Relativistic Coupled-Cluster Calculations of Isotope Shifts for the Low-Lying States of Ca II in the Finite-Field Approach
Abstract
:1. Introduction
2. Theoretical Method
2.1. Theory of IS in Atomic Systems
2.2. General Features of RCC Theory for One-Valence Systems
2.3. FF Approach and IS Constants
2.4. Generation of Single Particle Orbitals
3. Results and Discussion
Spectral Lines
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Batiz-Hernandez, H.; Bernheim, R.A. Chapter 2 The isotope shift. Prog. Nucl. Magn. Reson. Spectrosc. 1967, 3, 63. [Google Scholar] [CrossRef]
- Heilig, K.; Steudel, A. Changes in mean-square nuclear charge radii from optical isotope shifts. At. Data Nucl. Data Tables 1974, 14, 613–638. [Google Scholar] [CrossRef]
- Solaro, C.; Meyer, S.; Fisher, K.; Berengut, J.C.; Fuchs, E.; Drewsen, M. Improved Isotope-Shift-Based Bounds on Bosons beyond the Standard Model through Measurements of the 2D3/2–2D5/2 Interval in Ca+. Phys. Rev. Lett. 2020, 125, 123003. [Google Scholar] [CrossRef] [PubMed]
- Henley, E.M.; Garcia, A. Subatomic Physics, 3rd ed.; World Scientific: Singapore, 2007. [Google Scholar]
- Pradhan, A.; Nahar, S. Atomic Astrophysics and Spectroscopy; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Vermeeren, L.; Silverans, R.E.; Lievens, P.; Klein, A.; Neugart, R.; Schulz, C.; Buchinger, F. Ultrasensitive radioactive detection of collinear-laser optical pumping: Measurement of the nuclear charge radius of 50Ca. Phys. Rev. Lett. 1992, 68, 1679. [Google Scholar] [CrossRef] [PubMed]
- Nörtershäuser, W.; Blaum, K.; Icker, K.; Müller, P.; Schmitt, A.; Wendt, K.; Wiche, B. Isotope shifts and hyperfine structure in the 3d 2Dj →3d 2Pj transitions in calcium II. Eur. Phys. J. D 1998, 2, 33. [Google Scholar]
- Gorges, C.; Blaum, K.; Frömmgen, N.; Geppert, C.; Hammen, M.; Kaufmann, S.; Krämer, J.; Krieger, A.; Neugart, R.; Sánchez, R.; et al. Isotope shift of 40,42,44,48Ca in the 4s 2S1/2→ 4p 2P3/2 transition. J. Phys. At. Mol. Opt. Phys. 2015, 48, 245008. [Google Scholar] [CrossRef]
- Garcia Ruiz, R.F.; Bissel, M.L.; Blaum, K.; Ekström, A.; Frömmgen, N.; Hagen, G.; Hammen, M.; Hebeler, K.; Holt, J.D.; Jansen, G.R.; et al. Unexpectedly large radii of neutron-rich calcium isotopes. Nat. Phys. 2016, 12, 594. [Google Scholar] [CrossRef] [Green Version]
- Müller, P.; König, K.; Imgram, P.; Krämer, J.; Nörtershäuser, W. Collinear laser spectroscopy of Ca+: Solving the field-shift puzzle of the 4s2S1/2→4p2P1/2,3/2 transitions. Phys. Rev. Research 2020, 2, 043351. [Google Scholar] [CrossRef]
- Mårtensson-Pendrill, A.M.; Ynnerman, A.; Warston, H.; Vermeeren, L.; Silverans, R.E.; Klein, A.; Neugart, R.; Schulz, C.; Lievens, P.; The ISOLDE Collaboration. Isotope shifts and nuclear-charge radii in singly ionized 40–48Ca. Phys. Rev. A 1992, 45, 4675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Safronova, M.S.; Johnson, W.R. Third-order isotope-shift constants for alkali-metal atoms and ions. Phys. Rev. A 2001, 64, 052501. [Google Scholar] [CrossRef] [Green Version]
- Berengut, J.C.; Dzuba, V.A.; Flambaum, V.V. Isotope-shift calculations for atoms with one valence electron. Phys. Rev. A 2003, 68, 022502. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.; Majumder, S. Ab initio estimations of the isotope shift for the first three elements of the K isoelectronic sequence. Phys. Rev. A 2015, 92, 012508. [Google Scholar] [CrossRef]
- King, W.H. Isotope Shifts in Atomic Spectra; Springer: New York, NY, USA, 1984. [Google Scholar]
- Kastberg, A. Structure of Multielectron Atoms; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Lindgren, I.; Morrison, J. Atomic Many-Body Theory, 2nd ed.; Springer: Berlin, Germany, 1986. [Google Scholar]
- Shavitt, I.; Bartlett, R. Many-Body Methods in Chemistry and Physics; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Monkhorst, H.J. Calculation of properties with the coupled-cluster method. Int. J. Quantum Chem. 1977, 12, 421. [Google Scholar] [CrossRef]
- Bishop, R.F. The coupled cluster method. In Microscopic Quantum Many-Body Theories and Their Applications; Navarro, J., Polls, A., Eds.; Springer: Heidelberg, Germany, 1997; p. 1. [Google Scholar]
- Sahoo, B.; Vernon, A.; Garcia Ruiz, R.; Binnersley, C.; Billowes, J.; Bissell, M.; Cocolios, T.; Farooq-Smith, G.; Flanagan, K.; Gins, W.; et al. Analytic response relativistic coupled-cluster theory: The first application to indium isotope shifts. New J. Phys. 2020, 22, 012001. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, B.K.; Das, B.P.; Mukherjee, D. Relativistic coupled-cluster studies of ionization potentials, lifetimes, and polarizabilities in singly ionized calcium. Phys. Rev. A 2009, 79, 052511. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, B.K.; Das, B.P. Theoretical studies of the long lifetimes of the 6d2D3/2,5/2 states in Fr: Implications for parity-nonconservation measurements. Phys. Rev. A 2015, 92, 052511. [Google Scholar] [CrossRef]
- Sahoo, B.K. Conforming the measured lifetimes of the 5d2D3/2,5/2 states in Cs with theory. Phys. Rev. A 2016, 93, 022503. [Google Scholar] [CrossRef] [Green Version]
- Kramida, A.; Ralchenko, Y.; Reader, J.; NIST ASD Team. NIST Atomic Spectra Database (Ver. 5.3). 2018. Available online: http://physics.nist.gov/asd (accessed on 14 July 2019).
Atomic State | DHF | RCCSD | RCCSD(T) | Empiric Data [25] |
---|---|---|---|---|
91,440.02 | 95,883.58 | 95,444.94 | 95,751.87 | |
72,618.65 | 81,711.38 | 80,750.57 | 82,101.68 | |
72,594.55 | 81,631.34 | 80,670.66 | 82,040.99 | |
68,036.45 | 70,610.56 | 70,377.89 | 70,560.36 | |
67,836.79 | 70,378.86 | 70,149.40 | 70,337.47 |
This Work | Ref. [14] | Ref. [12] | ||||||
---|---|---|---|---|---|---|---|---|
Atomic State | DHF | DHF | RCCSD | RCCSD(T) | DHF | RCCSD | DHF | RMBPT |
Field Shift (MHz × fm) | ||||||||
0 | 111.8 | |||||||
0 | 111.2 | |||||||
19.6 | ||||||||
0 | 19.9 | |||||||
NMS (GHz × amu) | ||||||||
2383.86 | ||||||||
5494.38 | ||||||||
5479.22 | ||||||||
1619.66 | ||||||||
1611.92 | ||||||||
SMS (GHz × amu) | ||||||||
Spectral Line | This Work | Theory | Experiments | |||||
---|---|---|---|---|---|---|---|---|
a | b | c | [14] | [13] | [12] | [7] | [8] | |
Field Shift (MHz) | ||||||||
47 | ||||||||
47 | ||||||||
NMS (MHz) | ||||||||
SMS (MHz) | ||||||||
22 | ||||||||
3479 | ||||||||
3507 | ||||||||
3492 | ||||||||
Total (MHz) | ||||||||
591 | ||||||||
592 | ||||||||
3843 | ||||||||
3844 | ||||||||
3835 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dorne, A.; Sahoo, B.K.; Kastberg, A. Relativistic Coupled-Cluster Calculations of Isotope Shifts for the Low-Lying States of Ca II in the Finite-Field Approach. Atoms 2021, 9, 26. https://doi.org/10.3390/atoms9020026
Dorne A, Sahoo BK, Kastberg A. Relativistic Coupled-Cluster Calculations of Isotope Shifts for the Low-Lying States of Ca II in the Finite-Field Approach. Atoms. 2021; 9(2):26. https://doi.org/10.3390/atoms9020026
Chicago/Turabian StyleDorne, Anaïs, Bijaya K. Sahoo, and Anders Kastberg. 2021. "Relativistic Coupled-Cluster Calculations of Isotope Shifts for the Low-Lying States of Ca II in the Finite-Field Approach" Atoms 9, no. 2: 26. https://doi.org/10.3390/atoms9020026
APA StyleDorne, A., Sahoo, B. K., & Kastberg, A. (2021). Relativistic Coupled-Cluster Calculations of Isotope Shifts for the Low-Lying States of Ca II in the Finite-Field Approach. Atoms, 9(2), 26. https://doi.org/10.3390/atoms9020026