensifolia Bioss. (Primulaceae) and Their Anti-Inflammatory Activity. Biomolecules 2020, 10, 438. https://doi.org/10.3390/biom10030438
Alilou M, Marzocco S, Batooli H, Troppmair J, Schwaiger S, Stuppner H. Unusual Secondary Metabolites of the Aerial Parts of Dionysia diapensifolia Bioss. (Primulaceae) and Their Anti-Inflammatory Activity. Biomolecules. 2020; 10(3):438. https://doi.org/10.3390/biom10030438
Chicago/Turabian StyleAlilou, Mostafa, Stefania Marzocco, Hossein Batooli, Jakob Troppmair, Stefan Schwaiger, and Hermann Stuppner. 2020. "Unusual Secondary Metabolites of the Aerial Parts of Dionysia diapensifolia Bioss. (Primulaceae) and Their Anti-Inflammatory Activity" Biomolecules 10, no. 3: 438. https://doi.org/10.3390/biom10030438
APA StyleAlilou, M., Marzocco, S., Batooli, H., Troppmair, J., Schwaiger, S., & Stuppner, H. (2020). Unusual Secondary Metabolites of the Aerial Parts of Dionysia diapensifolia Bioss. (Primulaceae) and Their Anti-Inflammatory Activity. Biomolecules, 10(3), 438. https://doi.org/10.3390/biom10030438