# Vibrational Excitation Cross-Section by Positron Impact: A Wave-Packet Dynamics Study

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. The Model Potential

## 3. Wave-Packet Dynamics

## 4. Results and Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Acknowledgments

## Conflicts of Interest

## References

- Sullivan, J.P.; Gilbert, S.J.; Surko, C.M. Excitation of Molecular Vibrations by Positron Impact. Phys. Rev. Lett.
**2001**, 86, 1494. [Google Scholar] [CrossRef] [Green Version] - Gilbert, S.J.; Greaves, R.G.; Surko, C.M. Positron Scattering from Atoms and Molecules at Low Energies. Phys. Rev. Lett.
**1999**, 82, 5032–5035. [Google Scholar] [CrossRef] [Green Version] - Marler, J.P.; Surko, C.M. Systematic comparison of positron- and electron-impact excitation of the ν
_{3}vibrational mode of CF_{4}. Phys. Rev. A**2005**, 72, 062702. [Google Scholar] [CrossRef] [Green Version] - Gianturco, F.A.; Mukherjee, T. Dynamical coupling effects in the vibrational excitation of H
_{2}and N_{2}colliding with positrons. Phys. Rev. A**1997**, 55, 1044–1055. [Google Scholar] [CrossRef] - Mukherjee, T.; Ghosh, A.S.; Jain, A. Low-energy positron collisions with H
_{2}and N_{2}molecules by using a parameter-free positron-correlation-polarization potential. Phys. Rev. A**1991**, 43, 2538–2543. [Google Scholar] [CrossRef] [PubMed] - Varella, M.T.D.N.; Lima, M.A.P. Near-threshold vibrational excitation of H
_{2}by positron impact: A projection-operator approach. Phys. Rev. A**2007**, 76, 052701. [Google Scholar] [CrossRef] [Green Version] - Varella, M.T.D.N.; de Oliveira, E.M.; Lima, M.A. Near threshold vibrational excitation of molecules by positron impact: A projection operator approach. Nucl. Instr. Meth. B
**2008**, 266, 435–440. [Google Scholar] [CrossRef] - Mazon, K.T.; Tenfen, W.; Michelin, S.E.; Arretche, F.; Lee, M.T.; Fujimoto, M.M. Vibrational cross sections for positron scattering by nitrogen molecules. Phys. Rev. A
**2010**, 82, 032704. [Google Scholar] [CrossRef] - Mukherjee, T.; Mukherjee, M. Low-energy positron–nitrogen-molecule scattering: A rovibrational close-coupling study. Phys. Rev. A
**2015**, 91, 062706. [Google Scholar] [CrossRef] - Zammit, M.C.; Fursa, D.V.; Savage, J.S.; Bray, I.; Chiari, L.; Zecca, A.; Brunger, M.J. Adiabatic-nuclei calculations of positron scattering from molecular hydrogen. Phys. Rev. A
**2017**, 95, 022707. [Google Scholar] [CrossRef] [Green Version] - Poveda, L.A.; Assafrão, D.; Pinheiro, J.G.; Mohallem, J.R. Close-coupling scattering cross sections and a model for positron cooling in a buffer gas of molecular nitrogen. Phys. Rev. A
**2019**, 100, 062706. [Google Scholar] [CrossRef] - Gilbert, S.J.; Kurz, C.; Greaves, R.G.; Surko, C.M. Creation of a monoenergetic pulsed positron beam. App. Phys. Lett.
**1997**, 70, 1944–1946. [Google Scholar] [CrossRef] - Danielson, J.R.; Dubin, D.H.E.; Greaves, R.G.; Surko, C.M. Plasma and trap-based techniques for science with positrons. Rev. Mod. Phys.
**2015**, 87, 247–306. [Google Scholar] [CrossRef] - Natisin, M.R.; Danielson, J.R.; Surko, C.M. Positron cooling by vibrational and rotational excitation of molecular gases. J. Phys. B At. Mol. Opt. Phys.
**2014**, 47, 225209. [Google Scholar] [CrossRef] - Young, J.A.; Surko, C.M. Feshbach-resonance-mediated positron annihilation in small molecules. Phys. Rev. A
**2008**, 78, 032702. [Google Scholar] [CrossRef] [Green Version] - Young, J.A.; Surko, C.M. Feshbach-resonance-mediated annihilation in positron interactions with large molecules. Phys. Rev. A
**2008**, 77, 052704. [Google Scholar] [CrossRef] [Green Version] - Gribakin, G.F.; Young, J.A.; Surko, C.M. Positron-molecule interactions: Resonant attachment, annihilation, and bound states. Rev. Mod. Phys.
**2010**, 82, 2557–2607. [Google Scholar] [CrossRef] [Green Version] - Gribakin, G.F.; Lee, C.M.R. Positron Annihilation in Molecules by Capture into Vibrational Feshbach Resonances of Infrared-Active Modes. Phys. Rev. Lett.
**2006**, 97, 193201. [Google Scholar] [CrossRef] [Green Version] - d’A Sanchez, S.; Lima, M.A.P.; Varella, M.T.D.N. Feshbach projection operator approach to positron annihilation. Phys. Rev. A
**2009**, 80, 052710. [Google Scholar] [CrossRef] [Green Version] - d’A Sanchez, S.; Lima, M.A.; Varella, M.T.D.N. Multimode vibrational couplings in resonant positron annihilation. Phys. Rev. Lett.
**2011**, 107, 103201. [Google Scholar] [CrossRef] - Jones, A.C.L.; Danielson, J.R.; Natisin, M.R.; Surko, C.M.; Gribakin, G.F. Ubiquitous Nature of Multimode Vibrational Resonances in Positron-Molecule Annihilation. Phys. Rev. Lett.
**2012**, 108, 093201. [Google Scholar] [CrossRef] [Green Version] - Danielson, J.R.; Young, J.A.; Surko, C.M. Analysis of experimental positron-molecule binding energies. J. Phys. Conf. Ser.
**2010**, 199, 012012. [Google Scholar] [CrossRef] - Danielson, J.R.; Jones, A.C.L.; Gosselin, J.J.; Natisin, M.R.; Surko, C.M. Interplay between permanent dipole moments and polarizability in positron-molecule binding. Phys. Rev. A
**2012**, 85, 022709. [Google Scholar] [CrossRef] [Green Version] - Amaral, P.H.R.; Mohallem, J.R. Positron binding to atoms and apolar molecules: A convergence of theory and experiment. Phys. Rev. A
**2012**, 86, 042708. [Google Scholar] [CrossRef] - Romero, J.; Charry, J.A.; Flores-Moreno, R.; Varella, M.T.D.N.; Reyes, A. Calculation of positron binding energies using the generalized any particle propagator theory. J. Chem. Phys.
**2014**, 141, 114103. [Google Scholar] [CrossRef] [PubMed] - Swann, A.R.; Gribakin, G.F. Positron Binding and Annihilation in Alkane Molecules. Phys. Rev. Lett.
**2019**, 123, 113402. [Google Scholar] [CrossRef] [Green Version] - Suzuki, H.; Otomo, T.; Iida, R.; Sugiura, Y.; Takayanagi, T.; Tachikawa, M. Positron binding in chloroethenes: Modeling positron-electron correlation-polarization potentials for molecular calculations. Phys. Rev. A
**2020**, 102, 052830. [Google Scholar] [CrossRef] - Amaral, P.H.R.; Mohallem, J.R. Machine-learning predictions of positron binding to molecules. Phys. Rev. A
**2020**, 102, 052808. [Google Scholar] [CrossRef] - Hofierka, J.; Cunningham, B.; Rawlins, C.M.; Patterson, C.H.; Green, D.G. Many-body theory of positron binding in polyatomic molecules. arXiv
**2021**, arXiv:2105.06959. [Google Scholar] - Sugiura, Y.; Suzuki, K.; Koido, S.; Takayanagi, T.; Kita, Y.; Tachikawa, M. Quantum dynamics calculation of the annihilation spectrum for positron–proline scattering. Comp. Theor. Chem.
**2019**, 1147, 1–7. [Google Scholar] [CrossRef] - Kołos, W.; Wolniewicz, L. Polarizability of the Hydrogen Molecule. J. Chem. Phys.
**1967**, 46, 1426–1432. [Google Scholar] [CrossRef] - Mitroy, J.; Ivanov, I.A. Semiempirical model of positron scattering and annihilation. Phys. Rev. A
**2002**, 65, 042705. [Google Scholar] [CrossRef] [Green Version] - Marston, C.; Balint-Kurti, G.; Dixon, R. Time dependent quantum dynamics of reactive scattering and the calculation of product quantum state distributions—A study of the collinear F + H
_{2}(v = 0)->HF(v’) + H reaction. Theor. Chim. Acta**1991**, 79, 313–322. [Google Scholar] [CrossRef] - Bradley, K.S.; Schatz, G.C.; Balint-Kurti, G.G. Wave Packet Methods for the Direct Calculation of Energy-Transfer Moments in Molecular Collisions. J. Phys. Chem. A
**1999**, 103, 947–952. [Google Scholar] [CrossRef] - Vibók, Á.; Halász, G.J. Parametrization of complex absorbing potentials for time-dependent quantum dynamics using multi-step potentials. Phys. Chem. Chem. Phys.
**2001**, 3, 3048–3051. [Google Scholar] [CrossRef] - Dixon, R.N.; Marston, C.C.; Balint-Kurti, G.G. Photodissociation dynamics and emission spectroscopy of H
_{2}S in its first absorption band: A time dependent quantum mechanical study. J. Chem. Phys.**1990**, 93, 6520–6534. [Google Scholar] [CrossRef] - Takatsuka, K.; Hashimoto, N. A novel method to calculate eigenfunctions and eigenvalues in a given energy range. J. Chem. Phys.
**1995**, 103, 6057–6067. [Google Scholar] [CrossRef]

**Figure 1.**Cuts of the different components of the model potential. The empty dots in the inset are the data from ref. [31]. See text for details.

**Figure 2.**Comparison of the $0\to 1$ vibrational excitation CSs, in function of the incident positron energy. The solid red line is the present result.

Parameter | Value |
---|---|

Grid parameters | |

${r}_{min}$ | $0.0$ |

${r}_{max}$ | 1200 |

${N}_{r}$ | 1024 |

${R}_{min}$ | $-1.0$ |

${R}_{max}$ | $1.0$ |

${N}_{R}$ | 32 |

${r}_{\infty}$ | 200 |

$\Delta t$ | $0.01$ |

$\Delta {r}_{damp}$ | 950 |

$\Delta {t}_{damp}$ | 1000 |

${b}_{damp}$ | ${10}^{-7}$ |

Initial WP parameters | |

${r}_{0}$ | 100 |

$\Delta {r}_{0}$ | 20 |

${k}_{0}$ | $-0.245$ |

$\Delta {k}_{0}$ | $0.14$ |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Poveda, L.A.; Varella, M.T.d.N.; Mohallem, J.R.
Vibrational Excitation Cross-Section by Positron Impact: A Wave-Packet Dynamics Study. *Atoms* **2021**, *9*, 64.
https://doi.org/10.3390/atoms9030064

**AMA Style**

Poveda LA, Varella MTdN, Mohallem JR.
Vibrational Excitation Cross-Section by Positron Impact: A Wave-Packet Dynamics Study. *Atoms*. 2021; 9(3):64.
https://doi.org/10.3390/atoms9030064

**Chicago/Turabian Style**

Poveda, Luis A., Marcio T. do N. Varella, and José R. Mohallem.
2021. "Vibrational Excitation Cross-Section by Positron Impact: A Wave-Packet Dynamics Study" *Atoms* 9, no. 3: 64.
https://doi.org/10.3390/atoms9030064