In Vitro and In Vivo Models for the Investigation of Potential Drugs Against Schizophrenia
Abstract
:1. Introduction
2. Hypotheses and Concepts of SZ
2.1. Neuroanatomy of SZ
2.2. Disturbances in Neurotransmission in SZ
2.3. Genetic Origins of SZ
2.4. Neurodevelopmental Hypothesis of SZ
3. In Vitro Models of SZ
4. Animal Models of SZ
4.1. Pharmacological Models of SZ
4.2. Genetic Animal Models of SZ
4.3. Neurodevelopmental Models of SZ
5. Summary of Discussed Models
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
5-CSR | 5-Choice Serial Reaction Time Task |
ASST | Attentional set-shifting task |
C4 | Schizophrenia comprising complement component 4 |
cAMP | Cyclic adenosine monophosphate |
CRISP/Cas9 | Clustered regularly interspaced short palindromic repeats-associated nuclease 9 |
CT | Computer tomography |
DI | Discrimination Index |
DISC1 | Disrupted-in-schizophrenia 1 |
DN | Dominant negative |
GABA | γ-Aminobutyric acid |
GSK3α | Glycogen synthase kinase-3α |
GWAS | Genome-wide association studies |
iPSCs | Induced pluripotent stem cells |
ID/ED | Intradimensional shift/extradimensional shift |
LPS | Lipopolysaccharide |
LSD | Lysergic acid diethylamide |
LTD | Long-term depression |
LTP | Long-term potentiation |
MAM | Methylazoxymethanol acetate |
mGluR | Metabotropic glutamate receptor |
MK-801 | Dizocilpine |
MWM | Morris Water Maze |
NGS | Next generation sequencing |
NMDA | N-methyl-D-aspartate |
NOR | Novel object recognition |
NRG1 | Neuregulin-1 |
NRXN1 | Neurexin 1 |
NSCs | Neuronal stem cells |
NSE | Neuron-specific enolase |
PAM | Positive allosteric modulator |
PCP | Phencyclidine |
PET | Positron emission tomography |
PFC | Prefrontal cortex |
PPI | Prepulse inhibition |
R1, R2, and R3 | Reversal 1, 2, and 3 |
RA | Retinoic acid |
RBM12 | RNA-binding motif 12 |
SD | Simple discrimination |
SGZ | Subgranular zone |
SNP | Single nucleotide polymorphism |
SPECT | Single photon emission computed tomography |
SZ | Schizophrenia |
TLR4 | Toll-like receptor 4 |
WCST | Wisconsin Card Sorting Test |
References
- McCutcheon, R.A.; Abi-Dargham, A.; Howes, O.D. Schizophrenia, Dopamine and the Striatum: From Biology to Symptoms. Trends Neurosci. 2019, 42, 205–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Early Development of Kraepelin’s Ideas on Classification: A Conceptual History. PubMed—NCBI. Available online: https://www.ncbi.nlm.nih.gov/pubmed/3078049 (accessed on 8 November 2018).
- Jackson, J.H. Remarks on Evolution and Dissolution of the Nervous System. J. Ment. Sci. 1887, 33, 25–48. [Google Scholar] [CrossRef]
- Jablensky, A. The diagnostic concept of schizophrenia: Its history, evolution, and future prospects. Dialogues Clin. Neurosci. 2010, 12, 271–287. [Google Scholar] [PubMed]
- Ashok, A.H.; Baugh, J.; Yeragani, V.K. Paul Eugen Bleuler and the origin of the term schizophrenia (SCHIZOPRENIEGRUPPE). Indian J. Psychiatry 2012, 54, 95–96. [Google Scholar] [PubMed]
- Maatz, A.; Hoff, P.; Angst, J. Eugen Bleuler’s schizophrenia—A modern perspective. Dialogues Clin. Neurosci. 2015, 17, 43–49. [Google Scholar] [PubMed]
- Seidman, L.J.; Mirsky, A.F. Evolving Notions of Schizophrenia as a Developmental Neurocognitive Disorder. J. Int. Neuropsychol. Soc. 2017, 23, 881–892. [Google Scholar] [CrossRef] [Green Version]
- Davison, J.; O’Gorman, A.; Brennan, L.; Cotter, D.R. A systematic review of metabolite biomarkers of schizophrenia. Schizophr. Res. 2018, 195, 32–50. [Google Scholar] [CrossRef] [Green Version]
- Elkis, H.; Buckley, P.F. Treatment-Resistant Schizophrenia. Psychiatr. Clin. N. Am. 2016, 39, 239–265. [Google Scholar] [CrossRef]
- Harrison, G.; Hopper, K.; Craig, T.; Laska, E.; Siegel, C.; Wanderling, J.; Dube, K.C.; Ganev, K.; Giel, R.; der Heiden, W.; et al. Recovery from psychotic illness: A 15- and 25-year international follow-up study. Br. J. Psychiatry 2001, 178, 506–517. [Google Scholar] [CrossRef] [Green Version]
- McClure, R.J.; Keshavan, M.S.; Pettegrew, J.W. Chemical and physiologic brain imaging in schizophrenia. Psychiatr. Clin. N. Am. 1998, 21, 93–122. [Google Scholar] [CrossRef]
- Weinstein, J.J.; Chohan, M.O.; Slifstein, M.; Kegeles, L.S.; Moore, H.; Abi-Dargham, A. Pathway-Specific Dopamine Abnormalities in Schizophrenia. Biol. Psychiatry 2017, 81, 31–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchsbaum, M.S.; Hazlett, E.A. Positron emission tomography studies of abnormal glucose metabolism in schizophrenia. Schizophr. Bull. 1998, 24, 343–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makara-Studzińska, M.; Łos, R. Neuroanatomical structural changes seen in patients with schizophrenia and their healthy siblings. Pol. Merkur. Lek. 2012, 33, 51–53. [Google Scholar]
- Gong, Q.; Dazzan, P.; Scarpazza, C.; Kasai, K.; Hu, X.; Marques, T.R.; Iwashiro, N.; Huang, X.; Murray, R.M.; Koike, S.; et al. A Neuroanatomical Signature for Schizophrenia Across Different Ethnic Groups. Schizophr. Bull. 2015, 41, 1266–1275. [Google Scholar] [CrossRef] [Green Version]
- Chakos, M.H.; Schobel, S.A.; Gu, H.; Gerig, G.; Bradford, D.; Charles, C.; Lieberman, J.A. Duration of illness and treatment effects on hippocampal volume in male patients with schizophrenia. Br. J. Psychiatry 2005, 186, 26–31. [Google Scholar] [CrossRef]
- Kolomeets, N.S.; Orlovskaya, D.D.; Rachmanova, V.I.; Uranova, N.A. Ultrastructural alterations in hippocampal mossy fiber synapses in schizophrenia: A postmortem morphometric study. Synapse 2005, 57, 47–55. [Google Scholar] [CrossRef]
- Donegan, J.J.; Lodge, D.J. Cell-based therapies for the treatment of schizophrenia. Brain Res. 2017, 1655, 262–269. [Google Scholar] [CrossRef] [Green Version]
- Stępnicki, P.; Kondej, M.; Kaczor, A.A. Current Concepts and Treatments of Schizophrenia. Molecules 2018, 23, 2087. [Google Scholar] [CrossRef] [Green Version]
- Brisch, R.; Saniotis, A.; Wolf, R.; Bielau, H.; Bernstein, H.G.; Steiner, J.; Bogerts, B.; Braun, K.; Jankowski, Z.; Kumaratilake, J.; et al. The Role of Dopamine in Schizophrenia from a Neurobiological and Evolutionary Perspective: Old Fashioned, but Still in Vogue. Front. Psychiatry 2014, 5, 47. [Google Scholar]
- Berridge, K.C.; Robinson, T.E. What is the role of dopamine in reward: Hedonic impact, reward learning, or incentive salience? Brain Res. Brain Res. Rev. 1998, 28, 309–369. [Google Scholar] [CrossRef]
- Lau, C.I.; Wang, H.C.; Hsu, J.L.; Liu, M.E. Does the dopamine hypothesis explain schizophrenia? Rev. Neurosci. 2013, 24, 389–400. [Google Scholar] [CrossRef] [PubMed]
- Kapur, S. Psychosis as a state of aberrant salience: A framework linking biology, phenomenology, and pharmacology in schizophrenia. Am. J. Psychiatry 2003, 160, 13–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uno, Y.; Coyle, J.T. Glutamate hypothesis in schizophrenia. Psychiatry Clin. Neurosci. 2019, 73, 204–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marsman, A.; van den Heuvel, M.P.; Klomp, D.W.J.; Kahn, R.S.; Luijten, P.R.; Hulshoff Pol, H.E. Glutamate in Schizophrenia: A Focused Review and Meta-Analysis of 1H-MRS Studies. Schizophr. Bull. 2013, 39, 120–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Javitt, D.C. Glutamate and schizophrenia: Phencyclidine, N-methyl-D-aspartate receptors, and dopamine-glutamate interactions. Int. Rev. Neurobiol. 2007, 78, 69–108. [Google Scholar]
- Howes, O.; McCutcheon, R.; Stone, J. Glutamate and dopamine in schizophrenia: An update for the 21st century. J. Psychopharmacol. 2015, 29, 97–115. [Google Scholar] [CrossRef] [Green Version]
- Maksymetz, J.; Moran, S.P.; Conn, P.J. Targeting metabotropic glutamate receptors for novel treatments of schizophrenia. Mol. Brain 2017, 10, 15. [Google Scholar] [CrossRef] [Green Version]
- Maj, C.; Minelli, A.; Giacopuzzi, E.; Sacchetti, E.; Gennarelli, M. The Role of Metabotropic Glutamate Receptor Genes in Schizophrenia. Curr. Neuropharmacol. 2016, 14, 540–550. [Google Scholar] [CrossRef] [Green Version]
- Trabanco, A.A.; Bartolomé, J.M.; Cid, J.M. mGluR2 positive allosteric modulators: An updated patent review (2013–2018). Expert Opin. Ther. Pat. 2019, 29, 497–507. [Google Scholar] [CrossRef]
- Kondej, M.; Stępnicki, P.; Kaczor, A.A. Multi-Target Approach for Drug Discovery against Schizophrenia. Int. J. Mol. Sci. 2018, 19, 3105. [Google Scholar] [CrossRef] [Green Version]
- Aghajanian, G.K.; Marek, G.J. Serotonin model of schizophrenia: Emerging role of glutamate mechanisms. Brain Res. Brain Res. Rev. 2000, 31, 302–312. [Google Scholar] [CrossRef]
- Kaczor, A.A.; Targowska-Duda, K.M.; Budzyńska, B.; Biała, G.; Silva, A.G.; Castro, M. In vitro, molecular modeling and behavioral studies of 3-{[4-(5-methoxy-1H-indol-3-yl)-1,2,3,6-tetrahydropyridin-1-yl]methyl}-1,2-dihydroquinolin-2-one (D2AAK1) as a potential antipsychotic. Neurochem. Int. 2016, 96, 84–99. [Google Scholar] [CrossRef] [PubMed]
- Ellenbroek, B.A.; Ghiabi, B. Do Histamine receptor 3 antagonists have a place in the therapy for schizophrenia? Curr. Pharm. Des. 2015, 21, 3760–3770. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Chen, Z. The roles of histamine and its receptor ligands in central nervous system disorders: An update. Pharmacol. Ther. 2017, 175, 116–132. [Google Scholar] [CrossRef] [PubMed]
- Arnsten, A.F.T. Adrenergic targets for the treatment of cognitive deficits in schizophrenia. Psychopharmacology 2004, 174, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Dean, B.; Scarr, E. Possible involvement of muscarinic receptors in psychiatric disorders: A focus on schizophrenia and mood disorders. Curr. Mol. Med. 2015, 15, 253–264. [Google Scholar] [CrossRef]
- Schmidt, M.J.; Mirnics, K. Neurodevelopment, GABA system dysfunction, and schizophrenia. Neuropsychopharmacology 2015, 40, 190–206. [Google Scholar] [CrossRef] [Green Version]
- Wassef, A.; Baker, J.; Kochan, L.D. GABA and schizophrenia: A review of basic science and clinical studies. J. Clin. Psychopharmacol. 2003, 23, 601–640. [Google Scholar] [CrossRef]
- Girgis, R.R.; Zoghbi, A.W.; Javitt, D.C.; Lieberman, J.A. The past and future of novel, non-dopamine-2 receptor therapeutics for schizophrenia: A critical and comprehensive review. J. Psychiatr. Res. 2019, 108, 57–83. [Google Scholar] [CrossRef]
- Lucatch, A.M.; Lowe, D.J.E.; Clark, R.C.; Kozak, K.; George, T.P. Neurobiological Determinants of Tobacco Smoking in Schizophrenia. Front. Psychiatry 2018, 9, 672. [Google Scholar] [CrossRef] [Green Version]
- Stevens, K.E.; Zheng, L.; Floyd, K.L.; Stitzel, J.A. Maximizing the effect of an α7 nicotinic receptor PAM in a mouse model of schizophrenia-like sensory inhibition deficits. Brain Res. 2015, 1611, 8–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potasiewicz, A.; Hołuj, M.; Kos, T.; Popik, P.; Arias, H.R.; Nikiforuk, A. 3-Furan-2-yl-N-p-tolyl-acrylamide, a positive allosteric modulator of the α7 nicotinic receptor, reverses schizophrenia-like cognitive and social deficits in rats. Neuropharmacology 2017, 113, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Espejo, E.; Viveros, M.-P.; Núñez, L.; Ellenbroek, B.A.; Rodriguez de Fonseca, F. Role of cannabis and endocannabinoids in the genesis of schizophrenia. Psychopharmacology 2009, 206, 531–549. [Google Scholar] [CrossRef]
- Müller, N. Inflammation in Schizophrenia: Pathogenetic Aspects and Therapeutic Considerations. Schizophr. Bull. 2018, 44, 973–982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, T.; Matsuda, T.; Hayes, L.N.; Yang, S.; Rodriguez, K.; Severance, E.G.; Yolken, R.H.; Sawa, A.; Eaton, W.W. Infection and inflammation in schizophrenia and bipolar disorder. Neurosci. Res. 2017, 115, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Maas, D.A.; Vallès, A.; Martens, G.J.M. Oxidative stress, prefrontal cortex hypomyelination and cognitive symptoms in schizophrenia. Transl. Psychiatry 2017, 7, e1171. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, P.F.; Kendler, K.S.; Neale, M.C. Schizophrenia as a complex trait: Evidence from a meta-analysis of twin studies. Arch. Gen. Psychiatry 2003, 60, 1187–1192. [Google Scholar] [CrossRef] [Green Version]
- Kallmann, F.J. The genetic theory of schizophrenia; an analysis of 691 schizophrenic twin index families. Am. J. Psychiatry 1946, 103, 309–322. [Google Scholar] [CrossRef]
- Lichtenstein, P.; Yip, B.H.; Björk, C.; Pawitan, Y.; Cannon, T.D.; Sullivan, P.F.; Hultman, C.M. Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: A population-based study. Lancet 2009, 373, 234–239. [Google Scholar] [CrossRef] [Green Version]
- Wray, N.R.; Gottesman, I.I. Using summary data from the danish national registers to estimate heritabilities for schizophrenia, bipolar disorder, and major depressive disorder. Front. Genet. 2012, 3, 118. [Google Scholar] [CrossRef] [Green Version]
- Zhuo, C.; Hou, W.; Li, G.; Mao, F.; Li, S.; Lin, X.; Jiang, D.; Xu, Y.; Tian, H.; Wang, W.; et al. The genomics of schizophrenia: Shortcomings and solutions. Prog. Neuropsychopharmacol. Biol. Psychiatry 2019, 93, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Millar, J.K.; Wilson-Annan, J.C.; Anderson, S.; Christie, S.; Taylor, M.S.; Semple, C.A.; Devon, R.S.; St Clair, D.M.; Muir, W.J.; Blackwood, D.H.; et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum. Mol. Genet. 2000, 9, 1415–1423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coelewij, L.; Curtis, D. Mini-review: Update on the genetics of schizophrenia. Ann. Hum. Genet. 2018, 82, 239–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrison, P.J. Recent genetic findings in schizophrenia and their therapeutic relevance. J. Psychopharmacol. 2015, 29, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Föcking, M.; Doyle, B.; Munawar, N.; Dillon, E.T.; Cotter, D.; Cagney, G. Epigenetic Factors in Schizophrenia: Mechanisms and Experimental Approaches. Mol. Neuropsychiatry 2019, 5, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Fatemi, S.H.; Folsom, T.D. The Neurodevelopmental Hypothesis of Schizophrenia, Revisited. Schizophr. Bull. 2009, 35, 528–548. [Google Scholar] [CrossRef]
- Limosin, F. Neurodevelopmental and environmental hypotheses of negative symptoms of schizophrenia. BMC Psychiatry 2014, 14, 88. [Google Scholar] [CrossRef] [Green Version]
- Davis, J.; Eyre, H.; Jacka, F.N.; Dodd, S.; Dean, O.; McEwen, S.; Debnath, M.; McGrath, J.; Maes, M.; Amminger, P.; et al. A review of vulnerability and risks for schizophrenia: Beyond the two hit hypothesis. Neurosci. Biobehav. Rev. 2016, 65, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Schlachetzki, J.C.M.; Saliba, S.W.; Oliveira, A.C.P. de Studying neurodegenerative diseases in culture models. Braz. J. Psiquiatr. 2013, 35, S92–S100. [Google Scholar] [CrossRef] [Green Version]
- Banker, G.A.; Cowan, W.M. Rat hippocampal neurons in dispersed cell culture. Brain Res. 1977, 126, 397–425. [Google Scholar] [CrossRef]
- Bray, N.J.; Kapur, S.; Price, J. Investigating schizophrenia in a “dish”: Possibilities, potential and limitations. World Psychiatry 2012, 11, 153–155. [Google Scholar] [CrossRef] [PubMed]
- Słońska, A.; Cymerys, J. Application of three-dimensional neuronal cell cultures in the studies of mechanisms of neurodegenerative diseases. Postepy Hig. Med. Dosw. 2017, 71, 510–519. [Google Scholar] [CrossRef] [PubMed]
- Kovalevich, J.; Langford, D. Considerations for the Use of SH-SY5Y Neuroblastoma Cells in Neurobiology. Methods Mol. Biol. 2013, 1078, 9–21. [Google Scholar] [PubMed] [Green Version]
- Shipley, M.M.; Mangold, C.A.; Szpara, M.L. Differentiation of the SH-SY5Y Human Neuroblastoma Cell Line. J. Vis. Exp. 2016, e53193. [Google Scholar] [CrossRef]
- Biehl, J.K.; Russell, B. Introduction to Stem Cell Therapy. J. Cardiovasc. Nurs. 2009, 24, 98–105. [Google Scholar] [CrossRef] [Green Version]
- Oh, J.H.; Jung, C.R.; Lee, M.O.; Kim, J.; Son, M.Y. Comparative analysis of human embryonic stem cell-derived neural stem cells as an in vitro human model. Int. J. Mol. Med. 2018, 41, 783–790. [Google Scholar] [CrossRef]
- Brennand, K.J.; Simone, A.; Jou, J.; Gelboin-Burkhart, C.; Tran, N.; Sangar, S.; Li, Y.; Mu, Y.; Chen, G.; Yu, D.; et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature 2011, 473, 221–225. [Google Scholar] [CrossRef]
- Pang, Z.P.; Yang, N.; Vierbuchen, T.; Ostermeier, A.; Fuentes, D.R.; Yang, T.Q.; Citri, A.; Sebastiano, V.; Marro, S.; Südhof, T.C.; et al. Induction of human neuronal cells by defined transcription factors. Nature 2011, 476, 220–223. [Google Scholar] [CrossRef]
- Liu, J.; Li, L.; Suo, W.Z. HT22 hippocampal neuronal cell line possesses functional cholinergic properties. Life Sci. 2009, 84, 267–271. [Google Scholar] [CrossRef]
- Rolando, C.; Taylor, V. Neural stem cell of the hippocampus: Development, physiology regulation, and dysfunction in disease. Curr. Top. Dev. Biol. 2014, 107, 183–206. [Google Scholar]
- Fukui, M.; Song, J.H.; Choi, J.; Choi, H.J.; Zhu, B.T. Mechanism of glutamate-induced neurotoxicity in HT22 mouse hippocampal cells. Eur. J. Pharmacol. 2009, 617, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Bambrick, L.L.; Yarowsky, P.J.; Krueger, B.K. Glutamate as a hippocampal neuron survival factor: An inherited defect in the trisomy 16 mouse. Proc. Natl. Acad. Sci. USA 1995, 92, 9692–9696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heckers, S.; Konradi, C. Hippocampal neurons in schizophrenia. J. Neural. Transm. 2002, 109, 891–905. [Google Scholar] [CrossRef] [PubMed]
- Edmondson, R.; Broglie, J.J.; Adcock, A.F.; Yang, L. Three-Dimensional Cell Culture Systems and Their Applications in Drug Discovery and Cell-Based Biosensors. Assay Drug Dev. Technol. 2014, 12, 207–218. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.; Eglen, R.M. Three-Dimensional Cell Cultures in Drug Discovery and Development. SLAS Discov. 2017, 22, 456–472. [Google Scholar]
- Featherstone, R.E.; Rizos, Z.; Kapur, S.; Fletcher, P.J. A sensitizing regimen of amphetamine that disrupts attentional set-shifting does not disrupt working or long-term memory. Behav. Brain Res. 2008, 189, 170–179. [Google Scholar] [CrossRef]
- Sams-Dodd, F. Distinct effects of d-amphetamine and phencyclidine on the social behaviour of rats. Behav. Pharmacol. 1995, 6, 55–65. [Google Scholar] [CrossRef]
- Fletcher, P.J.; Tenn, C.C.; Rizos, Z.; Lovic, V.; Kapur, S. Sensitization to amphetamine, but not PCP, impairs attentional set shifting: Reversal by a D1 receptor agonist injected into the medial prefrontal cortex. Psychopharmacology 2005, 183, 190–200. [Google Scholar] [CrossRef]
- Fletcher, P.J.; Tenn, C.C.; Sinyard, J.; Rizos, Z.; Kapur, S. A sensitizing regimen of amphetamine impairs visual attention in the 5-choice serial reaction time test: Reversal by a D1 receptor agonist injected into the medial prefrontal cortex. Neuropsychopharmacology 2007, 32, 1122–1132. [Google Scholar] [CrossRef]
- Meng, Z.H.; Feldpaush, D.L.; Merchant, K.M. Clozapine and haloperidol block the induction of behavioral sensitization to amphetamine and associated genomic responses in rats. Brain Res. Mol. Brain Res. 1998, 61, 39–50. [Google Scholar] [CrossRef]
- Martinez, V.; Sarter, M. Detection of the moderately beneficial cognitive effects of low-dose treatment with haloperidol or clozapine in an animal model of the attentional impairments of schizophrenia. Neuropsychopharmacology 2008, 33, 2635–2647. [Google Scholar] [CrossRef] [PubMed]
- Konradi, C.; Heckers, S. Molecular aspects of glutamate dysregulation: Implications for schizophrenia and its treatment. Pharmacol. Ther. 2003, 97, 153–179. [Google Scholar] [CrossRef] [Green Version]
- Cohen, B.D.; Rosenbaum, G.; Luby, E.D.; Gottlieb, J.S. Comparison of phencyclidine hydrochloride (Sernyl) with other drugs. Simulation of schizophrenic performance with phencyclidine hydrochloride (Sernyl), lysergic acid diethylamide (LSD-25), and amobarbital (Amytal) sodium; II. Symbolic and sequential thinking. Arch. Gen. Psychiatry 1962, 6, 395–401. [Google Scholar] [PubMed]
- Javitt, D.C.; Zukin, S.R. Recent advances in the phencyclidine model of schizophrenia. Am. J. Psychiatry 1991, 148, 1301–1308. [Google Scholar]
- Kalinichev, M.; Robbins, M.J.; Hartfield, E.M.; Maycox, P.R.; Moore, S.H.; Savage, K.M.; Austin, N.E.; Jones, D.N.C. Comparison between intraperitoneal and subcutaneous phencyclidine administration in Sprague-Dawley rats: A locomotor activity and gene induction study. Prog. Neuropsychopharmacol. Biol. Psychiatry 2008, 32, 414–422. [Google Scholar] [CrossRef]
- Mansbach, R.S.; Geyer, M.A. Effects of phencyclidine and phencyclidine biologs on sensorimotor gating in the rat. Neuropsychopharmacology 1989, 2, 299–308. [Google Scholar] [CrossRef]
- Sams-Dodd, F. A test of the predictive validity of animal models of schizophrenia based on phencyclidine and D-amphetamine. Neuropsychopharmacology 1998, 18, 293–304. [Google Scholar] [CrossRef] [Green Version]
- Jones, C.A.; Watson, D.J.G.; Fone, K.C.F. Animal models of schizophrenia. Br. J. Pharmacol. 2011, 164, 1162–1194. [Google Scholar] [CrossRef]
- Phillips, M.; Wang, C.; Johnson, K.M. Pharmacological characterization of locomotor sensitization induced by chronic phencyclidine administration. J. Pharmacol. Exp. Ther. 2001, 296, 905–913. [Google Scholar]
- Lee, P.R.; Brady, D.L.; Shapiro, R.A.; Dorsa, D.M.; Koenig, J.I. Social interaction deficits caused by chronic phencyclidine administration are reversed by oxytocin. Neuropsychopharmacology 2005, 30, 1883–1894. [Google Scholar] [CrossRef] [Green Version]
- Qiao, H.; Noda, Y.; Kamei, H.; Nagai, T.; Furukawa, H.; Miura, H.; Kayukawa, Y.; Ohta, T.; Nabeshima, T. Clozapine, but not haloperidol, reverses social behavior deficit in mice during withdrawal from chronic phencyclidine treatment. Neuroreport 2001, 12, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.H.; Marsden, C.A.; Robbins, T.W. Behavioural rigidity and rule-learning deficits following isolation-rearing in the rat: Neurochemical correlates. Behav. Brain Res. 1991, 43, 35–50. [Google Scholar] [CrossRef]
- Idris, N.F.; Neill, J.C.; Large, C.H. Comparison of the efficacy of two anticonvulsants, phenytoin and valproate to improve PCP and d-amphetamine induced deficits in a reversal learning task in the rat. Front. Behav. Neurosci. 2009, 3, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Idris, N.F.; Repeto, P.; Neill, J.C.; Large, C.H. Investigation of the effects of lamotrigine and clozapine in improving reversal-learning impairments induced by acute phencyclidine and D-amphetamine in the rat. Psychopharmacology 2005, 179, 336–348. [Google Scholar] [CrossRef]
- McLean, S.L.; Neill, J.C.; Idris, N.F.; Marston, H.M.; Wong, E.H.F.; Shahid, M. Effects of asenapine, olanzapine, and risperidone on psychotomimetic-induced reversal-learning deficits in the rat. Behav. Brain Res. 2010, 214, 240–247. [Google Scholar] [CrossRef] [Green Version]
- Idris, N.; Neill, J.; Grayson, B.; Bang-Andersen, B.; Witten, L.M.; Brennum, L.T.; Arnt, J. Sertindole improves sub-chronic PCP-induced reversal learning and episodic memory deficits in rodents: Involvement of 5-HT(6) and 5-HT (2A) receptor mechanisms. Psychopharmacology 2010, 208, 23–36. [Google Scholar] [CrossRef]
- Abdul-Monim, Z.; Reynolds, G.P.; Neill, J.C. The effect of atypical and classical antipsychotics on sub-chronic PCP-induced cognitive deficits in a reversal-learning paradigm. Behav. Brain Res. 2006, 169, 263–273. [Google Scholar] [CrossRef]
- Idris, N.F.; Grayson, B.; Neill, J.C. The emerging role of NMDA receptor hypofunction in mediation of reversal learning deficits in the rat. J. Psychopharmacol. 2006, 20, A68. [Google Scholar]
- Bowie, C.R.; Harvey, P.D. Cognitive deficits and functional outcome in schizophrenia. Neuropsychiatr. Dis. Treat. 2006, 2, 531–536. [Google Scholar] [CrossRef] [Green Version]
- Roberts, A.C.; Robbins, T.W.; Everitt, B.J. The effects of intradimensional and extradimensional shifts on visual discrimination learning in humans and non-human primates. Q. J. Exp. Psychol. B 1988, 40, 321–341. [Google Scholar]
- Berg, E.A. A simple objective technique for measuring flexibility in thinking. J. Gen. Psychol. 1948, 39, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Birrell, J.M.; Brown, V.J. Medial frontal cortex mediates perceptual attentional set shifting in the rat. J. Neurosci. 2000, 20, 4320–4324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potasiewicz, A.; Golebiowska, J.; Popik, P.; Nikiforuk, A. Procognitive effects of varenicline in the animal model of schizophrenia depend on α4β2- and α 7-nicotinic acetylcholine receptors. J. Psychopharmacol. 2018, 33, 62–73. [Google Scholar] [CrossRef] [PubMed]
- Nikiforuk, A.; Popik, P. Effects of quetiapine and sertindole on subchronic ketamine-induced deficits in attentional set-shifting in rats. Psychopharmacology 2012, 220, 65–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLean, S.L.; Beck, J.P.; Woolley, M.L.; Neill, J.C. A preliminary investigation into the effects of antipsychotics on sub-chronic phencyclidine-induced deficits in attentional set-shifting in female rats. Behav. Brain Res. 2008, 189, 152–158. [Google Scholar] [CrossRef] [Green Version]
- Meltzer, H.Y.; Rajagopal, L.; Huang, M.; Oyamada, Y.; Kwon, S.; Horiguchi, M. Translating the N-methyl-D-aspartate receptor antagonist model of schizophrenia to treatments for cognitive impairment in schizophrenia. Int. J. Neuropsychopharmacol. 2013, 16, 2181–2194. [Google Scholar] [CrossRef] [Green Version]
- Tek, C.; Gold, J.; Blaxton, T.; Wilk, C.; McMahon, R.P.; Buchanan, R.W. Visual perceptual and working memory impairments in schizophrenia. Arch. Gen. Psychiatry 2002, 59, 146–153. [Google Scholar] [CrossRef] [Green Version]
- Rajagopal, L.; Massey, B.W.; Huang, M.; Oyamada, Y.; Meltzer, H.Y. The novel object recognition test in rodents in relation to cognitive impairment in schizophrenia. Curr. Pharm. Des. 2014, 20, 5104–5114. [Google Scholar] [CrossRef]
- D’Hooge, R.; De Deyn, P.P. Applications of the Morris water maze in the study of learning and memory. Brain Res. Brain Res. Rev. 2001, 36, 60–90. [Google Scholar] [CrossRef]
- Didriksen, M.; Skarsfeldt, T.; Arnt, J. Reversal of PCP-induced learning and memory deficits in the Morris’ water maze by sertindole and other antipsychotics. Psychopharmacology 2007, 193, 225–233. [Google Scholar] [CrossRef]
- Neill, J.C.; Barnes, S.; Cook, S.; Grayson, B.; Idris, N.F.; McLean, S.L.; Snigdha, S.; Rajagopal, L.; Harte, M.K. Animal models of cognitive dysfunction and negative symptoms of schizophrenia: Focus on NMDA receptor antagonism. Pharmacol. Ther. 2010, 128, 419–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amitai, N.; Semenova, S.; Markou, A. Cognitive-disruptive effects of the psychotomimetic phencyclidine and attenuation by atypical antipsychotic medications in rats. Psychopharmacology 2007, 193, 521–537. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C.A.; Koenig, J.I. Social interaction and social withdrawal in rodents as readouts for investigating the negative symptoms of schizophrenia. Eur. Neuropsychopharmacol. 2014, 24, 759–773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snigdha, S.; Neill, J.C. Efficacy of antipsychotics to reverse phencyclidine-induced social interaction deficits in female rats—A preliminary investigation. Behav. Brain Res. 2008, 187, 489–494. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, T.A.; Harte, M.K.; McKibben, C.E.; Elliott, J.J.; Reynolds, G.P. Disturbances in social interaction occur along with pathophysiological deficits following sub-chronic phencyclidine administration in the rat. Behav. Brain Res. 2008, 194, 230–235. [Google Scholar] [CrossRef]
- File, S.E. The use of social interaction as a method for detecting anxiolytic activity of chlordiazepoxide-like drugs. J. Neurosci. Methods 1980, 2, 219–238. [Google Scholar] [CrossRef]
- Moy, S.S.; Nadler, J.J.; Perez, A.; Barbaro, R.P.; Johns, J.M.; Magnuson, T.R.; Piven, J.; Crawley, J.N. Sociability and preference for social novelty in five inbred strains: An approach to assess autistic-like behavior in mice. Genes Brain Behav. 2004, 3, 287–302. [Google Scholar] [CrossRef]
- St. Clair, D.; Johnstone, M. Using mouse transgenic and human stem cell technologies to model genetic mutations associated with schizophrenia and autism. Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20170037. [Google Scholar] [CrossRef] [Green Version]
- Tomoda, T.; Sumitomo, A.; Jaaro-Peled, H.; Sawa, A. Utility and validity of DISC1 mouse models in biological psychiatry. Neuroscience 2016, 321, 99–107. [Google Scholar] [CrossRef] [Green Version]
- Leung, C.; Jia, Z. Mouse Genetic Models of Human Brain Disorders. Front. Genet. 2016, 7, 40. [Google Scholar] [CrossRef] [Green Version]
- Koike, H.; Arguello, P.A.; Kvajo, M.; Karayiorgou, M.; Gogos, J.A. Disc1 is mutated in the 129S6/SvEv strain and modulates working memory in mice. Proc. Natl. Acad. Sci. USA 2006, 103, 3693–3697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuroda, K.; Yamada, S.; Tanaka, M.; Iizuka, M.; Yano, H.; Mori, D.; Tsuboi, D.; Nishioka, T.; Namba, T.; Iizuka, Y.; et al. Behavioral alterations associated with targeted disruption of exons 2 and 3 of the Disc1 gene in the mouse. Hum. Mol. Genet. 2011, 20, 4666–4683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahani, N.; Seshadri, S.; Jaaro-Peled, H.; Ishizuka, K.; Hirota-Tsuyada, Y.; Wang, Q.; Koga, M.; Sedlak, T.W.; Korth, C.; Brandon, N.J.; et al. DISC1 regulates trafficking and processing of APP and Aβ generation. Mol. Psychiatry 2015, 20, 874–879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clapcote, S.J.; Lipina, T.V.; Millar, J.K.; Mackie, S.; Christie, S.; Ogawa, F.; Lerch, J.P.; Trimble, K.; Uchiyama, M.; Sakuraba, Y.; et al. Behavioral phenotypes of Disc1 missense mutations in mice. Neuron 2007, 54, 387–402. [Google Scholar] [CrossRef] [Green Version]
- Hikida, T.; Jaaro-Peled, H.; Seshadri, S.; Oishi, K.; Hookway, C.; Kong, S.; Wu, D.; Xue, R.; Andradé, M.; Tankou, S.; et al. Dominant-negative DISC1 transgenic mice display schizophrenia-associated phenotypes detected by measures translatable to humans. Proc. Natl. Acad. Sci. USA 2007, 104, 14501–14506. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Zhou, Y.; Jentsch, J.D.; Brown, R.A.M.; Tian, X.; Ehninger, D.; Hennah, W.; Peltonen, L.; Lönnqvist, J.; Huttunen, M.O.; et al. Specific developmental disruption of disrupted-in-schizophrenia-1 function results in schizophrenia-related phenotypes in mice. Proc. Natl. Acad. Sci. USA 2007, 104, 18280–18285. [Google Scholar] [CrossRef] [Green Version]
- Pletnikov, M.V.; Ayhan, Y.; Nikolskaia, O.; Xu, Y.; Ovanesov, M.V.; Huang, H.; Mori, S.; Moran, T.H.; Ross, C.A. Inducible expression of mutant human DISC1 in mice is associated with brain and behavioral abnormalities reminiscent of schizophrenia. Mol. Psychiatry 2008, 13, 173–186. [Google Scholar] [CrossRef]
- Shen, S.; Lang, B.; Nakamoto, C.; Zhang, F.; Pu, J.; Kuan, S.L.; Chatzi, C.; He, S.; Mackie, I.; Brandon, N.J.; et al. Schizophrenia-related neural and behavioral phenotypes in transgenic mice expressing truncated Disc1. J. Neurosci. 2008, 28, 10893–10904. [Google Scholar] [CrossRef] [Green Version]
- Harrison, P.J.; Law, A.J. Neuregulin 1 and schizophrenia: Genetics, gene expression, and neurobiology. Biol. Psychiatry 2006, 60, 132–140. [Google Scholar] [CrossRef]
- Tian, J.; Geng, F.; Gao, F.; Chen, Y.H.; Liu, J.H.; Wu, J.L.; Lan, Y.J.; Zeng, Y.N.; Li, X.W.; Yang, J.M.; et al. Down-Regulation of Neuregulin1/ErbB4 Signaling in the Hippocampus Is Critical for Learning and Memory. Mol. Neurobiol. 2017, 54, 3976–3987. [Google Scholar] [CrossRef]
- Papaleo, F.; Yang, F.; Paterson, C.; Palumbo, S.; Carr, G.V.; Wang, Y.; Floyd, K.; Huang, W.; Thomas, C.J.; Chen, J.; et al. Behavioral, Neurophysiological, and Synaptic Impairment in a Transgenic Neuregulin1 (NRG1-IV) Murine Schizophrenia Model. J. Neurosci. 2016, 36, 4859–4875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olaya, J.C.; Heusner, C.L.; Matsumoto, M.; Shannon Weickert, C.; Karl, T. Schizophrenia-relevant behaviours of female mice overexpressing neuregulin 1 type III. Behav. Brain Res. 2018, 353, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Avramopoulos, D. Neuregulin 3 and its roles in schizophrenia risk and presentation. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2018, 177, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Fradley, R.L.; O’Meara, G.F.; Newman, R.J.; Andrieux, A.; Job, D.; Reynolds, D.S. STOP knockout and NMDA NR1 hypomorphic mice exhibit deficits in sensorimotor gating. Behav. Brain Res. 2005, 163, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Mohn, A.R.; Gainetdinov, R.R.; Caron, M.G.; Koller, B.H. Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 1999, 98, 427–436. [Google Scholar] [CrossRef] [Green Version]
- Belforte, J.E.; Zsiros, V.; Sklar, E.R.; Jiang, Z.; Yu, G.; Li, Y.; Quinlan, E.M.; Nakazawa, K. Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes. Nat. Neurosci. 2010, 13, 76–83. [Google Scholar] [CrossRef] [Green Version]
- Papaleo, F.; Yang, F.; Garcia, S.; Chen, J.; Lu, B.; Crawley, J.N.; Weinberger, D.R. Dysbindin-1 modulates prefrontal cortical activity and schizophrenia-like behaviors via dopamine/D2 pathways. Mol. Psychiatry 2012, 17, 85–98. [Google Scholar] [CrossRef] [Green Version]
- Karlsgodt, K.H.; Robleto, K.; Trantham-Davidson, H.; Jairl, C.; Cannon, T.D.; Lavin, A.; Jentsch, J.D. Reduced dysbindin expression mediates N-methyl-D-aspartate receptor hypofunction and impaired working memory performance. Biol. Psychiatry 2011, 69, 28–34. [Google Scholar] [CrossRef] [Green Version]
- Tueting, P.; Doueiri, M.-S.; Guidotti, A.; Davis, J.M.; Costa, E. Reelin down-regulation in mice and psychosis endophenotypes. Neurosci. Biobehav. Rev. 2006, 30, 1065–1077. [Google Scholar] [CrossRef]
- Krueger, D.D.; Howell, J.L.; Hebert, B.F.; Olausson, P.; Taylor, J.R.; Nairn, A.C. Assessment of cognitive function in the heterozygous reeler mouse. Psychopharmacology 2006, 189, 95–104. [Google Scholar] [CrossRef] [Green Version]
- Miyamoto, Y.; Nitta, A. Behavioral phenotypes for negative symptoms in animal models of schizophrenia. J. Pharmacol. Sci. 2014, 126, 310–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gill, K.M.; Cook, J.M.; Poe, M.M.; Grace, A.A. Prior antipsychotic drug treatment prevents response to novel antipsychotic agent in the methylazoxymethanol acetate model of schizophrenia. Schizophr. Bull. 2014, 40, 341–350. [Google Scholar] [CrossRef] [Green Version]
- Neves, G.A.; Grace, A.A. α7 Nicotinic receptor-modulating agents reverse the hyperdopaminergic tone in the MAM model of schizophrenia. Neuropsychopharmacology 2018, 43, 1712–1720. [Google Scholar] [CrossRef] [PubMed]
- Mattei, D.; Schweibold, R.; Wolf, S.A. Brain in flames—Animal models of psychosis: Utility and limitations. Neuropsychiatr. Dis. Treat. 2015, 11, 1313–1329. [Google Scholar] [PubMed] [Green Version]
- Wischhof, L.; Irrsack, E.; Osorio, C.; Koch, M. Prenatal LPS-exposure—A neurodevelopmental rat model of schizophrenia--differentially affects cognitive functions, myelination and parvalbumin expression in male and female offspring. Prog. Neuropsychopharmacol. Biol. Psychiatry 2015, 57, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Harvey, L.; Boksa, P. Additive effects of maternal iron deficiency and prenatal immune activation on adult behaviors in rat offspring. Brain Behav. Immun. 2014, 40, 27–37. [Google Scholar] [CrossRef]
- Lipska, B.K.; Jaskiw, G.E.; Weinberger, D.R. Postpubertal emergence of hyperresponsiveness to stress and to amphetamine after neonatal excitotoxic hippocampal damage: A potential animal model of schizophrenia. Neuropsychopharmacology 1993, 9, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Lipska, B.K. Using animal models to test a neurodevelopmental hypothesis of schizophrenia. J. Psychiatry Neurosci. 2004, 29, 282–286. [Google Scholar] [PubMed]
- Zhu, D.; Zhang, J.; Wu, J.; Li, G.; Yao, W.; Hao, J.; Sun, J. Paliperidone Protects SH-SY5Y Cells Against MK-801-Induced Neuronal Damage Through Inhibition of Ca2+ Influx and Regulation of SIRT1/miR-134 Signal Pathway. Mol. Neurobiol. 2016, 53, 2498–2509. [Google Scholar] [CrossRef]
- Mackay-Sim, A. Patient-derived stem cells: Pathways to drug discovery for brain diseases. Front. Cell Neurosci. 2013, 7, 29. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, R.; Sportelli, V.; Ziller, M.; Spengler, D.; Hoffmann, A. Tracing Early Neurodevelopment in Schizophrenia with Induced Pluripotent Stem Cells. Cells 2018, 7, 140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, J.; Ma, L.; Wu, M.; Zhang, L.; Zhang, X.; Zhai, Q.; Jiang, T.; Wang, Q.; Xiong, L. Anandamide Protects HT22 Cells Exposed to Hydrogen Peroxide by Inhibiting CB1 Receptor-Mediated Type 2 NADPH Oxidase. Oxid. Med. Cell Longev. 2014, 2014, 893516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langhans, S.A. Three-Dimensional in Vitro Cell Culture Models in Drug Discovery and Drug Repositioning. Front. Pharmacol. 2018, 9, 6. [Google Scholar] [CrossRef] [PubMed]
- Featherstone, R.E.; Kapur, S.; Fletcher, P.J. The amphetamine-induced sensitized state as a model of schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 2007, 31, 1556–1571. [Google Scholar] [CrossRef] [PubMed]
- Moore, H.; Jentsch, J.D.; Ghajarnia, M.; Geyer, M.A.; Grace, A.A. A neurobehavioral systems analysis of adult rats exposed to methylazoxymethanol acetate on E17: Implications for the neuropathology of schizophrenia. Biol. Psychiatry 2006, 60, 253–264. [Google Scholar] [CrossRef] [Green Version]
- Tseng, K.Y.; Chambers, R.A.; Lipska, B.K. The neonatal ventral hippocampal lesion as a heuristic neurodevelopmental model of schizophrenia. Behav. Brain Res. 2009, 204, 295–305. [Google Scholar] [CrossRef] [Green Version]
- Jaaro-Peled, H. Gene models of schizophrenia: DISC1 mouse models. Prog. Brain Res. 2009, 179, 75–86. [Google Scholar]
- Mei, L.; Xiong, W.C. Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nat. Rev. Neurosci. 2008, 9, 437–452. [Google Scholar] [CrossRef]
In Vitro Model | Study |
SH-SY5Y cell line | Study of molecular mechanisms and study of transmission in signaling pathways [150] |
Multipotent stem cells | Gene expression studies and pathway dysfunctions associated with mitochondrial metabolism and oxidative stress [151] Analysis of gene and receptor expression, study of neurodevelopmental pathways [152] |
Pluripotent stem cells | |
HT-22 cell line | Study of biochemical basis of cellular function and disease processes and neurodevelopmental pathways [153] |
Three-dimensional culture systems (3D) | Toxicity studies and determination of the biological or biochemical activity of the compounds [154] |
In Vivo Model | Study/Effect |
Amphetamine model Phencyclidine model | Locomotor sensitization; increased mesolimbic dopamine response; persistent deficit in prepulse inhibition (PPI); cognitive impairments [77,155] Enhanced mesolimbic dopamine response; no sustained deficit in PPI; reduced social interaction [90,112] |
MAM model Neonatal ventral hippocampal lesion model | Spontaneous hyperactivity; amphetamine- and NMDA antagonist-induced hyperactivity; deficits in PPI; cognitive impairment; reduced social interaction [143,156] Amphetamine- and NMDA antagonist-induced locomotor hyperactivity; cognitive impairments; deficits in PPI and social interaction [149,157] |
DISC-1 knock-out Neuregulin1 and ErbB4 knock-out | Increased sensitivity to psychostimulants; cognitive deficits; reduced social interaction; depressive-like behavior; deficits in PPI in some mutants [120,125,158] Spontaneous locomotor hyperactivity; social interaction impairment; PPI deficits in Neuregulin1 but not ErbB4 mutants [130,159] |
In Vitro model | Disadvantages | Advantages |
SH-SY5Y cell line | Genetic aberrations No synchronization | Biochemical and functional characteristics of neurons Expression of specific proteins and isoforms of proteins Ability to differentiate |
Multipotent stem cells | Protocols for differentiation and isoallocation conditions are under development | Differentiate into individual cell lines Unlimited self-renewal capacity Correct number of chromosomes Easy isolation and in vitro culture Low immunogenicity High immigration capacity |
Pluripotent stem cells | Differentiation into all types of cells | |
HT-22 cell line | - | Model for glutamate cytotoxicity studies Ease in conducting experimental procedures Preserving cytoarchitectonic properties |
Three-dimensional culture systems (3D) | Lack of even nutrition and oxygenation | Increased physiological response to bioactive substances Better interaction between cells and cells and the extracellular matrix |
In Vivo model | Disadvantages | Advantages |
Pharmacological (phencyclidine and amphetamine models) | There is no current “gold standard” medication to treat all the symptoms that can be used as a positive control (e.g., haloperidol and clozapine should reverse only positive symptoms of this disease) Models should have an appropriate symptoms homology, construct (replicate pathology and theoretical neurobiological response), and predictive validity to the clinical SZ disorder. | Animal models are very valuable preclinical tools used to investigate the neurobiological basis of SZ Resemble “positive-like” symptoms of SZ Resemble negative and cognitive symptoms of SZ by showing altered social deficits and cognitive impairments Resemble altered mesolimbic dopamine function |
Neurodevelopmental models | ||
Genetic models |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koszła, O.; Targowska-Duda, K.M.; Kędzierska, E.; Kaczor, A.A. In Vitro and In Vivo Models for the Investigation of Potential Drugs Against Schizophrenia. Biomolecules 2020, 10, 160. https://doi.org/10.3390/biom10010160
Koszła O, Targowska-Duda KM, Kędzierska E, Kaczor AA. In Vitro and In Vivo Models for the Investigation of Potential Drugs Against Schizophrenia. Biomolecules. 2020; 10(1):160. https://doi.org/10.3390/biom10010160
Chicago/Turabian StyleKoszła, Oliwia, Katarzyna M. Targowska-Duda, Ewa Kędzierska, and Agnieszka A. Kaczor. 2020. "In Vitro and In Vivo Models for the Investigation of Potential Drugs Against Schizophrenia" Biomolecules 10, no. 1: 160. https://doi.org/10.3390/biom10010160
APA StyleKoszła, O., Targowska-Duda, K. M., Kędzierska, E., & Kaczor, A. A. (2020). In Vitro and In Vivo Models for the Investigation of Potential Drugs Against Schizophrenia. Biomolecules, 10(1), 160. https://doi.org/10.3390/biom10010160