Density Functional Theory Study of Hydrogen Adsorption on Al-U Alloy Surfaces
Abstract
:1. Introduction
2. Computational Methods
3. Results and Discussion
3.1. H Adsorption on the Pure Al(111) and U(110) Surfaces
3.2. H Adsorption on the nAl/U(110) Alloy Surfaces
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tian, X.F.; Wang, Y.; Li, L.S.; Wu, M.D.; Yu, Y. First principles studies of oxygen adsorption on the γ-U (110) surface and influences of mo doping. Comp. Mater. Sci. 2020, 179, 109633. [Google Scholar] [CrossRef]
- Sheng, J.; Liu, Y.; Shi, X.M.; Wang, Y.C.; Chen, Z.H.; Xu, K.; Wu, S.; Huang, H.B.; Sun, B.; Liu, H.F.; et al. A multiphase-field model for simulating the hydrogen-induced multi-spot corrosion on the surface of polycrystalline metals: Application to uranium metal. Comp. Mater. Sci. 2024, 235, 112779. [Google Scholar] [CrossRef]
- Qin, C.L.; Yu, Y.S.; Xu, Z.H.; Du, J.G.; Zhao, L.; Jiang, G. The interaction of oxygen with the γ-U (001) and (110) surfaces: An ab initio study. Comp. Mater. Sci. 2023, 219, 112025. [Google Scholar] [CrossRef]
- Chen, J.F.; Tang, T. First-principles thermodynamical modeling of molecular reactions on α-U (001) and α-UH 3 (001) surfaces and their influence on hydrogen activation. J. Nucl. Mater. 2025, 603, 155455. [Google Scholar] [CrossRef]
- Chen, L.C.; Ji, H.F.; Su, B.; Chen, P.H.; Wang, X.L. The role of nb in enhancing the corrosion resistance of U-Nb alloy to hydrogen. Corros. Sci. 2025, 243, 112594. [Google Scholar] [CrossRef]
- Singh, S.; Singh, H. Effect of electroplated interlayers on bonding mechanism of cold-sprayed copper on SS316L steel substrate. Vacuum 2020, 172, 109092. [Google Scholar] [CrossRef]
- Depla, D. Sputter deposition with powder targets: An overview. Vacuum 2021, 184, 109892. [Google Scholar] [CrossRef]
- Yugeswaran, S.; Kobayashi, A. Metallic glass coatings fabricated by gas tunnel type plasma spraying. Vacuum 2014, 110, 177–182. [Google Scholar] [CrossRef]
- Anna, K.; Subr, M.; Kylián, O.; Kús, P.; Hanus, J.; Procházka, M. Nanostructured metal coatings for surface-enhanced raman spectroscopy (sers) prepared by means of low-pressure plasma. Vacuum 2019, 170, 108951. [Google Scholar]
- Tan, Y.; Yip, W.S.; Zhao, T.; To, S.; Zhao, Z.J. Subsurface damage and brittle fracture suppression of monocrystalline germanium in ultra-precision machining by multiple ion implantation surface modification. J. Mater. Process. Technol. 2024, 334, 118640. [Google Scholar] [CrossRef]
- Levchuk, D.; Koch, F.; Maier, H.; Bolt, H. Gas-driven deuterium permeation through alo coated samples. Phys. Scripta 2004, T108, 119–123. [Google Scholar] [CrossRef]
- Bland, R.D. A parametric study of ion-plated aluminum coatings on uranium. Electrochem. Technol. 1968, 6, 272–278. [Google Scholar]
- Yamabe, J.; Matsuoka, S.; Murakami, Y. Surface coating with a high resistance to hydrogen entry under high-pressure hydrogen-gas environment. Int. J. Hydrogen Energy 2013, 38, 10141–10154. [Google Scholar] [CrossRef]
- Qiu, C.A.; Olson, G.B.; Opalka, S.M.; Anton, D.L. Thermodynamic evaluation of the Al-H system. J. Phase Equilib. Diff. 2004, 25, 520–527. [Google Scholar] [CrossRef]
- Kamoutsi, H.; Haidemenopoulos, G.N.; Bontozoglou, V.; Pantelakis, S. Corrosion-induced hydrogen embrittlement in aluminum alloy 2024. Corros. Sci. 2006, 48, 1209–1224. [Google Scholar] [CrossRef]
- Musket, R.G.; Steward, S.A.; Brown, D.W.; Uribe, F.S. Reduction of tritium permeation through iron using aluminum-ion implantation. In Conference: American Vacuum Society Meeting, Boston, MA, USA, 1 Nov 1983; Lawrence Livermore National Lab.: Livermore, CA, USA, 1983; 6p. [Google Scholar]
- Shan, C.; Wu, A.; Chen, Q.; Wang, Q.; Ni, R. Investigation on behavior of diffusion and permeation of tritium in uranium implanted with aluminum, oxygen, molybdenum and chromium. At. Energy Sci. Technol. 1993, 26, 75–79. [Google Scholar]
- You, D.; Xie, D.; Wang, X.T.; Wei, L.J.; Liang, C.H.; Leng, Y.X. Hydrogen adsorption on Au (111), U (110), and nAu/U (110) alloy surfaces: A first-principles study. J. Nucl. Mater. 2023, 577, 154331. [Google Scholar] [CrossRef]
- Fan, Y.M.; Zhuo, Y.Q.; Lou, Y.; Zhu, Z.W.; Li, L.L. SeO2 adsorption on cao surface: Dft study on the adsorption of a single SeO2 molecule. Appl. Surf. Sci. 2017, 413, 366–371. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Baerends, E.J. Perspective on “self-consistent equations including exchange and correlation effects”. Theor. Chem. Acc. 2000, 103, 265–269. [Google Scholar] [CrossRef]
- Fischer, T.H.; Almlof, J. General-methods for geometry and wave-function optimization. J. Phys. Chem. 1992, 96, 9768–9774. [Google Scholar] [CrossRef]
- Neugebauer, J.; Scheffler, M. Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on al(111). Phys. Rev. B 1992, 46, 16067–16080. [Google Scholar] [CrossRef]
- Dudarev, S.L.; Botton, G.A.; Savrasov, S.Y.; Humphreys, C.J.; Sutton, A.P. Electron-energy-loss spectra and the structural stability of nickel oxide: An Lsda + U study. Phys. Rev. B 1998, 57, 1505–1509. [Google Scholar] [CrossRef]
- Adak, S.; Nakotte, H.; de Châtel, P.F.; Kiefer, B. Uranium at high pressure from first principles. Phys. B Condens. Matter 2011, 406, 3342–3347. [Google Scholar] [CrossRef]
- Huda, M.N.; Ray, A.K. Density functional study of o adsorption on (100) surface of γ-uranium. Int. J. Quantum. Chem. 2005, 102, 98–105. [Google Scholar] [CrossRef]
- Shiroka, T. Introduction to solid state physics. Contemp. Phys. 2020, 61, 221–222. [Google Scholar] [CrossRef]
- Dholabhai, P.P.; Ray, A.K. A density functional study of carbon monoxide adsorption on (100) surface of γ-uranium. J. Alloys Compd. 2007, 444, 356–362. [Google Scholar] [CrossRef]
- Beeler, B.; Good, B.; Rashkeev, S.; Deo, C.; Baskes, M.; Okuniewski, M. First principles calculations for defects in U. J. Phys.-Condens Mat. 2010, 22, 505703. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, C.H.; Jin, Y. Tensile strain induced surface reactions for co-adsorption of ho and oh-on vacancy Al (111) surface. Vacuum 2021, 192, 110459. [Google Scholar] [CrossRef]
- Guo, J.X.; Guan, L.; Bian, F.; Li, Q.; Geng, B.; Wang, Y.L.; Zhao, Q.X.; Liu, B.T. First-principles calculations of hydrogen molecule adsorption on Ti (0001)-(2 × 1) surface. Appl. Surf. Sci. 2009, 255, 7512–7516. [Google Scholar] [CrossRef]
- Zhu, S.L.; Yang, Y.X.; Zhang, Z.F.; Liu, X.H.; Tian, X.F.; Yu, Y.; Li, D. Density functional theory study of adsorption of H2O on γ-U(110) surface. Indian J. Phys. 2023, 97, 2297–2306. [Google Scholar] [CrossRef]
- Mei, Z.G.; Liang, L.Y.; Yacout, A.M. First-principles study of the surface properties of U-Mo system. Comp. Mater. Sci. 2018, 142, 355–360. [Google Scholar] [CrossRef]
- Stumpf, R. H-induced reconstruction and faceting of al surfaces. Phys. Rev. Lett. 1997, 78, 4454–4457. [Google Scholar] [CrossRef]
- Ducéré, J.M.; Rouhani, M.D.; Rossi, C.; Estève, A. Role of impurities, defects and their complexes on the trapping of hydrogen in bulk aluminum and on the Al (111) surface. Comp. Mater. Sci. 2017, 126, 272–279. [Google Scholar] [CrossRef]
- Saitoh, H.; Machida, A.; Katayama, Y.; Aoki, K. Formation and decomposition of alh in the aluminum-hydrogen system. Appl. Phys. Lett. 2008, 93, 151918. [Google Scholar] [CrossRef]
- Levason, B. Recent developments in the chemistry of the actinide (5f) elements preface. Coordin. Chem. Rev. 2014, 266, 1. [Google Scholar]
- Norskov, J.K.; Bligaard, T.; Logadottir, A.; Bahn, S.; Hansen, L.B.; Bollinger, M.; Bengaard, H.; Hammer, B.; Sljivancanin, Z.; Mavrikakis, M.; et al. Universality in heterogeneous catalysis. J. Catal. 2002, 209, 275–278. [Google Scholar] [CrossRef]
- Hammer, B.; Norskov, J.K. Theoretical surface science and catalysis—Calculations and concepts. Adv. Catal. 2000, 45, 71–129. [Google Scholar]
- Chen, M.S.; Kumar, D.; Yi, C.W.; Goodman, D.W. The promotional effect of gold in catalysis by palladium-gold. Science 2005, 310, 291–293. [Google Scholar] [CrossRef] [PubMed]
Metal | Ecut (eV) | K-Points | Lattice (Å) | ||
---|---|---|---|---|---|
This Work | Experiments | Other Calculations | |||
Al | 300 | 8 × 8 × 8 | 4.035 | 4.050 [27] | 4.047 [30] |
U | 520 | 10 × 10 × 10 | 3.406 | 3.467 [28] | 3.428 [29,32,33] |
Metal | Site | (eV) | ||
---|---|---|---|---|
Al(111) | Top | 0.427 | 1.692 | 1.627 |
Bridge | unstable | unstable | – | |
Hcp | 0.467 | 1.085 | 1.926 | |
Fcc | 0.349 | 0.933 | 1.929 | |
U(110) | Top | unstable | unstable | – |
Sb | −3.683 | 1.641 | 2.130 | |
Hollow | −3.828 | 1.192 | 2.237 | |
Lb | −3.674 | 1.424 | 2.269 |
System | 1Al/U(110) | 2Al/U(110) | 3Al/U(110) | 4Al/U(110) | 8Al/U(110) |
---|---|---|---|---|---|
(eV) | −3.173 | −2.285 | −4.239 | −0.867 | −1.387 |
System | 1Al/U(110) | 2Al/U(110) | 3Al/U(110) | 4Al/U(110) | 8Al/U(110) |
---|---|---|---|---|---|
∆12 (%) | −0.286 | 3.236 | 3.115 | 11.438 | −1.893 |
∆23 (%) | −1.535 | −2.949 | −5.006 | −7.705 | 2.448 |
System | Site | (eV) | RH–U (Å) | RH–Al (Å) |
---|---|---|---|---|
1Al/U(110) | Hollow(1Al2U) | −0.902 | 2.213 | 1.841 |
Hollow(3U) | −0.950 | 2.208 | – | |
2Al/U(110) | Hollow(1Al2U) | −0.670 | 2.264 | 1.880 |
Hollow(2Al1U) | unstable | – | – | |
3Al/U(110) | Hollow(2Al1U) | −0.167 | 2.336 | 1.857 |
Hollow(3Al) | unstable | – | – | |
4Al/U(110) | Hollow(3Al) | unstable | – | – |
8Al/U(110) | Hollow(3Al) | −2.066 | – | 1.939 |
U(110) | Hollow(3U) | −3.828 | 2.237 | – |
System | d-Band Center (eV) |
---|---|
U (110) | 3.791 |
1Al/U (110) | 3.789 |
2Al/U (110) | 3.683 |
3Al/U (110) | 3.563 |
4Al/U (110) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Guan, M.; You, D.; Xie, D.; Hou, M.; Leng, Y. Density Functional Theory Study of Hydrogen Adsorption on Al-U Alloy Surfaces. Atoms 2025, 13, 9. https://doi.org/10.3390/atoms13020009
Wang X, Guan M, You D, Xie D, Hou M, Leng Y. Density Functional Theory Study of Hydrogen Adsorption on Al-U Alloy Surfaces. Atoms. 2025; 13(2):9. https://doi.org/10.3390/atoms13020009
Chicago/Turabian StyleWang, Xiaoting, Min Guan, Duo You, Dong Xie, Mingxi Hou, and Yongxiang Leng. 2025. "Density Functional Theory Study of Hydrogen Adsorption on Al-U Alloy Surfaces" Atoms 13, no. 2: 9. https://doi.org/10.3390/atoms13020009
APA StyleWang, X., Guan, M., You, D., Xie, D., Hou, M., & Leng, Y. (2025). Density Functional Theory Study of Hydrogen Adsorption on Al-U Alloy Surfaces. Atoms, 13(2), 9. https://doi.org/10.3390/atoms13020009