The Influence of External Radiation on the Emission Properties of H- and He-like Argon Ions in High Temperature Plasma
Abstract
1. Introduction
2. Influence of Photon Pumping on the Excitation Kinetics of Autoionization States for He-like Ions
3. Application of the Method to Ar XVII and XVIII Ions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Boiko, V.A.; Vinogradov, A.V.; Pikuz, S.A.; Skobelev, I.Y.; Faenov, A.Y. X-ray Spectroscopy of Laser Plasma. J. Sov. Laser Res. 1985, 6, 85. [Google Scholar]
- Weinstein, L.A.; Sobelman, I.I.; Yukov, E.A. Excitation of Atoms and Broadening of Spectral Lines; Nauka: Moscow, Russia, 1979. [Google Scholar]
- Aglitsky, E.V.; Safronova, U.I. The Spectroscopy of Autoionisation States of Atomic Systems; Energoatomizdat: Moscow, Russia, 1985. (In Russian) [Google Scholar]
- Chu, H.-H.; Tsai, H.-E.; Chou, M.-C.; Yang, L.-S.; Lin, J.-Y.; Lee, C.-H.; Wang, J.; Chen, S.-Y.C. Collisional Excitation Soft X-ray Laser Pumped by Optical Field Ionization in a Cluster Jet. Phys. Rev. A 2005, 71, 061804. [Google Scholar] [CrossRef]
- Butler, A.; Gonsalves, A.J.; McKenna, C.M.; Spence, D.J.; Hooker, S.M.; Sebban, S.; Mocek, T.; Bettaibi, I.; Cros, B. Demonstration of a Collisionally Excited Optical-Field-Ionization XUV Laser Driven in a PlasmaWaveguide. Phys. Rev. Lett. 2003, 91, 14. [Google Scholar] [CrossRef]
- Bulanov, S.V. New Epoch in the Charged Particle Acceleration by Relativistically Intense Laser Radiation. Plasma Phys. Control. Fusion 2006, 48, 29–37. [Google Scholar] [CrossRef]
- Mourou, G.A.; Tajima, T.; Bulanov, S.V. Optics in the Relativistic Regime. Rev. Mod. Phys. 2006, 78, 309. [Google Scholar] [CrossRef]
- Tümmler, J.; Janulewicz, K.A.; Priebe, G.; Nickles, P.V. 10-Hz Grazing–Incidence Pumped Ni-like Mo X-ray Laser. Phys. Rev. E 2005, 72, 037401. [Google Scholar] [CrossRef]
- Keenan, R.; Dunn, J.; Patel, P.K.; Price, D.F.; Smith, R.F.; Shlyaptsev, V.N. High-Repetition-Rate Grazing-Incidence Pumped X-ray Laser Operating at 18.9 Nm. Phys. Rev. Lett. 2005, 94, 103901. [Google Scholar] [CrossRef]
- Séguin, F.H.; DeCiantis, J.L.; Frenje, J.A.; Li, C.K.; Rygg, J.R.; Chen, C.D.; Petrasso, R.D.; Delettrez, J.A.; Regan, S.P.; Smalyuk, V.A.; et al. Measured Dependence of Nuclear Burn Region Size on Implosion Parameters in Inertial Confinement Fusion Experiments. Phys. Plasmas 2006, 13, 082704. [Google Scholar] [CrossRef]
- Brabec, T.; Krausz, F. Intense Few-Cycle Laser Fields: Frontiers of Nonlinear Optics. Rev. Mod. Phys. 2000, 72, 545–591. [Google Scholar] [CrossRef]
- Anisimov, S.I.; Zhakhovskii, V.V.; Inogamov, N.A.; Nishihara, K.; Oparin, A.M.; Petrov, Y.V. Destruction of a Solid Film under the Action of Ultrashort Laser Pulse. J. Exp. Theor. Phys. Lett. 2003, 77, 606–610. [Google Scholar] [CrossRef]
- Petrov, Y.V.; Anisimov, S.I. Thermal Conductivity and Electron-Phonon Relaxation in a Metal Heated by a Subpicosecond Laser Pulse. J. Opt. Technol. 2006, 73, 368–370. [Google Scholar] [CrossRef]
- Anisimov, S.I.; Zhakhovskiĭ, V.V.; Inogamov, N.A.; Nishihara, K.; Petrov, Y.V.; Khokhlov, V.A. Ablated Matter Expansion and Crater Formation under the Action of Ultrashort Laser Pulse. J. Exp. Theor. Phys. 2006, 103, 183–197. [Google Scholar] [CrossRef]
- Colgan, J.; Abdallah, J.; Faenov, A.Y.; Pikuz, S.A.; Wagenaars, E.; Booth, N.; Culfa, O.; Dance, R.J.; Evans, R.G.; Gray, R.J.; et al. Exotic Dense-Matter States Pumped by a Relativistic Laser Plasma in the Radiation-Dominated Regime. Phys. Rev. Lett. 2013, 110, 125001. [Google Scholar] [CrossRef]
- Colgan, J.; Faenov, A.Y.; Pikuz, S.A.; Tubman, E.; Butler, N.M.H.; Abdallah, J.; Dance, R.J.; Pikuz, T.A.; Skobelev, I.Y.; Alkhimova, M.A.; et al. Evidence of High-n Hollow-Ion Emission from Si Ions Pumped by Ultraintense X-rays from Relativistic Laser Plasma. EPL (Europhys. Lett.) 2016, 114, 35001. [Google Scholar] [CrossRef]
- Albertazzi, B.; Ciardi, A.; Nakatsutsumi, M.; Vinci, T.; Béard, J.; Bonito, R.; Billette, J.; Borghesi, M.; Burkley, Z.; Chen, S.N.; et al. Laboratory Formation of a Scaled Protostellar Jet by Coaligned Poloidal Magnetic Field. Science 2014, 346, 325–328. [Google Scholar] [CrossRef]
- Revet, G.; Chen, S.N.; Bonito, R.; Khiar, B.; Filippov, E.; Argiroffi, C.; Higginson, D.P.; Orlando, S.; Béard, J.; Blecher, M.; et al. Laboratory Unraveling of Matter Accretion in Young Stars. Sci. Adv. 2017, 3, e1700982. [Google Scholar] [CrossRef]
- Bolaños, S.; Sladkov, A.; Smets, R.; Chen, S.N.; Grisollet, A.; Filippov, E.; Henares, J.-L.; Nastasa, V.; Pikuz, S.; Riquier, R.; et al. Laboratory Evidence of Magnetic Reconnection Hampered in Obliquely Interacting Flux Tubes. Nat. Commun. 2022, 13, 6426. [Google Scholar] [CrossRef]
- Ryazantsev, S.N.; Pikuz, S.A.; Korneev, F.A. X-ray Spectral Diagnostics of Super-Strong Magnetic Fields in Ultra-Relativistic Laser Plasma. Quantum Electron. 2023, 53, 345–350. [Google Scholar]
- Oks, E.; Dalimier, E.; Faenov, A.Y.; Angelo, P.; Pikuz, S.A.; Tubman, E.; Butler, N.M.H.; Dance, R.J.; Pikuz, T.A.; Skobelev, I.Y.; et al. Using X-ray Spectroscopy of Relativistic Laser Plasma Interaction to Reveal Parametric Decay Instabilities: A Modeling Tool for Astrophysics. Opt. Express 2017, 25, 1958. [Google Scholar] [CrossRef]
- Elton, R.C.; Griem, H.R.; Welch, B.L.; Osterheld, A.L.; Mancini, R.C.; Knauer, J.; Pien, G.; Watt, R.G.; Cobble, J.A.; Jaanimagi, P.A.; et al. Satellite Spectral Lines in High Density Laser-Produced Plasmas. J. Quant. Spectrosc. Radiat. Transf. 1997, 58, 559–570. [Google Scholar] [CrossRef]
- Faenov, A.Y.; Pikuz, T.A.; Mabey, P.; Albertazzi, B.; Michel, T.; Rigon, G.; Pikuz, S.A.; Buzmakov, A.; Makarov, S.; Ozaki, N.; et al. Advanced High Resolution X-ray Diagnostic for HEDP Experiments. Sci. Rep. 2018, 8, 16407. [Google Scholar] [CrossRef] [PubMed]
- Rosmej, F.B. Hot Electron X-ray Diagnostics. J. Phys. B At. Mol. Opt. Phys. 1997, 30, L819. [Google Scholar] [CrossRef]
- Kostenko, O.F.; Andreev, N.E.; Rosmej, O.N. X-rays Diagnostics of the Hot Electron Energy Distribution in the Intense Laser Interaction with Metal Targets. Phys. Plasmas 2018, 25, 033105. [Google Scholar] [CrossRef]
- Skobelev, I.Y.; Ryazantsev, S.N.; Arich, D.D.; Bratchenko, P.S.; Faenov, A.Y.; Pikuz, T.A.; Durey, P.; Doehl, L.; Farley, D.; Baird, C.D.; et al. X-ray Absorption Spectroscopy Study of Energy Transport in Foil Targets Heated by Petawatt Laser Pulses. Photonics Res. 2018, 6, 234. [Google Scholar] [CrossRef]
- Martynenko, A.S.; Pikuz, S.A.; Skobelev, I.Y.; Ryazantsev, S.N.; Baird, C.; Booth, N.; Doehl, L.; Durey, P.; Faenov, A.Y.; Farley, D.; et al. Effect of Plastic Coating on the Density of Plasma Formed in Si Foil Targets Irradiated by Ultra-High-Contrast Relativistic Laser Pulses. Phys. Rev. E 2020, 101, 043208. [Google Scholar] [CrossRef]
- Martynenko, A.S.; Skobelev, I.Y.; Pikuz, S.A. Possibility of Estimating High-Intensity-Laser Plasma Parameters by Modelling Spectral Line Profiles in Spatially and Time-Integrated X-ray Emission. Appl. Phys. B 2019, 125, 31. [Google Scholar] [CrossRef]
- Kim, D.A.; Vichev, I.Y.; Solomyannaya, A.D.; Grushin, A.S. Simulation of Non-Stationary Neon Plasma Using the THERMOS Toolkit. High Energy Density Phys. 2022, 45, 101018. [Google Scholar] [CrossRef]
- Lindl, J. Development of the Indirect-Drive Approach to Inertial Confinement Fusion and the Target Physics Basis for Ignition and Gain. Phys. Plasmas 1995, 2, 3933–4024. [Google Scholar] [CrossRef]
- Rackstraw, D.S.; Vinko, S.M.; Ciricosta, O.; Cho, B.I.; Engelhorn, K.; Chung, H.K.; Brown, C.R.D.; Burian, T.; Chalupský, J.; Falcone, R.W.; et al. Opacity Effects in a Solid-Density Aluminium Plasma Created by Photo-Excitation with an X-ray Laser. High Energy Density Phys. 2014, 11, 59–69. [Google Scholar] [CrossRef]
- Riley, D.; Singh, R.L.; White, S.; Charlwood, M.; Bailie, D.; Hyland, C.; Audet, T.; Sarri, G.; Kettle, B.; Gribakin, G.; et al. Generation of Photoionized Plasmas in the Laboratory of Relevance to Accretion-Powered X-ray Sources Using KeV Line Radiation. High Energy Density Phys. 2024, 51, 101097. [Google Scholar] [CrossRef]
- Ciricosta, O.; Vinko, S.M.; Barbrel, B.; Rackstraw, D.S.; Preston, T.R.; Burian, T.; Chalupský, J.; Cho, B.I.; Chung, H.-K.; Dakovski, G.L.; et al. Measurements of Continuum Lowering in Solid-Density Plasmas Created from Elements and Compounds. Nat. Commun. 2016, 7, 11713. [Google Scholar] [CrossRef] [PubMed]
- Vinko, S.M.; Ciricosta, O.; Cho, B.I.; Engelhorn, K.; Chung, H.-K.; Brown, C.R.D.; Burian, T.; Chalupský, J.; Falcone, R.W.; Graves, C.; et al. Creation and Diagnosis of a Solid-Density Plasma with an X-ray Free-Electron Laser. Nature 2012, 482, 59–62. [Google Scholar] [CrossRef] [PubMed]
- Preston, T.R.; Vinko, S.M.; Ciricosta, O.; Chung, H.-K.; Lee, R.W.; Wark, J.S. The Effects of Ionization Potential Depression on the Spectra Emitted by Hot Dense Aluminium Plasmas. High Energy Density Phys. 2013, 9, 258–263. [Google Scholar] [CrossRef]
- Spaeth, M.L.; Manes, K.R.; Kalantar, D.H.; Miller, P.E.; Heebner, J.E.; Bliss, E.S.; Spec, D.R.; Parham, T.G.; Whitman, P.K.; Wegner, P.J.; et al. Description of the NIF Laser. Fusion Sci. Technol. 2016, 69, 25–145. [Google Scholar] [CrossRef]
- Cerantola, V.; Rosa, A.D.; Konôpková, Z.; Torchio, R.; Brambrink, E.; Rack, A.; Zastrau, U.; Pascarelli, S. New Frontiers in Extreme Conditions Science at Synchrotrons and Free Electron Lasers. J. Phys. Condens. Matter 2021, 33, 274003. [Google Scholar] [CrossRef]
- Yabashi, M.; Tanaka, H.; Ishikawa, T. Overview of the SACLA Facility. J. Synchrotron. Radiat. 2015, 22, 477–484. [Google Scholar] [CrossRef]
- Zastrau, U.; Appel, K.; Baehtz, C.; Baehr, O.; Batchelor, L.; Berghäuser, A.; Banjafar, M.; Brambrink, E.; Cerantola, V.; Cowan, T.E.; et al. The High Energy Density Scientific Instrument at the European XFEL. J. Synchrotron. Radiat. 2021, 28, 1393–1416. [Google Scholar] [CrossRef]
- Doumy, G.; Roedig, C.; Son, S.K.; Blaga, C.I.; Dichiara, A.D.; Santra, R.; Berrah, N.; Bostedt, C.; Bozek, J.D.; Bucksbaum, P.H.; et al. Nonlinear Atomic Response to Intense Ultrashort x Rays. Phys. Rev. Lett. 2011, 106, 083002. [Google Scholar] [CrossRef]
- Tamasaku, K.; Nagasono, M.; Iwayama, H.; Shigemasa, E.; Inubushi, Y.; Tanaka, T.; Tono, K.; Togashi, T.; Sato, T.; Katayama, T.; et al. Double Core-Hole Creation by Sequential Attosecond Photoionization. Phys. Rev. Lett. 2013, 111, 043001. [Google Scholar] [CrossRef]
- Young, L.; Kanter, E.P.; Kräsignssig, B.; Li, Y.; March, A.M.; Pratt, S.T.; Santra, R.; Southworth, S.H.; Rohringer, N.; Dimauro, L.F.; et al. Femtosecond Electronic Response of Atoms to Ultra-Intense X-rays. Nature 2010, 466, 56–61. [Google Scholar] [CrossRef]
- Makarov, S.; Makita, M.; Nakatsutsumi, M.; Pikuz, T.; Ozaki, N.; Preston, T.R.; Appel, K.; Konopkova, Z.; Cerantola, V.; Brambrink, E.; et al. Direct LiF Imaging Diagnostics on Refractive X-ray Focusing at the EuXFEL High Energy Density Instrument. J. Synchrotron. Radiat. 2023, 30, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Mimura, H.; Yumoto, H.; Matsuyama, S.; Koyama, T.; Tono, K.; Inubushi, Y.; Togashi, T.; Sato, T.; Kim, J.; Fukui, R.; et al. Generation of 1020 W cm−2 Hard X-ray Laser Pulses with Two-Stage Reflective Focusing System. Nat. Commun. 2014, 5, 3539. [Google Scholar] [CrossRef] [PubMed]
- Yamada, J.; Matsuyama, S.; Inoue, I.; Osaka, T.; Inoue, T.; Nakamura, N.; Tanaka, Y.; Inubushi, Y.; Yabuuchi, T.; Tono, K.; et al. Extreme Focusing of Hard X-ray Free-Electron Laser Pulses Enables 7 Nm Focus Width and 1022 W Cm−2 Intensity. Nat. Photonics 2024, 18, 685–690. [Google Scholar] [CrossRef]
- Kulikov, R.K.; Skobelev, I.Y.; Makarov, S.S. On X-ray Spectral Diagnostics of Laser Plasma with External Photon Pumping. Bull. Lebedev Phys. Inst. 2024, 51, S903–S911. [Google Scholar] [CrossRef]
- Gabriel, A.H.; Jordan, C. Long Wavelength Satellites to the He-like Ion Resonance Lines in the Laboratory and in the Sun. Nature 1969, 221, 947–949. [Google Scholar] [CrossRef]
- Gabriel, A.H. Dielectronic Satellite Spectra for Highly-Charged Helium-Like Ion Lines. Mon. Not. R. Astron. Soc. 1972, 160, 99–119. [Google Scholar] [CrossRef]
- Skobelev, I.Y.; Ryazantsev, S.N.; Kulikov, R.K.; Sedov, M.V.; Filippov, E.D.; Pikuz, S.A.; Asai, T.; Kanasaki, M.; Yamauchi, T.; Jinno, S.; et al. The Role of Collision Ionization of K-Shell Ions in Nonequilibrium Plasmas Produced by the Action of Super Strong, Ultrashort PW-Class Laser Pulses on Micron-Scale Argon Clusters with Intensity up to 5 × 1021 W/Cm2. Photonics 2023, 10, 1250. [Google Scholar] [CrossRef]
- Bhalla, C.P.; Gabriel, A.H.; Presnyakov, L.P. Dielectronic Satellite Spectra for Highly-Charged Helium-like Ions—II Improved Calculations. Mon. Not. R. Astron. Soc. 1975, 172, 359–375. [Google Scholar] [CrossRef]
- Skobelev, I.Y.; Vinogradov, A.V.; Yukov, E.A. Density-Dependent Lines of One- and Two-Electron Ions in Diagnostics of Laboratory Plasma. II. Intensity Line Ratios of Hydrogenlike, Heliumlike and Oxygenlike Multicharged Ions. Phys. Scr. 1978, 18, 78–86. [Google Scholar] [CrossRef]
- Gu, M.F. The Flexible Atomic Code. Can. J. Phys. 2008, 86, 675–689. [Google Scholar] [CrossRef]
- Chung, H.K.; Chen, M.H.; Morgan, W.L.; Ralchenko, Y.; Lee, R.W. FLYCHK: Generalized Population Kinetics and Spectral Model for Rapid Spectroscopic Analysis for All Elements. High Energy Density Phys. 2005, 1, 3–12. [Google Scholar] [CrossRef]
- Lyu, C.; Cavaletto, S.M.; Keitel, C.H.; Harman, Z. Narrow-Band Hard-X-Ray Lasing with Highly Charged Ions. Sci. Rep. 2020, 10, 9439. [Google Scholar] [CrossRef] [PubMed]
- Nilsen, J. Modeling the Gain of Inner-Shell X-ray Laser Transitions in Neon, Argon, and Copper Driven by X-ray Free Electron Laser Radiation Using Photo-Ionization and Photo-Excitation Processes. Matter Radiat. Extrem. 2016, 1, 76–81. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulikov, R.K.; Skobelev, I.Y.; Filippov, E.D. The Influence of External Radiation on the Emission Properties of H- and He-like Argon Ions in High Temperature Plasma. Atoms 2025, 13, 51. https://doi.org/10.3390/atoms13060051
Kulikov RK, Skobelev IY, Filippov ED. The Influence of External Radiation on the Emission Properties of H- and He-like Argon Ions in High Temperature Plasma. Atoms. 2025; 13(6):51. https://doi.org/10.3390/atoms13060051
Chicago/Turabian StyleKulikov, Roman K., Igor Yu. Skobelev, and Evgeny D. Filippov. 2025. "The Influence of External Radiation on the Emission Properties of H- and He-like Argon Ions in High Temperature Plasma" Atoms 13, no. 6: 51. https://doi.org/10.3390/atoms13060051
APA StyleKulikov, R. K., Skobelev, I. Y., & Filippov, E. D. (2025). The Influence of External Radiation on the Emission Properties of H- and He-like Argon Ions in High Temperature Plasma. Atoms, 13(6), 51. https://doi.org/10.3390/atoms13060051