Nuclear Hyperfine Mixing Effect in Highly Charged 205Pb Ions
Abstract
:1. Introduction
2. General Theory of NHM
2.1. Dressed Hyperfine State
2.2. Nuclear Transition via NHM
3. Results and Discussions
3.1. Energy Levels and Hyperfine Structure of 205Pb76+, 205Pb75+, 205Pb74+, and 205Pb73+ Ions
3.2. Mixing Coefficients in 205Pb76+, 205Pb75+, 205Pb74+, and 205Pb73+ Ions
3.3. Nuclear Transitions in 205Pb76+, 205Pb75+, 205Pb74+, and 205Pb73+ Ions
3.4. Potential Experimental Verification
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kozlov, M.G.; Safronova, M.S.; Crespo López-Urrutia, J.R.; Schmidt, P.O. Highly Charged Ions: Optical Clocks and Applications in Fundamental Physics. Rev. Mod. Phys. 2018, 90, 045005. [Google Scholar] [CrossRef]
- Eides, M.I.; Grotch, H.; Shelyuto, V.A. Theory of Light Hydrogenlike Atoms. Phys. Rep. 2001, 342, 63–261. [Google Scholar] [CrossRef]
- Shabaev, V.M.; Glazov, D.A.; Plunien, G.; Volotka, A.V. Theory of Bound-Electron g Factor in Highly Charged Ions. J. Phys. Chem. Ref. Data 2015, 44, 031205. [Google Scholar] [CrossRef]
- Sturm, S.; Vogel, M.; Köhler-Langes, F.; Quint, W.; Blaum, K.; Werth, G. High-Precision Measurements of the Bound Electron’s Magnetic Moment. Atoms 2017, 5, 4. [Google Scholar] [CrossRef]
- Beiersdorfer, P. Laboratory X-ray Astrophysics. Annu. Rev. Astron. Astrophys. 2003, 41, 343–390. [Google Scholar] [CrossRef]
- Lyuboshitz, V.L.; Onishchuk, V.A.; Podgoretskij, M.I. Some Interference Effects Due to the Mixing of Quantum Levels by External Fields. Sov. J. Nucl. Phys. 1966, 3, 420. [Google Scholar]
- Szerypo, J.; Barden, R.; Kalinowski, Ł.; Kirchner, R.; Klepper, O.; Płochocki, A.; Roeckl, E.; Rykaczewski, K.; Schardt, D.; Żylicz, J. Low-Lying Levels in 104In and a Problem of Spin-mixing in Hyperfine Fields. Nucl. Phys. A 1990, 507, 357–370. [Google Scholar] [CrossRef]
- Wycech, S.; Żylicz, J. Predictions for Nuclear Spin Mixing in Magnetic Fields. Acta Phys. Pol. B 1993, 24, 637–647. [Google Scholar]
- Wu, C.S.; Wilets, L. Muonic Atoms and Nuclear Structure. Annu. Rev. Nucl. Part. Sci. 1969, 19, 527–606. [Google Scholar] [CrossRef]
- Hitlin, D.; Bernow, S.; Devons, S.; Duerdoth, I.; Kast, J.W.; Macagno, E.R.; Rainwater, J.; Wu, C.S.; Barrett, R.C. Muonic Atoms. I. Dynamic Hyperflne Structure in the Spectra of Deformed Nuclei. Phys. Rev. C 1970, 1, 1184. [Google Scholar] [CrossRef]
- Michel, N.; Oreshkina, N.S. Higher-order Corrections to the Dynamic Hyperfine Structure of Muonic Atoms. Phys. Rev. A 2019, 99, 042501. [Google Scholar] [CrossRef]
- Karpeshin, F.F.; Wycech, S.; Band, I.M.; Trzhaskovskaya, M.B.; Pfützner, M.; Żylicz, J. Rates of Transitions between the Hyperfine-splitting Components of the Ground-state and the 3.5 eV Isomer in 229Th89+. Phys. Rev. C 1998, 57, 3085. [Google Scholar] [CrossRef]
- Pachucki, K.; Wycech, S.; Żylicz, J.; Pfützner, M. Nuclear-spin Mixing Oscillations in 229Th89+. Phys. Rev. C 2001, 64, 064301. [Google Scholar] [CrossRef]
- Tkalya, E.V.; Nikolaev, A.V. Magnetic Hyperfine Structure of the Ground-state Doublet in Highly Charged Ions 229Th89+,87+ and the Bohr-Weisskopf Effect. Phys. Rev. C 2016, 94, 014323. [Google Scholar] [CrossRef]
- Shabaev, V.M.; Glazov, D.A.; Ryzhkov, A.M.; Brandau, C.; Plunien, G.; Quint, W.; Volchkova, A.M.; Zinenko, D.V. Ground-State g Factor of Highly Charged 229Th Ions: An Access to the M1 Transition Probability between the Isomeric and Ground Nuclear States. Phys. Rev. Lett. 2022, 128, 043001. [Google Scholar] [CrossRef]
- Jin, J.; Bekker, H.; Kirschbaum, T.; Litvinov, Y.A.; Pálffy, A.; Sommerfeldt, J.; Surzhykov, A.; Thirolf, P.G.; Budker, D. Excitation and Probing of Low-energy Nuclear States at High-energy Storage Rings. Phys. Rev. Res. 2023, 5, 023134. [Google Scholar] [CrossRef]
- Wang, W.; Wang, X. Substantial Nuclear Hyperfine Mixing Effect in Boronlike 205Pb Ions. Phys. Rev. Lett. 2024, 133, 032501. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, T.; Wang, X. Highly Nonlinear Light-Nucleus Interaction. Phys. Rev. Lett. 2024, 133, 152503. [Google Scholar] [CrossRef]
- Tiedau, J.; Okhapkin, M.V.; Zhang, K.; Thielking, J.; Zitzer, G.; Peik, E.; Schaden, F.; Pronebner, T.; Morawetz, I.; Toscani De Col, L.; et al. Laser Excitation of the Th-229 Nucleus. Phys. Rev. Lett. 2024, 132, 182501. [Google Scholar] [CrossRef]
- Elwell, R.; Schneider, C.; Jeet, J.; Terhune, J.E.S.; Morgan, H.W.T.; Alexandrova, A.N.; Tran Tan, H.B.; Derevianko, A.; Hudson, E.R. Laser Excitation of the 229Th Nuclear Isomeric Transition in a Solid-State Host. Phys. Rev. Lett. 2024, 133, 013201. [Google Scholar] [CrossRef]
- Zhang, C.; Ooi, T.; Higgins, J.S.; Doyle, J.F.; von der Wense, L.; Beeks, K.; Leitner, A.; Kazakov, G.A.; Li, P.; Thirolf, P.G.; et al. Frequency Ratio of the 229mTh Nuclear Isomeric Transition and the 87Sr Atomic Clock. Nature 2024, 633, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Nuclear Structure and Decay Databases. Available online: https://www.nndc.bnl.gov/ (accessed on 20 October 2024).
- Wang, W.; Zou, F.; Fritzsche, S.; Li, Y. Isomeric Population Transfer of the 229Th Nucleus via Hyperfine Electronic Bridge. Phys. Rev. Lett. 2024, 133, 223001. [Google Scholar] [CrossRef] [PubMed]
- Fischer, C.F.; Gaigalas, G.; Jönsson, P.; Bieroń, J. GRASP2018—A Fortran 95 version of the General Relativistic Atomic Structure Package. Comput. Phys. Commun. 2019, 237, 184–187. [Google Scholar] [CrossRef]
- Schwartz, C. Theory of Hyperfine Structure. Phys. Rev. 1955, 97, 380. [Google Scholar] [CrossRef]
- Fritzsche, S. The Ratip Program for Relativistic Calculations of Atomic Transition, Ionization and Recombination Properties. Comput. Phys. Commun. 2012, 183, 1525–1559. [Google Scholar] [CrossRef]
- Alder, K.; Bohr, A.; Huus, T.; Mottelson, B.; Winther, A. Study of Nuclear Structure by Electromagnetic Excitation with Accelerated Ions. Rev. Mod. Phys. 1956, 28, 432. [Google Scholar] [CrossRef]
- Schmidt, T. Über die magnetischen Momente der Atomkernee. Z. Phys. A 1937, 106, 358–361. [Google Scholar] [CrossRef]
- Bernitt, S.; Brown, G.V.; Rudolph, J.K.; Steinbrügge, R.; Graf, A.; Leutenegger, M.; Epp, S.W.; Eberle, S.; Kubiček, K.; Mäckel, V.; et al. An Unexpectedly Low Oscillator Strength as the Origin of the Fe XVII Emission Problem. Nature 2012, 492, 225–228. [Google Scholar] [CrossRef]
- Wang, W.; Wang, X. Quantum Theory of Isomeric Excitation of 229Th in Strong Laser Fields. Phys. Rev. Res. 2023, 5, 043232. [Google Scholar] [CrossRef]
- Izquierdo, M. Scientific Instrument Soft X-Ray Port (SXP). Part A: Science Cases; XFEL.EU TR-2022-001A; European X-Ray Free-Electron Laser Facility GmbH: Schenefeld, Germany, 2022. [Google Scholar]
- Liu, T.; Huang, N.; Yang, H.; Qi, Z.; Zhang, K.; Gao, Z.; Chen, S.; Feng, C.; Zhang, W.; Luo, H.; et al. Status and Future of the Soft X-ray Free-Electron Laser Beamline at the SHINE. Front. Phys. 2023, 11, 1172368. [Google Scholar] [CrossRef]
Ions | Configuration | Angular Momentum J | Energy (eV) |
---|---|---|---|
205Pb76+ | 0 | 0 | |
1 | 2288 | ||
2 | 2306 | ||
2 | 4627 | ||
0 | 4701 | ||
205Pb75+ | 0 | ||
2256 | |||
2279 | |||
2342 | |||
4605 | |||
205Pb74+ | 2 | 0 | |
0 | 71.34 | ||
1 | 2265 | ||
2 | 2283 | ||
0 | 4582 | ||
205Pb73+ | 0 | ||
2247 |
Isomeric State | Total Angular Momentum | Mixing Coefficients () |
---|---|---|
1 | , , | |
2 | , , | |
, | ||
, | ||
1 | ||
2 |
Ions | Transition | Type | Rate () | |
---|---|---|---|---|
205Pb76+ | 1.6 s | |||
205Pb75+ | 1.5 s | |||
0.60 s | ||||
40 s | ||||
7.8 | 89 ms | |||
18 | 39 ms | |||
2.4 | 0.29 s | |||
4.1 s | ||||
205Pb74+ | 2.2 s | |||
25 s | ||||
33 s | ||||
1.6 | 0.43 s | |||
1.8 min | ||||
15 s | ||||
0.94 s | ||||
2.8 min | ||||
6.0 | 0.12 s | |||
69 min | ||||
205Pb73+ | 0.93 s | |||
0.72 s | ||||
0.90 s | ||||
24 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Li, Y.; Wang, X. Nuclear Hyperfine Mixing Effect in Highly Charged 205Pb Ions. Atoms 2025, 13, 2. https://doi.org/10.3390/atoms13010002
Wang W, Li Y, Wang X. Nuclear Hyperfine Mixing Effect in Highly Charged 205Pb Ions. Atoms. 2025; 13(1):2. https://doi.org/10.3390/atoms13010002
Chicago/Turabian StyleWang, Wu, Yong Li, and Xu Wang. 2025. "Nuclear Hyperfine Mixing Effect in Highly Charged 205Pb Ions" Atoms 13, no. 1: 2. https://doi.org/10.3390/atoms13010002
APA StyleWang, W., Li, Y., & Wang, X. (2025). Nuclear Hyperfine Mixing Effect in Highly Charged 205Pb Ions. Atoms, 13(1), 2. https://doi.org/10.3390/atoms13010002