Study of Positron Impact Scattering from Methane and Silane Using an Analytically Obtained Static Potential with Correlation Polarization
Abstract
:1. Introduction
2. Theoretical Methodology
3. Results and Discussion
3.1. Positron-CH4 Scattering
3.1.1. Differential Cross Sections
3.1.2. Elastic Integrated and Total Cross Sections
3.2. Positron-SiH4 Scattering
3.2.1. Differential Cross Sections
3.2.2. Elastic Integrated and Total Cross Sections
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Surko, C.M.; Murphy, T.J. Use of the positron as a plasma particle. Phys. Fluids B Plasma Phys. 1990, 2, 1372–1375. [Google Scholar] [CrossRef]
- Guessoum, N. Positron astrophysics and areas of relation to low-energy positron physics. Eur. Phys. J. D 2014, 68, 137. [Google Scholar] [CrossRef]
- Johnson, W.N., III; Harnden, F.R., Jr.; Haymes, R.C. The spectrum of low-energy gamma radiation from the galactic-center region. Astrophys. J. 1972, 172, L1–L7. [Google Scholar] [CrossRef]
- Kropotov, J.D. Positron emission tomography. In Functional Neuromarkers for Psychiatry; Elsevier: Amsterdam, The Netherlands, 2016; pp. 27–30. ISBN 9780124105133. [Google Scholar] [CrossRef] [Green Version]
- Dlubek, G.; Meyendorf, N. Positron annihilation spectroscopy (PAS). In Annual Review of Materials Science; Springer Series in Statistics; Springer: New York, NY, USA, 2004; pp. 374–411. ISBN 978-0-387-98134-5. [Google Scholar]
- Brunger, M.J.; Buckman, S.J.; Ratnavelu, K. Positron scattering from molecules: An experimental cross section compilation for positron transport studies and benchmarking theory. J. Phys. Chem. Ref. Data 2017, 46, 023102. [Google Scholar] [CrossRef]
- Blanco, F.; Muñoz, A.; Almeida, D.; da Silva, F.F.; Limão-Vieira, P.; Fuss, M.C.; Sanz, A.G.; García, G. Modelling low energy electron and positron tracks in biologically relevant media. Eur. Phys. J. D 2013, 67, 199. [Google Scholar] [CrossRef]
- Fuss, M.C.; Ellis-Gibbings, L.; Jones, D.B.; Brunger, M.J.; Blanco, F.; Muñoz, A.; Limão-Vieira, P.; García, G. The role of pyrimidine and water as underlying molecular constituents for describing radiation damage in living tissue: A comparative study. J. Appl. Phys. 2015, 117, 214701. [Google Scholar] [CrossRef] [Green Version]
- Song, M.-Y.; Yoon, J.-S.; Cho, H.; Itikawa, Y.; Karwasz, G.P.; Kokoouline, V.; Nakamura, Y.; Tennyson, J. Cross sections for electron collisions with methane. J. Phys. Chem. Ref. Data 2015, 44, 023101. [Google Scholar] [CrossRef] [Green Version]
- Broadfoot, A.L.; Belton, M.J.S.; Takacs, P.Z.; Sandel, B.R.; Shemansky, D.E.; Holberg, J.B.; Ajello, J.M.; Atreya, S.K.; Donahue, T.M.; Moos, H.W.; et al. Extreme ultraviolet observations from voyager 1 encounter with Jupiter. Science 1979, 204, 979–982. [Google Scholar] [CrossRef]
- Goldhaber, D.M.; Betz, A.L. Silane in IRC +10216. Astrophys. J. 1984, 279, L55–L58. [Google Scholar] [CrossRef]
- Przybyla, D.A.; Kauppila, W.E.; Kwan, C.K.; Smith, S.J.; Stein, T.S. Measurements of positron-methane differential scattering cross sections. Phys. Rev. A 1997, 55, 4244–4247. [Google Scholar] [CrossRef]
- Jain, A. Elastic scattering of electrons and positrons by CH4 at 25–800 eV. J. Chem. Phys. 1983, 78, 6579–6583. [Google Scholar] [CrossRef]
- Jain, A.; Thompson, D.G. The scattering of slow positrons by CH4 and NH3. J. Phys. B At. Mol. Phys. 1983, 16, 1113–1123. [Google Scholar] [CrossRef]
- Jain, A.; Thompson, D.G. Rotational excitation of CH4 molecules by low-energy positrons. Phys. Rev. A 1984, 30, 1098–1100. [Google Scholar] [CrossRef]
- Jain, A.; Gianturco, F.A. Low-energy positron collisions with CH4 and SiH4 molecules by using new positron polarization potentials. J. Phys. B At. Mol. Opt. Phys. 1991, 24, 2387–2398. [Google Scholar] [CrossRef]
- Zecca, A.; Chiari, L.; Trainotti, E.; Sarkar, A.; Sanchez, S.D.A.; Bettega, M.H.F.; Varella, M.D.N.; Lima, M.A.P.; Brunger, M.J. Positron scattering from methane. Phys. Rev. A 2012, 85, 012707. [Google Scholar] [CrossRef]
- Franz, J. Positron-electron correlation-polarization potentials for the calculation of positron collisions with atoms and molecules. Eur. Phys. J. D 2017, 71, 44. [Google Scholar] [CrossRef] [Green Version]
- Charlton, M.; Griffith, T.C.; Heyland, G.R.; Wright, G.L. Total scattering cross sections for intermediate-energy positrons in the molecular gases H2, O2, N2, CO2 and CH4. J. Phys. B At. Mol. Phys. 1980, 13, L353–L356. [Google Scholar] [CrossRef]
- Charlton, M.; Griffith, T.C.; Heyland, G.R.; Wright, G.L. Total scattering cross sections for low-energy positrons in the molecular gases H2, N2, CO2, O2 and CH4. J. Phys. B At. Mol. Phys. 1983, 16, 323–341. [Google Scholar] [CrossRef]
- Floeder, K.; Fromme, D.; Raith, W.; Schwab, A.; Sinapius, G. Total cross section measurements for positron and electron scattering on hydrocarbons between 5 and 400 eV. J. Phys. B At. Mol. Phys. 1985, 18, 3347–3359. [Google Scholar] [CrossRef]
- Dababneh, M.S.; Hsieh, Y.-F.; Kauppila, W.E.; Kwan, C.K.; Smith, S.J.; Stein, T.S.; Uddin, M.N. Total-cross-section measurements for positron and electron scattering by O2, CH4, and SF6. Phys. Rev. A 1988, 38, 1207–1216. [Google Scholar] [CrossRef]
- Sueoka, O.; Mori, S. Total cross sections for low and intermediate energy positrons and electrons colliding with CH4, C2H4 and C2H6 molecules. J. Phys. B At. Mol. Phys. 1986, 19, 4035–4050. [Google Scholar] [CrossRef]
- Jain, A. Total (elastic plus inelastic) cross sections for positron-methane (helium) collisions at low, intermediate, and high energies. Phys. Rev. A 1987, 35, 4826–4829. [Google Scholar] [CrossRef] [PubMed]
- Baluja, K.L.; Jain, A. Total (elastic and inelastic) scattering cross sections for several positron-molecule systems at 10—5000 eV: H2, H2O, NH3, CH4, N2, CO, C2H2, O2, SiH4, CO2, N2O, and CF4. Phys. Rev. A 1992, 45, 7838–7845. [Google Scholar] [CrossRef]
- Raizada, R.; Baluja, K.L. Positron scattering from hydrocarbons. Pramana 1996, 46, 431–449. [Google Scholar] [CrossRef]
- Singh, S.; Dutta, S.; Naghma, R.; Antony, B. Positron scattering from simple molecules. J. Phys. B At. Mol. Opt. Phys. 2017, 50, 135202. [Google Scholar] [CrossRef]
- Jain, A. Positron-monosilane (SiH4) collisions at low, intermediate and high energies using a spherical complex optical potential approach. J. Phys. B At. Mol. Phys. 1986, 19, L807–L813. [Google Scholar] [CrossRef]
- Gianturco, F.A.; Jain, A.; Pantano, L.C. Positron collisions by methane and monosilane molecules below 10 eV. Phys. Rev. A 1987, 36, 4637–4643. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, A.S.; Bettega, M.H.F. Calculated cross sections for elastic scattering of slow positrons by silane. Phys. Rev. A 2017, 96, 042715. [Google Scholar] [CrossRef]
- Sueoka, O.; Mori, S.; Hamada, A. Total cross section measurements for positrons and electrons colliding with molecules. I. SiH 4 and CF 4. J. Phys. B At. Mol. Opt. Phys. 1994, 27, 1453–1465. [Google Scholar] [CrossRef]
- Raizada, R.; Baluja, K.L. Total cross sections of positron scattering from various molecules using the rule of additivity. Phys. Rev. A 1997, 55, 1533–1536. [Google Scholar] [CrossRef]
- Sinha, N.; Singh, S.; Antony, B. Theoretical study of positron scattering by group 14 tetra hydrides: A quantum mechanical approach. Int. J. Quantum Chem. 2018, 118, e25679. [Google Scholar] [CrossRef]
- Mahato, D.; Sharma, L.; Srivastava, R. An approach to study electron and positron scattering from NH3 and PH3 using the analytic static potential. J. Phys. B At. Mol. Opt. Phys. 2020, 53, 225204. [Google Scholar] [CrossRef]
- Mahato, D.; Sharma, L.; Srivastava, R. Study of electron and positron elastic scattering from hydrogen sulphide using analytically obtained static potential. Atoms 2020, 8, 83. [Google Scholar] [CrossRef]
- Mahato, D.; Sharma, L.; Srivastava, R. A new approach to study electron and positron scattering from acetylene. J. Electron Spectros. Relat. Phenom. 2021, 252, 147118. [Google Scholar] [CrossRef]
- Joachain, C.J. Quantum Collision Theory, 3rd ed.; North-Holland Physics Publishing: Amsterdam, The Netherland, 1983. [Google Scholar]
- Schiff, L.I. Quantum Mechanics, 3rd ed.; Tata McGraw-Hill: New York, NY, USA, 2010. [Google Scholar]
- Mahato, D.; Sharma, L.; Stauffer, A.D.; Srivastava, R. Electron impact elastic scattering from methane and silane molecules. Eur. Phys. J. D 2019, 73, 189. [Google Scholar] [CrossRef]
- Johnson Russell, D., III. NIST Computational Chemistry Comparison and Benchmark Database; 2020. Available online: http://cccbdb.nist.gov/ (accessed on 9 August 2021).
- Olney, T.N.; Cann, N.M.; Cooper, G.; Brion, C.E. Absolute scale determination for photoabsorption spectra and the calculation of molecular properties using dipole sum-rules. Chem. Phys. 1997, 223, 59–98. [Google Scholar] [CrossRef]
- Reid, D.D.; Wadehra, J.M. A quasifree model for the absorption effects in positron scattering by atoms. J. Phys. B At. Mol. Opt. Phys. 1996, 29, L127–L133. [Google Scholar] [CrossRef]
- Chiari, L.; Zecca, A.; Girardi, S.; Trainotti, E.; García, G.; Blanco, F.; McEachran, R.P.; Brunger, M.J. Positron scattering from O2. J. Phys. B At. Mol. Opt. Phys. 2012, 45, 215206. [Google Scholar] [CrossRef]
- Curtis, M.G.; Walker, I.C. Low-energy electron-impact excitation of methane, silane, tetrafluoromethane and tetrafluorosilane. J. Chem. Soc. Faraday Trans. 2 1989, 85, 659. [Google Scholar] [CrossRef]
- NIST Chemistry Webbook. Available online: http://webbook.nist.gov/chemistry (accessed on 12 August 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahato, D.; Sharma, L.; Srivastava, R. Study of Positron Impact Scattering from Methane and Silane Using an Analytically Obtained Static Potential with Correlation Polarization. Atoms 2021, 9, 113. https://doi.org/10.3390/atoms9040113
Mahato D, Sharma L, Srivastava R. Study of Positron Impact Scattering from Methane and Silane Using an Analytically Obtained Static Potential with Correlation Polarization. Atoms. 2021; 9(4):113. https://doi.org/10.3390/atoms9040113
Chicago/Turabian StyleMahato, Dibyendu, Lalita Sharma, and Rajesh Srivastava. 2021. "Study of Positron Impact Scattering from Methane and Silane Using an Analytically Obtained Static Potential with Correlation Polarization" Atoms 9, no. 4: 113. https://doi.org/10.3390/atoms9040113
APA StyleMahato, D., Sharma, L., & Srivastava, R. (2021). Study of Positron Impact Scattering from Methane and Silane Using an Analytically Obtained Static Potential with Correlation Polarization. Atoms, 9(4), 113. https://doi.org/10.3390/atoms9040113