Effective Action Approach to Quantum and Thermal Effects: From One Particle to Bose–Einstein Condensates
Abstract
1. Introduction
2. Single-Particle Non-Relativistic Quantum Mechanics
2.1. Quantum Effective Action
2.2. Quantum-Thermal Effective Action
3. Gross-Pitaevskii Quantum Field Theory
3.1. Including an External Potential
3.2. Josephson Equations at Finite Temperature
3.3. 1PI GP Effective Potential in D Dimensions
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weinberg, S.; Goldstone, J. Broken Symmetries. Phys. Rev. 1962, 127, 965. [Google Scholar]
- Jona-Lasinio, G. Relativistic field theories with symmetry-breaking solutions. Nuovo Cimento 1964, 34, 1790. [Google Scholar] [CrossRef]
- Cametti, F.; Jona-Lasinio, G.; Presilla, C.; Toninelli, F. Comparison between quantum and classical dynamics in the effective action formalism. In Proceedings of the International School of Physics “Enrico Fermi” Course CXLIII, Varenna, Italy, 20–30 July 1999; Casati, G., Guarnieri, I., Smilansky, U., Eds.; IOS Press: Amsterdam, The Netherlands, 2000; pp. 431–448. [Google Scholar]
- Coleman, S.; Weinberg, E. Radiative Corrections as the Origin of Spontaneous Symmetry Breaking. Phys. Rev. D 1973, 7, 1888. [Google Scholar] [CrossRef]
- Kleinert, H. Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Market; Section 10.13; World Scientific: Singapore, 2009. [Google Scholar]
- Jackiw, R. Functional evaluation of the effective potential. Phys. Rev. D 1974, 9, 1686. [Google Scholar] [CrossRef]
- Abbott, L.F. Introduction to the background field method. Acta Phys. Pol. B 1982, 13, 33. [Google Scholar]
- Toms, D.J. Effective action approach to Bose-Einstein condensation and superconductivity of charged ideal nonrelativistic Bose gas. Phys. Rev. B 1994, 50, 3120. [Google Scholar] [CrossRef] [PubMed]
- Kirsten, K.; Toms, D.J. Effective Action Approach to Bose-Einstein Condensation of Ideal Gases. J. Res. NIST 1996, 101, 471. [Google Scholar] [CrossRef] [PubMed]
- Gross, E.P. Structure of a quantized vortex in boson systems. Nuovo Cimento 1961, 20, 454. [Google Scholar] [CrossRef]
- Pitaevskii, L.P. Vortex Lines in an Imperfect Bose Gas. Sov. Phys. JETP 1961, 13, 451. [Google Scholar]
- Lee, T.D.; Huang, K.; Yang, C.N. Eigenvalues and Eigenfunctions of a Bose System of Hard Spheres and Its Low-Temperature Properties. Phys. Rev. 1957, 106, 1135. [Google Scholar] [CrossRef]
- Salasnich, L. Self-Consistent Derivation of the Modified Gross–Pitaevskii Equation with Lee–Huang–Yang Correction. Appl. Sci. 2018, 8, 1998. [Google Scholar] [CrossRef]
- Stoof, H.T.C.; Gubbels, K.B.; Dickerscheid, D.B.M. Ultracold Quantum Fields; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Zaremba, E.; Nikuni, T.; Griffin, A. Dynamics of trapped Bose gases at finite temperatures. J. Low Temp. Phys. 1999, 116, 277. [Google Scholar] [CrossRef]
- Giorgini, S.; Pitaevskii, L.P.; Stringari, S. Thermodynamics of a Trapped Bose-Condensed Gas. J. Low Temp. Phys. 1997, 109, 309. [Google Scholar] [CrossRef]
- Vianello, C.; Salasnich, L. Condensate and superfluid fraction of homogeneous Bose gases in a self-consistent Popov approximation. Sci. Rep. 2024, 14, 15034. [Google Scholar] [CrossRef]
- Aybar, E.; Oktel, M.O. Temperature-dependent density profiles of dipolar droplets. Phys. Rev. A 2019, 99, 013620. [Google Scholar] [CrossRef]
- Sanchez-Baena, J.; Politi, C.; Maucher, F.; Ferlaino, F.; Pohl, T. Heating a dipolar quantum fluid into a solid. Nature Commun. 2023, 14, 1868. [Google Scholar] [CrossRef] [PubMed]
- Josephson, B.D. Possible new effects in superconductive tunnelling. Phys. Lett. 1962, 1, 251. [Google Scholar]
- Smerzi, A.; Fantoni, S.; Giovanazzi, S.; Shenoy, S.R. Quantum Coherent Atomic Tunneling between Two Trapped Bose-Einstein Condensates. Phys. Rev. Lett. 1997, 79, 4950. [Google Scholar] [CrossRef]
- Furutani, K.; Tempere, J.; Salasnich, L. Quantum effective action for the bosonic Josephson junction. Phys. Rev. B 2022, 105, 134510. [Google Scholar] [CrossRef]
- Salvatore, S. Quantum Fluctuations in Josephson Junctions: A Path Integral Approach. Master’s Thesis, University of Padova, Padova, Italy, 2025. [Google Scholar]
- Vianello, C.; Salvatore, S.; Salasnich, L. Quantum action of the Josephson dynamics. Int. J. Theor. Phys. 2025, 64, 315. [Google Scholar] [CrossRef]
- Bardin, A. (University of Padova, Padova, Italy). Personal communication, 2024.
- Clarke, J.; Cleland, A.N.; Devoret, M.H.; Esteve, D.; Martinis, J.M. Quantum Mechanics of a Macroscopic Variable: The Phase Difference of a Josephson Junction. Science 1988, 239, 992. [Google Scholar] [CrossRef]
- Wild, R.; Papp, S.; Pino, J.; Ronen, S.; Bohn, J.; Jin, D.; Wieman, C.; Cornell, E. Bragg Spectroscopy of a Strongly Interacting 85Rb Bose-Einstein condensate. Phys. Rev. Lett. 2008, 101, 135301. [Google Scholar]
- Wild, R.J.; Makotyn, P.; Pino, J.M.; Cornell, E.A.; Jin, D.S. Measurements of Tan’s contact in an atomic Bose-Einstein condensate. Phys. Rev. Lett. 2012, 108, 145305. [Google Scholar] [CrossRef]
- Cabrera, C.R.; Tanzi, L.; Sanz, J.; Naylor, B.; Thomas, P.; Cheiney, P.; Tarruell, L. Quantum liquid droplets in a mixture of Bose-Einstein condensates. Science 2018, 359, 6373. [Google Scholar] [CrossRef] [PubMed]
- Breuer, H.-P.; Laine, E.-M.; Piilo, J. Exact master equations for the non-Markovian decay of a qubit. Phys. Rev. Lett. 2009, 103, 210401. [Google Scholar] [CrossRef]
- Vacchini, B.; Breuer, H.-P. Exact master equations for the non-Markovian decay of a qubit. Phys. Rev. A 2010, 81, 042103. [Google Scholar] [CrossRef]
- Shen, H.Z.; Shang, C.; Zhou, Y.H.; Yi, X.X. Unconventional single-photon blockade in non-Markovian systems. Phys. Rev. A 2018, 98, 023856. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salasnich, L. Effective Action Approach to Quantum and Thermal Effects: From One Particle to Bose–Einstein Condensates. Atoms 2025, 13, 95. https://doi.org/10.3390/atoms13120095
Salasnich L. Effective Action Approach to Quantum and Thermal Effects: From One Particle to Bose–Einstein Condensates. Atoms. 2025; 13(12):95. https://doi.org/10.3390/atoms13120095
Chicago/Turabian StyleSalasnich, Luca. 2025. "Effective Action Approach to Quantum and Thermal Effects: From One Particle to Bose–Einstein Condensates" Atoms 13, no. 12: 95. https://doi.org/10.3390/atoms13120095
APA StyleSalasnich, L. (2025). Effective Action Approach to Quantum and Thermal Effects: From One Particle to Bose–Einstein Condensates. Atoms, 13(12), 95. https://doi.org/10.3390/atoms13120095
