High-Resolution Fourier Transform Spectra of Atomic Sulfur: Testing of Modified Quantum Defect Theory
Abstract
:1. Introduction
2. Results and Discussion
3. Methods
3.1. Theory
3.2. Experiment
4. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
FTS | Fourier transform spectroscopy |
GF | Green’s function |
IP | Ionization potential |
IR | Infrared |
LTE | Local thermodynamic equilibrium |
QD | Quantum defect (see (1)) |
QDT | Quantum defect theory |
RAGF | Reduced-added Green’s function (see [45]) |
SNR | Signal-to-noise ratio |
References
- Maillard, J.P. Infrared astronomy beyond JWST: The Moon perspective. Phil. Trans. R. Soc. A 2024, 382, 20230070. [Google Scholar] [CrossRef] [PubMed]
- Pickering, J.; Blackwell-Whitehead, R.; Thorne, A.; Ruffoni, M.; Holmes, C. Laboratory measurements of oscillator strengths and their astrophysical applications. Can. J. Phys. 2011, 89, 387–393. [Google Scholar] [CrossRef]
- Bhatia, A.K. Scattering and Its Applications to Various Atomic Processes: Elastic Scattering, Resonances, Photoabsorption, Rydberg States, and Opacity of the Atmosphere of the Sun and Stellar Objects. Atoms 2020, 8, 78. [Google Scholar] [CrossRef]
- Srećković, V.A.; Ignjatović, L.M.; Dimitrijević, M.S. Symmetric Atom–Atom and Ion–Atom Processes in Stellar Atmospheres. Atoms 2018, 6, 1. [Google Scholar] [CrossRef]
- Hillier, D.J. Photoionization and Electron–Ion Recombination in Astrophysical Plasmas. Atoms 2023, 11, 54. [Google Scholar] [CrossRef]
- Nave, G.; Nahar, S.; Zhao, G. Division B Commission 14 Working Group: Atomic Data. Trans. IAU 2015, 11, 103–119. [Google Scholar] [CrossRef]
- Dimitrijević, M.S.; Sahal-Bréchot, S. On the Application of Stark Broadening Data Determined with a Semiclassical Perturbation Approach. Atoms 2014, 2, 357–377. [Google Scholar] [CrossRef]
- Alexiou, S. Effects of Spiralling Trajectories on White Dwarf Spectra: High Rydberg States. Atoms 2023, 11, 141. [Google Scholar] [CrossRef]
- Papoulia, A.; Ekman, J.; Gaigalas, G.; Godefroid, M.; Gustafsson, S.; Hartman, H.; Li, W.; Radžiūtė, L.; Rynkun, P.; Schiffmann, S.; et al. Coulomb (Velocity) Gauge Recommended in Multiconfiguration Calculations of Transition Data Involving Rydberg Series. Atoms 2019, 7, 106. [Google Scholar] [CrossRef]
- Seaton, M.J. Quantum defect theory. Rep. Prog. Phys. 1983, 46, 167–257. [Google Scholar] [CrossRef]
- Letunov, A.Y.; Lisitsa, V.S. Review of Rydberg Spectral Line Formation in Plasmas. Atoms 2023, 11, 133. [Google Scholar] [CrossRef]
- Lee, C.W. Inter-Series Interactions on the Atomic Photoionization Spectra Studied by the Phase-Shifted Multichannel-Quantum Defect Theory. Atoms 2017, 5, 21. [Google Scholar] [CrossRef]
- Baig, M.A. Measurement of Photoionization Cross-Section for the Excited States of Atoms: A Review. Atoms 2022, 10, 39. [Google Scholar] [CrossRef]
- Gning, M.T.; Sakho, I. Photoionization Study of Neutral Chlorine Atom. Atoms 2023, 11, 152. [Google Scholar] [CrossRef]
- Khuskivadze, A.A.; Chibisov, M.I.; Fabrikant, I.I. Adiabatic energy levels and electric dipole moments of Rydberg states of Rb2 and Cs2 dimers. Phys. Rev. A 2002, 66, 042709. [Google Scholar] [CrossRef]
- Narits, A.; Kislov, K.; Lebedev, V. Electron-Impact Excitation and Dissociation of Heavy Rare Gas Heteronuclear Ions via Transitions to Charge Transfer States. Atoms 2023, 11, 60. [Google Scholar] [CrossRef]
- Pazyuk, E.; Revina, E.; Stolyarov, A. Ab Initio Long-Range Stud. Electron. Transit. Dipole Moments Low-Lying States Rb2 Cs2 Mol. J. Quant. Spectrosc. Radiat. Transf. 2016, 177, 283–290. [Google Scholar] [CrossRef]
- Li, H.; Li, M.; Makrides, C.; Petrov, A.; Kotochigova, S. Universal Scattering of Ultracold Atoms and Molecules in Optical Potentials. Atoms 2019, 7, 36. [Google Scholar] [CrossRef]
- Dimitrijević, M.S.; Srećković, V.A.; Zalam, A.A.; Bezuglov, N.N.; Klyucharev, A.N. Dynamic Instability of Rydberg Atomic Complexes. Atoms 2019, 7, 22. [Google Scholar] [CrossRef]
- Simons, G. New procedure for generating valence and Rydberg orbitals. I. Atomic oscillator strengths. J. Chem. Phys. 1974, 60, 645–649. [Google Scholar] [CrossRef]
- Manakov, N.L.; Ovsiannikov, V.D.; Rapoport, L.P. Atoms in a laser field. Phys. Rep. 1986, 141, 320–433. [Google Scholar] [CrossRef]
- Il’inova, E.Y.; Ovsyannikov, V.D. Modified Fues potential for many-electron atoms. Opt. Spectrosc. 2008, 105, 647–656. [Google Scholar] [CrossRef]
- Zon, B.A.; Manakov, N.L.; Rapoport, L.P. Semiphenomenological Green’s Function of the Optical Electron in a Complex Atom. Sov. Phys. Dokl. 1970, 14, 904. [Google Scholar]
- Chernov, V.; Manakov, N.; Starace, A. Exact analytic relation between quantum defects and scattering phases with applications to Green’s functions in quantum defect theory. Eur. Phys. J. D 2000, 8, 347–359. [Google Scholar] [CrossRef]
- Walsh, C. The Chemical Biology of Sulfur; Royal Society of Chemistry: London, UK, 2020. [Google Scholar] [CrossRef]
- Turrini, D.; Schisano, E.; Fonte, S.; Molinari, S.; Politi, R.; Fedele, D.; Panic, O.; Kama, M.; Changeat, Q.; Tinetti, G. Tracing the Formation History of Giant Planets in Protoplanetary Disks with Carbon, Oxygen, Nitrogen, and Sulfur. Astrophys. J. 2021, 909, 40. [Google Scholar] [CrossRef]
- Bernard-Salas, J.; Pottasch, S.R.; Gutenkunst, S.; Morris, P.W.; Houck, J.R. Neon and Sulfur Abundances of Planetary Nebulae in the Magellanic Clouds. Astrophys. J. 2008, 672, 274. [Google Scholar] [CrossRef]
- Kramida, A.; Ralchenko, Y.; Reader, J.; NIST ASD Team. NIST Atomic Spectra Database, version 5.10; NIST: Gaithersburg, MD, USA, 2022. [Google Scholar] [CrossRef]
- Cowan, R.D. The Theory of Atomic Structure and Spectra; Los Alamos Series in Basic and Applied Sciences; University of California Press: Berkeley, CA, USA, 1981. [Google Scholar]
- Kramida, A. Cowan Code: 50 Years of Growing Impact on Atomic Physics. Atoms 2019, 7, 64. [Google Scholar] [CrossRef]
- Glukhov, I.L.; Mokhnenko, S.N.; Nikitina, E.A.; Ovsiannikov, V.D. Natural widths and blackbody radiation induced shift and broadening of Rydberg levels in magnesium ions. Eur. Phys. J. D 2015, 69, 1. [Google Scholar] [CrossRef]
- Glukhov, I.L.; Kamenski, A.A.; Ovsiannikov, V.D.; Palchikov, V.G. Precision Spectroscopy of Radiation Transitions between Singlet Rydberg States of the Group IIb and Yb Atoms. Photonics 2023, 10, 1153. [Google Scholar] [CrossRef]
- Veselov, M.G.; Shtoff, A.V. Calculation of oscillator strengths of principal series of lithium in adiabatic approximation. Opt. Spectrosc. 1969, 26, 177. [Google Scholar]
- Beigman, I.L.; A., V.L.; Shevelko, V.P. Effect of polarization of atomic core on oscillator strengths and photoionization cross-sections of alkali element atoms. Opt. Spectrosc. 1970, 28, 229. [Google Scholar]
- Chichkov, B.N.; Shevelko, V.P. Dipole Transitions in Atoms and Ions With One Valence Electron. Phys. Scr. 1981, 23, 1055–1065. [Google Scholar] [CrossRef]
- Astapenko, V.A.; Bureeva, L.A.; Lisitsa, V.S. Polarization effects in atomic transitions. Phys. Uspekhi 2002, 45, 149–184. [Google Scholar] [CrossRef]
- Kramida, A. Critical Evaluation of Data on Atomic Energy Levels, Wavelengths, and Transition Probabilities. Fusion Sci. Technol. 2013, 63, 313–323. [Google Scholar] [CrossRef]
- Derevianko, A.; Ovsiannikov, V.D.; Pal’chikov, V.G.; Johnson, W.R.; Plante, D.R.; von Oppen, G. Higher-order Stark effect on an excited helium atom. Phys. Rev. A 1999, 60, 986–995. [Google Scholar] [CrossRef]
- Romanov, A.A.; Silaev, A.A.; Vvedenskii, N.V.; Breev, I.V.; Flegel, A.V.; Frolov, M.V. Second-harmonic generation of a short XUV pulse interacting with an IR-laser-dressed atom. Phys. Rev. A 2022, 106, 063101. [Google Scholar] [CrossRef]
- Romanov, A.A.; Silaev, A.A.; Sarantseva, T.S.; Flegel, A.V.; Vvedenskii, N.V.; Frolov, M.V. Channel separation of secondary generated radiation induced by orthogonal XUV and IR pulses. Opt. Lett. 2023, 48, 3583–3586. [Google Scholar] [CrossRef] [PubMed]
- Norman, G.E. Basis for the Quantum Defect Method. Opt. Spectrosc. (USSR) 1962, 12, 183. [Google Scholar]
- Davydkin, V.A.; Rapoport, L.P. The two-photon ionization of . J. Phys. B At. Mol. Opt. Phys. 1974, 7, 1101–1108. [Google Scholar] [CrossRef]
- Davydkin, V.A.; Zon, B.A. Radiation And Polarization Characteristics Of Rydberg Atomic States. Part I. Opt. Spectrosc. (USSR) 1981, 51, 13–150. [Google Scholar]
- Alcheev, P.G.; Buenker, R.J.; Chernov, V.E.; Zon, B.A. Oscillator strengths for Rydberg states in ArH calculated in QDT approximation. J. Mol. Spectrosc. 2003, 218, 190–196. [Google Scholar] [CrossRef]
- Chernov, V.E.; Dorofeev, D.L.; Kretinin, I.Y.; Zon, B.A. Method of the reduced-added Green function in the calculation of atomic polarizabilities. Phys. Rev. A 2005, 71, 022505. [Google Scholar] [CrossRef]
- Bateman, H.; Erdélyi, A. Higher Transcendental Functions; McGraw-Hill: New York, NY, USA, 1953. [Google Scholar]
- Martin, W.; Wiese, W. Atomic, Molecular, and Optical Physics Handbook (Version 2.2); Springer: New York, NY, USA, 2002. [Google Scholar]
- Drake, G.W.F. (Ed.) Springer Handbook of Atomic, Molecular, and Optical Physics; Springer: New York, NY, USA, 2006. [Google Scholar]
- Sobelman, I.I. Atomic Spectra and Radiative Transitions; Springer Series in Chemical Physics; Springer: Berlin/Heidelberg, Germany, 1979; Volume 1. [Google Scholar]
- Gordon, I.; Rothman, L.; Hargreaves, R.; Hashemi, R.; Karlovets, E.; Skinner, F.; Conway, E.; Hill, C.; Kochanov, R.; Tan, Y.; et al. The HITRAN2020 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2022, 277, 107949. [Google Scholar] [CrossRef]
- Civiš, S.; Kubelík, P.; Ferus, M.; Chernov, V.E.; Zanozina, E.M.; Juha, L. Laser ablation of an indium target: Time-resolved Fourier-transform infrared spectra of In I in the 700–7700 cm−1 range. J. Anal. At. Spectrom. 2014, 29, 2275–2283. [Google Scholar] [CrossRef]
- Civiš, S.; Ferus, M.; Chernov, V.E.; Zanozina, E.M.; Juha, L. Zn I spectra in the 1300–6500 cm−1 range. J. Quant. Spectrosc. Radiat. Transf. 2014, 134, 64–73. [Google Scholar] [CrossRef]
Term | n | l | ||||
---|---|---|---|---|---|---|
4 | 0 | 1.972 | 2.028 | 1 | −0.02835 | |
4 | 0 | 1.883 | 2.117 | 1 | −0.1166 | |
4 | 1 | 2.425 | 1.575 | 0 | 1.425 | |
4 | 1 | 2.337 | 1.663 | 0 | 1.337 | |
4 | 2 | 3.799 | 0.2014 | 1 | 1.799 | |
4 | 2 | 3.575 | 0.4247 | 1 | 1.575 | |
5 | 0 | 2.998 | 2.002 | 2 | −0.001832 | |
5 | 0 | 2.922 | 2.078 | 2 | −0.07844 | |
5 | 1 | 3.437 | 1.563 | 1 | 1.437 | |
5 | 1 | 3.374 | 1.626 | 1 | 1.374 | |
6 | 0 | 4.006 | 1.994 | 3 | 0.005860 | |
6 | 0 | 3.933 | 2.067 | 3 | −0.06727 | |
6 | 1 | 4.403 | 1.597 | 2 | 1.403 | |
6 | 1 | 4.386 | 1.614 | 2 | 1.386 |
Wavenumber () | Lower Level a | Upper Level b | () | |
---|---|---|---|---|
This Work | NIST | |||
3567.46 | ||||
3567.46 | ||||
3567.12 | ||||
3567.12 | ||||
3566.79 | ||||
3566.79 | ||||
3527.40 | ||||
3525.89 | ||||
3525.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chernov, V.E.; Manakov, N.L.; Meremianin, A.V.; Naskidashvili, A.V.; Civiš, S.; Ferus, M.; Kubelík, P.; Zanozina, E.M.; Zetkina, O.V. High-Resolution Fourier Transform Spectra of Atomic Sulfur: Testing of Modified Quantum Defect Theory. Atoms 2025, 13, 16. https://doi.org/10.3390/atoms13020016
Chernov VE, Manakov NL, Meremianin AV, Naskidashvili AV, Civiš S, Ferus M, Kubelík P, Zanozina EM, Zetkina OV. High-Resolution Fourier Transform Spectra of Atomic Sulfur: Testing of Modified Quantum Defect Theory. Atoms. 2025; 13(2):16. https://doi.org/10.3390/atoms13020016
Chicago/Turabian StyleChernov, Vladislav E., Nikolai L. Manakov, Alexei V. Meremianin, Alexander V. Naskidashvili, Svatopluk Civiš, Martin Ferus, Petr Kubelík, Ekaterina M. Zanozina, and Oxana V. Zetkina. 2025. "High-Resolution Fourier Transform Spectra of Atomic Sulfur: Testing of Modified Quantum Defect Theory" Atoms 13, no. 2: 16. https://doi.org/10.3390/atoms13020016
APA StyleChernov, V. E., Manakov, N. L., Meremianin, A. V., Naskidashvili, A. V., Civiš, S., Ferus, M., Kubelík, P., Zanozina, E. M., & Zetkina, O. V. (2025). High-Resolution Fourier Transform Spectra of Atomic Sulfur: Testing of Modified Quantum Defect Theory. Atoms, 13(2), 16. https://doi.org/10.3390/atoms13020016