Next Article in Journal
Prospective Optical Lattice Clocks in Neutral Atoms with Hyperfine Structure
Previous Article in Journal
Long-Lived Levels in Multiply and Highly Charged Ions
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Energy Levels and Transition Data of Cs VI

Department of Physics, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
*
Author to whom correspondence should be addressed.
Atoms 2024, 12(3), 13; https://doi.org/10.3390/atoms12030013
Submission received: 27 December 2023 / Revised: 26 January 2024 / Accepted: 19 February 2024 / Published: 27 February 2024

Abstract

:
Previously reported atomic data (spectral lines, wavelengths, energy levels, and transition probabilities) were collected and systematically analyzed for Cs VI. The present theoretical analysis was supported by extensive calculations made for Cs VI with a pseudo-relativistic Hartree–Fock (HFR) method together with the superposition of configuration interactions implemented in Cowan’s codes. In this work, all previously reported energy levels and their (allowed) transition assignments were confirmed. A critically evaluated set of optimized energy levels with their uncertainties, observed and Ritz wavelengths along with their uncertainties, and theoretical transition probabilities with their estimated uncertainties were presented in the compilation. In addition to this, we determined the radiative transition parameters for several forbidden lines within the ground configuration 5 s 2 5 p 2 of Cs VI.

1. Introduction

In general, accurate atomic data on wavelengths, energy levels, transition probabilities, and oscillator strengths are needed to determine the atmospheric abundances of elements in any astrophysical source or object. By using these atomic data, astronomers have for the first time identified elements heavier than hydrogen and helium in the atmospheres of white dwarfs. These were mostly traces of trans-iron elements (atomic numbers Z ≥ 30) detected in the atmospheres of different hot white dwarfs, such as the hot H-rich (DA-type) white dwarfs G191-B2B, Feige 24, and GD 246 [1], and the hot He-rich (DO-type) white dwarfs HD 149499B, HZ 21, and RE 0503-289 [2,3,4,5]. Recently, Chayer et al. [6] identified the presence of cesium (Z = 55) by means of observing the several absorption lines of Cs IV-VI in the far ultraviolet spectroscopic explorer (FUSE) spectrum of the hot He-rich white dwarf (spectral type DO) HD 149499B. The atomic structure and the radiative transition parameters data for these atomic/ionic species, up to the ionization stage VII, were necessary to obtain accurate stellar atmospheric models for white dwarfs. Chayer et al. [6] calculated oscillator strengths for the bound–bound transitions of Cs IV-VI ions using the multiconfiguration Breit–Pauli and multiconfiguration Dirac–Fock methods, which were implemented in the AUTOSTRUCTURE and GRASP2K atomic structure codes, respectively. Both the AUTOSTRUCTURE and GRASP2K calculations were performed with the same sets of atomic models; however, an extensive radiative transition parameter data set was provided from the AUTOSTRUCTURE calculations only and the GRASP2K results were used for comparison purposes. For the Cs VI spectrum, these are for the 5 s 2 5 p 2 { 5 s 5 p 3 + 5 s 2 5 p 5 d + 5 s 2 5 p 6 s } transitions.
In terms of experimental observations, the first study on the Cs VI spectrum was carried out by Tauheed et al. [7]. They reported the levels of the ground configuration 5 s 2 5 p 2 and those for the excited 5 s 5 p 3 , 5 s 2 5 p 5 d , and 5 s 2 5 p 6 s configurations, with the help of the spectra of cesium photographed in the 325–1400 Å wavelength region on a 3 m normal-incidence vacuum spectrograph at the Antigonish laboratory, Canada. The spectrograph was equipped with a 2400 lines/mm holographic grating giving a reciprocal dispersion of 1.385 Å/mm in the first order of wavelength. The cavities of the aluminum electrodes, filled with pure cesium carbonate and cesium nitrate salts, were used in a triggered spark source, which acted as a light source. A 30 kV trigger unit with a little current to initiate a 6 kV spark discharge in vacuum was used. Additionally, the wavelength information was also supplemented from the previously captured spectra of cesium, which were recorded on a 10.7 m normal incidence vacuum spectrograph at the National Institute of Standards and Technology (NIST), Gaithersburg. Kodak short-wave radiation (SWR) plates were used for all the spectral exposures. The calibrations of the spectrograms were carried out using the known lines of carbon, oxygen, and nitrogen present in the spectra as impurities, and they claimed an accuracy of 0.005 Å for the strong and unperturbed lines in the entire wavelength region mentioned above. The Tauheed et al. [7] findings were included in the latest spectral compilation of Cs I-LV provided by Sansonetti [8], and the same were also available in the NIST’s Atomic Spectra Database (ASD) [9]. In Sansonetti [8]’s compilation, the spectral lines’ observed wavelengths with uncertainties, the line intensities, and their involved energy levels with their energy values, uncertainties, and designations were provided. The transition probabilities were also listed for some spectra but no uncertainty estimates were given. It is not clear how the energy levels were optimized with uncertainties; however, we can only speculate that it was most likely obtained using the widely used “ECALC” code [10]. No Ritz wavelengths and their uncertainties were reported in Sansonetti [8]’s compilation. Thus, a more rigorous and systematic spectral analysis—which has been described and implemented for many spectra in the recent past [11,12,13,14]—would be highly desirable for the spectra described in the above compilation. Recently, we carried out one such for the Cs VII spectrum, in which we reported a critically evaluated atomic data set for Cs VII [15].
In the present work, our motivation is to provide an extensive atomic data set for the Cs VI spectrum, and to carry out critical evaluations for these data by means of their comparison with the existing data in the literature. In addition to these, we aim to compute the radiative transition parameters for the forbidden lines between the levels of the ground configuration 5 s 2 5 p 2 .

2. HFR Method

To support the present experimental observations, theoretical calculations in this study were made within the framework of a pseudo-relativistic Hartree–Fock (HFR) approach with the superposition of interacting configurations, which were implemented in Cowan’s suite of codes [16]. We use the Windows-based version of the Cowan codes developed by A. Kramida of NIST, Gaithersburg, and distributed through the NIST website [17]. For the present work, we follow the computational procedure laid out in ref. [18]. The particular focus of this work lies on the spectroscopic 5 s 2 5 p 2 { 5 s 5 p 3 + 5 s 2 5 p 5 d + 5 s 2 5 p 6 s } transitions arrays in Cs VI, which were experimentally studied in 1991 [7], with their theoretical transition probabilities recently being reported by Chayer et al. [6]. Further details of the present theoretical calculations are described in Section 3.2.

3. Results and Discussion

The main results of our work on Cs VI are summarized in Table 1 and Table 2. In Table 1, we present the classified lines of Cs VI with their radiative transition parameters and Table 2 describes the optimized energy levels with their LS compositions. The LS composition vectors are computed using the theoretical calculations performed with Cowan’s codes (see Section 3.2). Nevertheless, specific details of the present analysis are discussed in the sections below.

3.1. Optimization of Energy Levels

First, we collected all the experimentally observed wavelength data of Cs VI in the literature [7]. These are for the 5 s 2 5 p 2 5 s 5 p 3 , 5 s 2 5 p 2 5 s 2 5 p 5 d , and 5 s 2 5 p 2 5 s 2 5 p 6 s transition arrays. The energy values of the levels involved in transition were computed from their observed spectral line data, i.e., transition wavelengths with uncertainties. In this regard, we used a least-squares level optimization code, ‘LOPT’ [19]. The transition wavelength, its measurement uncertainty, and the unique lower- and upper-level designation for each transition were necessary data inputs to the “LOPT-code”. In the initial stage of the optimization, only the observed wavelengths of Cs VI reported by Tauheed et al. [7] with an uncertainty of 0.005 Å were included as an input to the code. A total of 67 observed lines were included in the LOPT to obtain optimized energy levels (with their uncertainties) of 30 levels involved. For each of the observed wavelengths, their counterpart (precise) Ritz wavelengths with uncertainties were determined from the optimized energy levels. Furthermore, we use the optimized energy levels to derive the accurate Ritz wavelengths for several possibly observable lines of Cs VI (see Table 1) and for the forbidden transitions within the ground configuration (see Section 3.3). We have tabulated all these lines along with their transition probabilities, which are important for detailed plasma models.

3.2. Theoretical Calculations and Transition Probabilities

Two sets of atomic models with varying configuration types, described in Table 3, were considered in this work. In both models the Slater’s parameters were kept at 85% of the HFR-value for the F k , 80% for the G k , 70% for the R k , and the E a v and ζ n , l parameters were fixed at 100% of their HFR-values. A least-squares parametric fitting (LSF) was performed to minimize the differences between the observed and theoretical energy values in the Cs VI. The standard deviation (SD) of the parametric LSF is given in Table 3 together with the total number of known levels and the number of free parameters involved in the fitting process; the latter is given in curly brackets. All the fitted parameters, together with their values in the LSF of the present HFR-B model, are supplemented by us in Table A1. Using these fitted energy parameters, the transition probabilities (TPs or gA-values) were recalculated for Cs VI. The obtained gA-values from the HFR-B model, along with their cancellation factor ( | C F | -values), are given in Table 1. The LS percentage compositions of the observed energy levels from the present HFR-B calculations are given in Table 2. We compared our present LS percentage compositions with the previously reported LS percentage compositions in references [7,8] and a good match was found. The LS assignments for most of the levels were found to be good without any ambiguity in our extensive calculation except for two levels of the 5 s 2 5 p 5 d configuration: D 2 1 at 209,793.6 cm 1 and D 2 3 at 216,001.6 cm 1 , which were assigned to their second-largest LS percentage component (see Table 2). This observation is in agreement with those made previously by Tauheed et al. [7].
Our main purpose for employing two different models—HFR-A and HFR-B with varying configuration types—was to compute and compare the transition probabilities data, and, accordingly, to compare and estimate the uncertainties of the transition probabilities with those reported by Chayer et al. [6] for the transition 5 s 2 5 p 2 { 5 s 5 p 3 + 5 s 2 5 p 5 d + 5 s 2 5 p 6 s } arrays in Cs VI. In their recent work, Chayer et al. [6] used the multiconfiguration Breit–Pauli (MCBP) method to compute the A-values of Cs IV-VI. The MCBP method was implemented in the AUTOSTRUCTURE atomic structure code [20,21]. The configuration sets included in our HFR-A calculations are the same as those used in the MCBP calculations for Cs VI by Chayer et al. [6], whereas those in our HFR-B model are more extensive in terms of the number of interacting configuration sets included in these calculations (see Table 3). Two types of comparison were employed in this work:- (i) a qualitative scheme using gA-values, and (ii) a quantitative scheme, described in refs. [11,12,13,14], based on d S -values. The results of these comparisons are illustrated in Figure 1. The agreement between the gA-values obtained from the present HFR-A and HFR-B calculations is shown in Figure 1a, and their comparison with the corresponding S-values is given in Figure 1b. The latter d S comparison shows gross disagreements within 26% for the HFR-A and HFR-B models. Indeed the uncertainty for 56 strong lines with S ≥ 0.10 AU (atomic units) was 9% and 47% for the remaining 27 weak lines (see Figure 1b). All of these weak lines are strongly affected by cancellations, i.e., those having | C F | < 0.10 ; as a consequence, their S-values or gA-values are less reliable in comparison to the unaffected ones with | C F | 0.10 (see details in ref. [16]). There is an alternate method to derive the uncertainty for each S-value by means of generating different sets of LSF calculations with varying parameters within their uncertainty bounds. We use this method to estimate the uncertainty for each of the S-values obtained from the present HFR-B model. A total of six sets of LSF calculations were performed with varying parameters, and the SDs of their S-values were computed and the same were taken to be an estimator for the uncertainties in the S-values. It should be noted that these SDs served as internal uncertainties for the S-values obtained from the present HFR-B model; therefore, they are represented as error bars in our final comparison model (see Figure 1d). Nonetheless, the strong lines with S ≥ 0.10 AU have an average uncertainty of 5% and 18% for the other weak lines. The S-values that suffer strong cancellations have an average uncertainty of about 18% and the unaffected ones were accurate within 3%. Our final comparison model for the gA-values from the HFR-B with those from the MCBP method by Chayer et al. [6] is shown in Figure 1c, and their corresponding S-values comparison is given in Figure 1d. To obtain more reliable estimates, the comparison model illustrated in Figure 1d was selected, and its main results are summarized here. Though the gross disagreements between the two sets of S-values fall within 160%, the strong lines with S ≥ 1 AU are accurate within 24%, 34% for the lines within the mid-range of S ∈ [0.1, 1) AU, about 50% for the weak lines with S ∈ [0.01, 0.1) AU, and the remaining very weak lines are accurate within two to three orders of magnitude. It was found that most of the cancellation affected (25 out of 33) transitions from the HFR-B model with | C F | < 0.10 fall in the category of accuracy >50%, and they are also weak lines with S < 0.10 AU. All the transitions listed in Table 1 were provided with gA-values and their uncertainty codes and | C F | -values. The uncertainty codes are C types with an accuracy ≤25%, D+ with ≤40%, D with ≤50%, and the E types with an accuracy >50%. It should be noted that in the present HFR models of Cs VI, the core–valence electronic interactions are not included. However, the inclusion of such interactions in the HFR model in the form of the core-polarization effect (HFR+CPOL) was found to significantly improve the accuracy of the computed lifetime data (also that of the gA-values) in the Xe V spectrum, which is isoelectronic to Cs VI [22]. In the absence of experimental radiative lifetime data for the Cs VI spectrum, the direct applicability of the HFR+COPL model to this spectrum is limited; however, a semi-empirical method carefully extended from the Xe V may provide reasonable results. Recently, Zainab et al. [23] used such comparison schemes for the Au IV spectrum. Therefore, our present uncertainty estimates for the gA-values of Cs VI quoted above and given in Table 1 should not be taken as absolute.
Curtis [24] previously determined a semi-empirical branching fraction (BF) for lines in the 5 s 2 5 p 2 5 s 2 5 p 6 s transition array in the Sn I isoelectronic sequence (Sn I-Cs VI) by (least-squares) adjusting the energy values of the levels involved, thereby obtaining the optimized values for F 2 and the ζ p p parameters for 5 s 2 5 p 2 and G 1 and ζ p for the 5 s 2 5 p 6 s configuration, followed by determination of the mixing angles to compute the relative transition rates (A-values). Recently, Chayer et al. [6] also reported the branching fractions (BFs), which were computed from the MCBP A-values, for the 5 s 2 5 p 2 5 s 2 5 p 6 s transitions. The comparison of these two BF data sets with 13 lines shows a gross disagreement within 300%. The most deviated data points were for the following (mostly) inter-combination transitions: 5 p 2 S 0 1 –5p6s P 1 1 , 3 , 5 p 2 P 0 3 –5p6s P 1 1 , 5 p 2 P 1 3 –5p6s P 1 1 , and 5 p 2 D 2 1 –5p6s P 1 3 . This indicates that either the singlet–triplet mixing angles were not computed accurately in the calculations of Curtis [24], or in part some of the MCBP A-values of Chayer et al. [6] are largely uncertain for the 5 s 2 5 p 2 5 s 2 5 p 6 s transitions. To investigate this, we compute the BFs for these transitions from their corresponding gA-values of the present HFR-A and HFR-B models. A good agreement (within 10%) between the BF-values obtained from the HFR-A and HFR-B models was found for the 5 s 2 5 p 2 5 s 2 5 p 6 s transitions. Nevertheless, the BFs from the extensive HFR-B model were selected by us for their consequent comparison with those of Curtis [24] and Chayer et al. [6]. The results of this comparison are shown in Figure 2a. It was found that the general agreement between the BFs of HFR-B and those of Curtis [24] was good except for two inter-combinations, the 5 p 2 S 0 1 –5p6s P 1 3 and 5 p 2 P 0 3 –5p6s P 1 1 transitions, which shows that the computed singlet–triplet mixing angles alone were inadequate to define the A-values for these transitions by Curtis [24]. It should be noted that the intermediate coupling semi-empirical approaches of Curtis [24] are valid in the absence of configuration interaction. However, this assumption is not fully true for complex atomic systems, including Cs VI, in which both intra- and inter-configuration interactions are significant, and particularly for the spin-forbidden inter-combination lines, which are more sensitive to cancellation effects [25]. Figure 2b shows the gross comparison of the BFs from the present HFR-B model with those from the MCBP calculations of Chayer et al. [6] for the transition 5 s 2 5 p 2 { 5 s 5 p 3 + 5 s 2 5 p 5 d + 5 s 2 5 p 6 s } arrays, and their overall agreement is found to be reasonably good.

3.3. Radiative Parameters for Transitions within the Ground Configuration

Biemont et al. [26] reported energy levels and radiative transition probabilities for states within the 5 s 2 5 p k ( k = 1–5) configurations of atoms and ions in the indium, tin, antimony, tellurium, and iodine isoelectronic sequences. These transitions are astrophysically important and forbidden types having magnetic-dipole (M1) and/or electric-quadrupole (E2) components. For the Cs VI spectrum, Biemont et al. [26] reported 3 M1 and 4 E2 transitions within the states of the ground configuration 5 s 2 5 p 2 . We also performed separate HFR calculations [16] with the even parity configurations in our HFR-B model. Our calculations are more extensive than the previous ones performed by Biemont et al. [26] for Cs VI. The obtained line parameters for the 5 M1 and 7 E2 transitions of Cs VI are summarized in Table 4. To estimate the uncertainties of the presently obtained A-values, we performed a Monte Carlo technique suggested by Kramida [27]. This method evaluates the uncertainties of the A-values by randomly varying the Slaters parameters of the known configurations included in the LSF. A total of 20 trials were performed to estimate the uncertainties (%SD) of the A-values of the transitions within the ground configuration and these are also given in Table 4.

4. Conclusions

In this work, a thorough critical analysis of the Cs VI spectrum was carried out with the help of extensive HFR calculations performed by us using Cowan’s codes. This compilation provided a set of optimized energy levels (Table 2) of the Cs VI ion with their uncertainties, as well as the observed and Ritz wavelengths with their uncertainties for the levels involved. To the best of our knowledge, the accurate Ritz wavelengths with their uncertainties for this spectrum have been derived for the first time, and the same have been presented in Table 1 along with the gA-values. The uncertainty estimates have been based on gA-values from their comparison with the previous data [6]. In addition, we report the radiative parameters for the forbidden (M1 and E2) lines within the ground configuration 5 s 2 5 p 2 of Cs VI.

Author Contributions

Conceptualization, H.K.; methodology, H.K.; software, A.H., H.K. and T.A.; validation, A.H. and H.K.; formal analysis, A.H. and H.K.; investigation, A.H. and H.K.; data curation, H.K.; writing—original draft preparation, A.H. and H.K.; writing—review and editing, H.K. and T.A.; visualization, A.H. and H.K.; supervision, H.K. and T.A.; project administration, H.K. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

The original contributions presented in the study are included in the article, further inquiries can be directed to the corresponding author.

Conflicts of Interest

The authors declare no conflicts of interest.

Appendix A. Supplementary Data

Table A1. Least-squares fitted parameters of Cs VI.
Table A1. Least-squares fitted parameters of Cs VI.
Configuration aParameter aLSF a
(cm−1)
Unc b
(cm−1)
Index cHFR a
(cm−1)
LSF/HFR a
(cm−1)
5 p 2 E a v 30,641.005 29,620.801.034
5 p 2 F 2 ( 5 p , 5 p ) 49,951.7058159,884.470.834
5 p 2 α ( 5 p ) −61.30−630.00
5 p 2 ζ ( 5 p ) 12,115.309211,468.401.056
5p6p E a v 308,771.90fixed 308,771.901.000
5p6p ζ ( 6 p ) 12,904.9010212,215.801.056
5p6p ζ ( p ) 3534.10fixed 3534.101.000
5p6p F 2 ( 6 p , p ) 19,280.70fixed 22,683.180.850
5p6p G 0 ( 6 p , p ) 3798.40fixed 4748.000.800
5p6p G 2 ( 6 p , p ) 5116.30fixed 6395.380.800
5p7p E a v 415,145.50fixed 415,145.501.000
5p7p ζ ( 7 p ) 12,974.9010212,282.101.056
5p7p ζ ( p ) 1704.40fixed 1704.401.000
5p7p F 2 ( 7 p , p ) 8550.90fixed 10,059.880.850
5p7p G 0 ( 7 p , p ) 1317.70fixed 1647.130.800
5p7p G 2 ( 7 p , p ) 1957.20fixed 2446.500.800
5p8p E a v 469,375.40fixed 469,375.401.000
5p8p ζ ( 8 p ) 13,005.6010212,311.101.056
5p8p ζ ( p ) 958.40fixed 958.401.000
5p8p F 2 ( 8 p , p ) 4519.80fixed 5317.410.850
5p8p G 0 ( 8 p , p ) 641.30fixed 801.630.800
5p8p G 2 ( 8 p , p ) 991.90fixed 1239.880.800
5p9p E a v 501,140.00fixed 501,140.001.000
5p9p ζ ( 9 p ) 13,020.6010212,325.301.056
5p9p ζ ( p ) 594.00fixed 594.001.000
5p9p F 2 ( 9 p , p ) 2686.60fixed 3160.710.850
5p9p G 0 ( 9 p , p ) 367.50fixed 459.380.800
5p9p G 2 ( 9 p , p ) 580.70fixed 725.880.800
5p10p E a v 521,411.00fixed 521,411.001.000
5p10p ζ ( 10 p ) 13,028.8010212,333.101.056
5p10p ζ ( p ) 393.70fixed 393.701.000
5p10p F 2 ( 10 p , p ) 1730.20fixed 2035.530.850
5p10p G 0 ( 10 p , p ) 232.10fixed 290.130.800
5p10p G 2 ( 10 p , p ) 371.60fixed 464.500.800
5p4f E a v 201,858.50fixed 201,858.501.000
5p4f ζ ( 4 f ) 312.40fixed 312.401.000
5p4f ζ ( 5 p ) 11,624.809211,004.101.056
5p4f F 2 ( 4 f , 5 p ) 43,435.80fixed 51,100.940.850
5p4f G 2 ( 4 f , 5 p ) 27,627.30fixed 34,534.130.800
5p4f G 4 ( 4 f , 5 p ) 20,453.90fixed 25,567.380.800
5p5f E a v 368,464.10fixed 368,464.101.000
5p5f ζ ( 5 p ) 12,751.6010212,070.701.056
5p5f ζ ( 5 f ) 81.20fixed 81.201.000
5p5f F 2 ( 5 p , 5 f ) 18165.90fixed 21371.650.850
5p5f G 2 ( 5 p , 5 f ) 4270.90fixed 5338.630.800
5p5f G 4 ( 5 p , 5 f ) 3606.30fixed 4507.880.800
5p6f E a v 443,747.40fixed 443,747.401.000
5p6f ζ ( 5 p ) 12,907.8010212,218.601.056
5p6f ζ ( 6 f ) 40.10fixed 40.101.000
5p6f F 2 ( 5 p , 6 f ) 8507.80fixed 10,009.180.850
5p6f G 2 ( 5 p , 6 f ) 2567.10fixed 3208.880.800
5p6f G 4 ( 5 p , 6 f ) 2066.50fixed 2583.130.800
5p7f E a v 485,432.70fixed 485,432.701.000
5p7f ζ ( 5 p ) 12,968.8010212,276.301.056
5p7f ζ ( 7 f ) 23.10fixed 23.101.000
5p7f F 2 ( 5 p , 7 f ) 4703.60fixed 5533.650.850
5p7f G 2 ( 5 p , 7 f ) 1573.00fixed 1966.250.800
5p7f G 4 ( 5 p , 7 f ) 1250.40fixed 1563.000.800
5p8f E a v 511,097.80fixed 511,097.801.000
5p8f ζ ( 5 p ) 12,998.0010212,303.901.056
5p8f ζ ( 8 f ) 14.60fixed 14.601.000
5p8f F 2 ( 5 p , 8 f ) 2887.50fixed 3397.060.850
5p8f G 2 ( 5 p , 8 f ) 1018.10fixed 1272.630.800
5p8f G 4 ( 5 p , 8 f ) 805.50fixed 1006.880.800
5p9f E a v 528,022.70fixed 528,022.701.000
5p9f ζ ( 5 p ) 13,013.7010212,318.801.056
5p9f ζ ( 9 f ) 9.80fixed 9.801.000
5p9f F 2 ( 5 p , 9 f ) 1905.40fixed 2241.650.850
5p9f G 2 ( 5 p , 9 f ) 693.00fixed 866.250.800
5p9f G 4 ( 5 p , 9 f ) 547.30fixed 684.130.800
5p10f E a v 539,770.60fixed 539,770.601.000
5p10f ζ ( 5 p ) 13,023.1010212,327.701.056
5p10f ζ ( 10 f ) 6.90fixed 6.901.000
5p10f F 2 ( 5 p , 10 f ) 1325.70fixed 1559.650.850
5p10f G 2 ( 5 p , 10 f ) 492.00fixed 615.000.800
5p10f G 4 ( 5 p , 10 f ) 388.10fixed 485.130.800
4f 2 E a v 384,129.20fixed 384,129.201.000
4f 2 F 2 ( 4 f , 4 f ) 56,513.40fixed 66,486.350.850
4f 2 F 4 ( 4 f , 4 f ) 35,065.70fixed 41,253.770.850
4f 2 F 6 ( 4 f , 4 f ) 25,114.20fixed 29,546.120.850
4f 2 α ( 4 f ) 0.00fixed 0.00
4f 2 β ( 4 f ) 0.00fixed 0.00
4f 2 G a ( 4 f ) 0.00fixed 0.00
4f 2 ζ ( 4 f ) 279.60fixed 279.601.000
5d 2 E a v 400,448.80fixed 400,448.801.000
5d 2 F 2 ( 5 d , 5 d ) 40,350.20fixed 47,470.820.850
5d 2 F 4 ( 5 d , 5 d ) 27,593.20fixed 32,462.590.850
5d 2 α ( 5 d ) 0.00fixed 0.00
5d 2 β ( 5 d ) 0.00fixed 0.00
5d 2 T ( 5 d ) 0.00fixed 0.00
5d 2 ζ ( 5 d ) 868.90fixed 868.901.000
6s 2 E a v 514,101.60fixed 514,101.601.000
6p 2 E a v 609,135.60fixed 609,135.601.000
6p 2 F 2 ( 6 p , 6 p ) 26,654.40fixed 31,358.120.850
6p 2 α ( 6 p ) 0.00fixed 0.00
6p 2 ζ ( 6 p ) 3888.60fixed 3888.601.000
5p 4 E a v 310,124.60fixed 310,124.601.000
5p 4 F 2 ( 5 p , 5 p ) 49,940.4058159,870.940.834
5p 4 α ( 5 p ) −61.30−630.00
5p 4 ζ ( 5 p ) 11,969.609211,330.501.056
5s5p 2 6s E a v 387,785.80fixed 387,785.801.000
5s5p 2 6s F 2 ( 5 p , 5 p ) 50,763.2059160,857.290.834
5s5p 2 6s α ( 5 p ) −61.30−630.00
5s5p 2 6s ζ ( 5 p ) 12,656.3010211,980.501.056
5s5p 2 6s G 1 ( 6 s , 5 p ) 63,423.50fixed 79,279.380.800
5s5p 2 6s G 0 ( 6 s , s ) 3914.20fixed 4892.750.800
5s5p 2 6s G 1 ( 5 p , s ) 5903.20fixed 7379.000.800
5s5p 2 7s E a v 518,610.00fixed 518,610.001.000
5s5p 2 7s F 2 ( 5 p , 5 p ) 51,163.0059161,336.590.834
5s5p 2 7s α ( 5 p ) −61.30−630.00
5s5p 2 7s ζ ( 5 p ) 12,842.6010212,156.801.056
5s5p 2 7s G 1 ( 7 s , 5 p ) 63,846.60fixed 79,808.250.800
5s5p 2 7s G 0 ( 7 s , s ) 1315.10fixed 1643.880.800
5s5p 2 7s G 1 ( 5 p , s ) 1903.80fixed 2379.750.800
5s5p 2 8s E a v 582,679.90fixed 582,679.901.000
5s5p 2 8s F 2 ( 5 p , 5 p ) 51,256.9059161,449.180.834
5s5p 2 8s α ( 5 p ) −61.30−630.00
5s5p 2 8s ζ ( 5 p ) 12,897.4010212208.701.056
5s5p 2 8s G 1 ( 8 s , 5 p ) 63,957.70fixed 79,947.130.800
5s5p 2 8s G 0 ( 8 s , s ) 625.50fixed 781.880.800
5s5p 2 8s G 1 ( 5 p , s ) 902.40fixed 1128.000.800
5s5p 2 5d E a v 332,268.40fixed 332,268.401.000
5s5p 2 5d F 2 ( 5 p , 5 p ) 50309.1058160312.940.834
5s5p 2 5d α ( 5 p ) −61.30−630.00
5s5p 2 5d ζ ( 5 p ) 12,285.109211,629.101.056
5s5p 2 5d ζ ( 5 d ) 868.20fixed 868.201.000
5s5p 2 5d F 2 ( 5 p , 5 d ) 41,905.10fixed 49,300.120.850
5s5p 2 5d G 1 ( 5 s , 5 p ) 62,904.40fixed 78,630.500.800
5s5p 2 5d G 2 ( 5 s , 5 d ) 30,895.30fixed 38,619.130.800
5s5p 2 5d G 1 ( 5 p , 5 d ) 46,326.30fixed 57,907.880.800
5s5p 2 5d G 3 ( 5 p , 5 d ) 29,445.10fixed 36,806.380.800
5s5p 2 6d E a v 499,136.40fixed 499,136.401.000
5s5p 2 6d F 2 ( 5 p , 5 p ) 51,137.4059161,305.880.834
5s5p 2 6d α ( 5 p ) −61.30−630.00
5s5p 2 6d ζ ( 5 p ) 12,803.8010212,120.101.056
5s5p 2 6d ζ ( 6 d ) 334.70fixed 334.701.000
5s5p 2 6d F 2 ( 5 p , 6 d ) 14,552.20fixed 17,120.240.850
5s5p 2 6d G 1 ( 5 s , 5 p ) 63,826.90fixed 79,783.630.800
5s5p 2 6d G 2 ( 5 s , 6 d ) 6662.00fixed 8327.500.800
5s5p 2 6d G 1 ( 5 p , 6 d ) 7361.80fixed 9202.250.800
5s5p 2 6d G 3 ( 5 p , 6 d ) 5520.40fixed 6900.500.800
5s5p 2 7d E a v 573,135.20fixed 573,135.201.000
5s5p 2 7d F 2 ( 5 p , 5 p ) 51,241.2059161,430.350.834
5s5p 2 7d α ( 5 p ) −61.30−630.00
5s5p 2 7d ζ ( 5 p ) 12,882.7010212,194.801.056
5s5p 2 7d ζ ( 7 d ) 173.50fixed 173.501.000
5s5p 2 7d F 2 ( 5 p , 7 d ) 6844.00fixed 8051.770.850
5s5p 2 7d G 1 ( 5 s , 5 p ) 63,948.90fixed 79,936.130.800
5s5p 2 7d G 2 ( 5 s , 7 d ) 2832.30fixed 3540.380.800
5s5p 2 7d G 1 ( 5 p , 7 d ) 2895.00fixed 3618.750.800
5s5p 2 7d G 3 ( 5 p , 7 d ) 2295.60fixed 2869.500.800
5s5p 2 8d E a v 613,658.70fixed 613658.701.000
5s5p 2 8d F 2 ( 5 p , 5 p ) 51,285.4059161,483.410.834
5s5p 2 8d α ( 5 p ) −61.30−630.00
5s5p 2 8d ζ ( 5 p ) 12,913.4010212,223.901.056
5s5p 2 8d ζ ( 8 d ) 102.80fixed 102.801.000
5s5p 2 8d F 2 ( 5 p , 8 d ) 3812.10fixed 4484.820.850
5s5p 2 8d G 1 ( 5 s , 5 p ) 63,999.00fixed 79,998.750.800
5s5p 2 8d G 2 ( 5 s , 8 d ) 1521.70fixed 1902.130.800
5s5p 2 8d G 1 ( 5 p , 8 d ) 1501.30fixed 1876.630.800
5s5p 2 8d G 3 ( 5 p , 8 d ) 1224.10fixed 1530.130.800
5p 3 6p E a v 580,567.40fixed 580,567.401.000
5p 3 6p F 2 ( 5 p , 5 p ) 51,057.8059161,210.470.834
5p 3 6p α ( 5 p ) −61.30−630.00
5p 3 6p ζ ( 5 p ) 12,730.7010212,050.901.056
5p 3 6p ζ ( 6 p ) 3556.70fixed 3556.701.000
5p 3 6p F 2 ( 5 p , 6 p ) 19,512.30fixed 22,955.650.850
5p 3 6p G 0 ( 5 p , 6 p ) 3622.60fixed 4528.250.800
5p 3 6p G 2 ( 5 p , 6 p ) 5124.70fixed 6405.880.800
5p 3 7p E a v 688,292.90fixed 688,292.901.000
5p 3 7p F 2 ( 5 p , 5 p ) 51,209.5059161,392.350.834
5p 3 7p α ( 5 p ) −61.30−630.00
5p 3 7p ζ ( 5 p ) 12,804.3010212,120.601.056
5p 3 7p ζ ( 7 p ) 1718.80fixed 1718.801.000
5p 3 7p F 2 ( 5 p , 7 p ) 8636.80fixed 10,160.940.850
5p 3 7p G 0 ( 5 p , 7 p ) 1269.40fixed 1586.750.800
5p 3 7p G 2 ( 5 p , 7 p ) 1957.70fixed 2447.130.800
5p 3 8p E a v 743,009.80fixed 743,009.801.000
5p 3 8p F 2 ( 5 p , 5 p ) 51268.7059161463.290.834
5p 3 8p α ( 5 p ) −61.30−630.00
5p 3 8p ζ ( 5 p ) 12,834.4010212,149.101.056
5p 3 8p ζ ( 8 p ) 964.00fixed 964.001.000
5p 3 8p F 2 ( 5 p , 8 p ) 4551.00fixed 5354.120.850
5p 3 8p G 0 ( 5 p , 8 p ) 618.20fixed 772.750.800
5p 3 8p G 2 ( 5 p , 8 p ) 989.10fixed 1236.380.800
5p 3 9p E a v 774,986.90fixed 774,986.901.000
5p 3 9p F 2 ( 5 p , 5 p ) 51296.2059161496.350.834
5p 3 9p α ( 5 p ) −61.30−630.00
5p 3 9p ζ ( 5 p ) 12,849.0010212,162.901.056
5p 3 9p ζ ( 9 p ) 596.90fixed 596.901.000
5p 3 9p F 2 ( 5 p , 9 p ) 2700.90fixed 3177.530.850
5p 3 9p G 0 ( 5 p , 9 p ) 354.40fixed 443.000.800
5p 3 9p G 2 ( 5 p , 9 p ) 578.30fixed 722.880.800
5p 3 10p E a v 795,374.50fixed 795,374.501.000
5p 3 10p F 2 ( 5 p , 5 p ) 51,311.2060161,514.240.834
5p 3 10p α ( 5 p ) −61.30−630.00
5p 3 10p ζ ( 5 p ) 12,856.8010212,170.301.056
5p 3 10p ζ ( 10 p ) 395.40fixed 395.401.000
5p 3 10p F 2 ( 5 p , 10 p ) 1737.80fixed 2044.470.850
5p 3 10p G 0 ( 5 p , 10 p ) 224.00fixed 280.000.800
5p 3 10p G 2 ( 5 p , 10 p ) 369.80fixed 462.250.800
5p 3 4f E a v 459,512.10fixed 459,512.101.000
5p 3 4f F 2 ( 5 p , 5 p ) 49,232.0057159,021.650.834
5p 3 4f α ( 5 p ) −61.30−630.00
5p 3 4f ζ ( 4 f ) 329.60fixed 329.601.000
5p 3 4f ζ ( 5 p ) 11,449.209210,837.801.056
5p 3 4f F 2 ( 4 f , 5 p ) 43,149.10fixed 50,763.650.850
5p 3 4f G 2 ( 4 f , 5 p ) 26,815.60fixed 33,519.500.800
5p 3 4f G 4 ( 4 f , 5 p ) 19,940.00fixed 24,925.000.800
5p 3 5f E a v 639,346.20fixed 639,346.201.000
5p 3 5f F 2 ( 5 p , 5 p ) 50,879.5059160,996.710.834
5p 3 5f α ( 5 p ) −61.30−630.00
5p 3 5f ζ ( 5 p ) 12,589.0010211,916.801.056
5p 3 5f ζ ( 5 f ) 81.20fixed 81.201.000
5p 3 5f F 2 ( 5 p , 5 f ) 18,794.20fixed 22,110.820.850
5p 3 5f G 2 ( 5 p , 5 f ) 4918.70fixed 6148.380.800
5p 3 5f G 4 ( 5 p , 5 f ) 4021.50fixed 5026.880.800
5p 3 6f E a v 716,416.10fixed 716,416.101.000
5p 3 6f F 2 ( 5 p , 5 p ) 51,137.8059161,306.350.834
5p 3 6f α ( 5 p ) −61.30−630.00
5p 3 6f ζ ( 5 p ) 12,740.9010212,060.601.056
5p 3 6f ζ ( 6 f ) 40.20fixed 40.201.000
5p 3 6f F 2 ( 5 p , 6 f ) 8708.40fixed 10,245.180.850
5p 3 6f G 2 ( 5 p , 6 f ) 2825.00fixed 3531.250.800
5p 3 6f G 4 ( 5 p , 6 f ) 2236.10fixed 2795.130.800
5p 3 7f E a v 758,772.60fixed 758,772.601.000
5p 3 7f F 2 ( 5 p , 5 p ) 51,230.6059161,417.650.834
5p 3 7f α ( 5 p ) −61.30−630.00
5p 3 7f ζ ( 5 p ) 12,799.6010212,116.101.056
5p 3 7f ζ ( 7 f ) 23.10fixed 23.101.000
5p 3 7f F 2 ( 5 p , 7 f ) 4778.40fixed 5621.650.850
5p 3 7f G 2 ( 5 p , 7 f ) 1688.10fixed 2110.130.800
5p 3 7f G 4 ( 5 p , 7 f ) 1326.60fixed 1658.250.800
5p 3 8f E a v 784,756.20fixed 784,756.201.000
5p 3 8f F 2 ( 5 p , 5 p ) 51,272.8059161,468.240.834
5p 3 8f α ( 5 p ) −61.30−630.00
5p 3 8f ζ ( 5 p ) 12,827.3010212,142.401.056
5p 3 8f ζ ( 8 f ) 14.60fixed 14.601.000
5p 3 8f F 2 ( 5 p , 8 f ) 2922.30fixed 3438.000.850
5p 3 8f G 2 ( 5 p , 8 f ) 1078.20fixed 1347.750.800
5p 3 8f G 4 ( 5 p , 8 f ) 845.60fixed 1057.000.800
5p 3 9f E a v 801,855.60fixed 801,855.601.000
5p 3 9f F 2 ( 5 p , 5 p ) 51,295.5059161,495.410.834
5p 3 9f α ( 5 p ) −61.30−630.00
5p 3 9f ζ ( 5 p ) 12,842.5010212,156.701.056
5p 3 9f ζ ( 9 f ) 9.80fixed 9.801.000
5p 3 9f F 2 ( 5 p , 9 f ) 1923.60fixed 2263.060.850
5p 3 9f G 2 ( 5 p , 9 f ) 728.10fixed 910.130.800
5p 3 9f G 4 ( 5 p , 9 f ) 570.70fixed 713.380.800
5p 3 10f E a v 813,709.00fixed 813,709.001.000
5p 3 10f F 2 ( 5 p , 5 p ) 51,308.9059161,511.530.834
5p 3 10f α ( 5 p ) −61.30−630.00
5p 3 10f ζ ( 5 p ) 12,851.4010212,165.201.056
5p 3 10f ζ ( 10 f ) 6.90fixed 6.901.000
5p 3 10f F 2 ( 5 p , 10 f ) 1336.10fixed 1571.880.850
5p 3 10f G 2 ( 5 p , 10 f ) 514.20fixed 642.750.800
5p 3 10f G 4 ( 5 p , 10 f ) 403.00fixed 503.750.800
5d6s E a v 452690.10fixed 452690.101.000
5d6s ζ ( 5 d ) 910.70fixed 910.701.000
5d6s G 2 ( 5 d , 6 s ) 13,699.00fixed 17,123.750.800
5p 2 5d 2 E a v 650,290.10fixed 650,290.101.000
5p 2 5d 2 F 2 ( 5 p , 5 p ) 50,647.1059160,718.120.834
5p 2 5d 2 α ( 5 p ) −61.30−630.00
5p 2 5d 2 F 2 ( 5 d , 5 d ) 40,929.00fixed 48,151.770.850
5p 2 5d 2 F 4 ( 5 d , 5 d ) 28,007.90fixed 32,950.470.850
5p 2 5d 2 α ( 5 d ) 0.00fixed 0.00
5p 2 5d 2 β ( 5 d ) 0.00fixed 0.00
5p 2 5d 2 T ( 5 d ) 0.00fixed 0.00
5p 2 5d 2 ζ ( 5 p ) 12,437.109211,773.001.056
5p 2 5d 2 ζ ( 5 d ) 910.70fixed 910.701.000
5p 2 5d 2 F 2 ( 5 p , 5 d ) 42,659.30fixed 50,187.410.850
5p 2 5d 2 G 1 ( 5 p , 5 d ) 47,420.90fixed 59,276.130.800
5p 2 5d 2 G 3 ( 5 p , 5 d ) 30,157.50fixed 37,696.880.800
5p 2 5d6s E a v 710,849.60fixed 710,849.601.000
5p 2 5d6s F 2 ( 5 p , 5 p ) 51,098.8059161,259.650.834
5p 2 5d6s α ( 5 p ) −61.30−630.00
5p 2 5d6s ζ ( 5 p ) 12,808.0010212,124.101.056
5p 2 5d6s ζ ( 5 d ) 954.30fixed 954.301.000
5p 2 5d6s F 2 ( 5 p , 5 d ) 43,303.30fixed 50,945.060.850
5p 2 5d6s G 1 ( 5 p , 5 d ) 48,198.70fixed 60,248.380.800
5p 2 5d6s G 3 ( 5 p , 5 d ) 30,680.40fixed 38,350.500.800
5p 2 5d6s G 1 ( 5 p , 6 s ) 6003.00fixed 7503.750.800
5p 2 5d6s G 2 ( 5 d , 6 s ) 12,672.40fixed 15,840.500.800
5p 2 6s 2 E a v 780,534.60fixed 780,534.601.000
5p 2 6s 2 F 2 ( 5 p , 5 p ) 51,550.3060161,800.940.834
5p 2 6s 2 α ( 5 p ) −61.30−630.00
5p 2 6s 2 ζ ( 5 p ) 13,194.8010212,490.201.056
5p 2 4f 2 E a v 620,435.50fixed 620,435.501.000
5p 2 4f 2 F 2 ( 4 f , 4 f ) 58,660.50fixed 69,012.350.850
5p 2 4f 2 F 4 ( 4 f , 4 f ) 36,480.00fixed 42,917.650.850
5p 2 4f 2 F 6 ( 4 f , 4 f ) 26,150.00fixed 30,764.710.850
5p 2 4f 2 α ( 4 f ) 0.00fixed 0.00
5p 2 4f 2 β ( 4 f ) 0.00fixed 0.00
5p 2 4f 2 G a ( 4 f ) 0.00fixed 0.00
5p 2 4f 2 F 2 ( 5 p , 5 p ) 48,639.0056158,310.710.834
5p 2 4f 2 α ( 5 p ) −61.30−630.00
5p 2 4f 2 ζ ( 4 f ) 295.70fixed 295.701.000
5p 2 4f 2 ζ ( 5 p ) 11,028.308210,439.401.056
5p 2 4f 2 F 2 ( 4 f , 5 p ) 42,997.20fixed 50,584.940.850
5p 2 4f 2 G 2 ( 4 f , 5 p ) 27,988.40fixed 34,985.500.800
5p 2 4f 2 G 4 ( 4 f , 5 p ) 20,576.60fixed 25,720.750.800
5s5p5d4f E a v 489,764.90fixed 489,764.901.000
5s5p5d4f ζ ( 4 f ) 333.00fixed 333.001.000
5s5p5d4f ζ ( 5 p ) 11,140.20fixed 11,140.201.000
5s5p5d4f ζ ( 5 d ) 812.20fixed 812.201.000
5s5p5d4f F 2 ( 4 f , 5 p ) 43,531.80fixed 51,213.880.850
5s5p5d4f F 2 ( 4 f , 5 d ) 30,099.00fixed 35,410.590.850
5s5p5d4f F 4 ( 4 f , 5 d ) 16,759.80fixed 19,717.410.850
5s5p5d4f F 2 ( 5 p , 5 d ) 41,003.40fixed 48,239.290.850
5s5p5d4f G 3 ( 4 f , 5 s ) 28,072.80fixed 35,091.000.800
5s5p5d4f G 2 ( 4 f , 5 p ) 26,885.40fixed 33,606.750.800
5s5p5d4f G 4 ( 4 f , 5 p ) 20,054.60fixed 25,068.250.800
5s5p5d4f G 1 ( 4 f , 5 d ) 17,573.60fixed 21,967.000.800
5s5p5d4f G 3 ( 4 f , 5 d ) 13,729.40fixed 17,161.750.800
5s5p5d4f G 5 ( 4 f , 5 d ) 10,405.20fixed 13,006.500.800
5s5p5d4f G 1 ( 5 s , 5 p ) 62,000.30fixed 77,500.380.800
5s5p5d4f G 2 ( 5 s , 5 d ) 29,826.00fixed 37,282.500.800
5s5p5d4f G 1 ( 5 p , 5 d ) 45,114.90fixed 56,393.630.800
5s5p5d4f G 3 ( 5 p , 5 d ) 28,683.20fixed 35,854.000.800
5p6s E a v 261,854.9082 262,502.600.998
5p6s ζ ( 5 p ) 12,815.2068112,059.901.063
5p6s G 1 ( 5 p , 6 s ) 5512.5040027319.630.753
5p7s E a v 393,236.40fixed 393,236.401.000
5p7s ζ ( 5 p ) 13,006.6069112,240.001.063
5p7s G 1 ( 5 p , 7 s ) 1785.6012922371.000.753
5p8s E a v 457,209.10fixed 457,209.101.000
5p8s ζ ( 5 p ) 13,062.8070112,292.901.063
5p8s G 1 ( 5 p , 8 s ) 849.006221127.250.753
5p9s E a v 493,662.60fixed 493,662.601.000
5p9s ζ ( 5 p ) 13,086.8070112,315.501.063
5p9s G 1 ( 5 p , 9 s ) 479.90352637.250.753
5p10s E a v 516,488.70fixed 516,488.701.000
5p10s ζ ( 5 p ) 13,099.2070112,327.101.063
5p10s G 1 ( 5 p , 10 s ) 300.10222398.500.753
5p5d E a v 208,717.9095 210,942.200.989
5p5d ζ ( 5 p ) 12,445.2066111,711.701.063
5p5d ζ ( 5 d ) 1145.70728847.201.352
5p5d F 2 ( 5 p , 5 d ) 38,915.30500448,875.770.796
5p5d G 1 ( 5 p , 5 d ) 41,194.70272557,132.380.721
5p5d G 3 ( 5 p , 5 d ) 26,056.80509636,310.500.718
5p6d E a v 374,595.20fixed 374,595.201.000
5p6d ζ ( 5 p ) 12,966.4069112,202.201.063
5p6d ζ ( 6 d ) 450.90288333.401.352
5p6d F 2 ( 5 p , 6 d ) 13,597.30175417,077.530.796
5p6d G 1 ( 5 p , 6 d ) 6769.704559388.880.721
5p6d G 3 ( 5 p , 6 d ) 5019.509866994.750.718
5p7d E a v 448,002.60fixed 448,002.601.000
5p7d ζ ( 5 p ) 13,047.0070112,278.001.063
5p7d ζ ( 7 d ) 234.20158173.201.352
5p7d F 2 ( 5 p , 7 d ) 6403.908248042.940.796
5p7d G 1 ( 5 p , 7 d ) 2665.401853696.630.721
5p7d G 3 ( 5 p , 7 d ) 2088.404162910.250.718
5p8d E a v 488,324.00fixed 488,324.001.000
5p8d ζ ( 5 p ) 13,078.4070112,307.601.063
5p8d ζ ( 8 d ) 138.9098102.701.352
5p8d F 2 ( 5 p , 8 d ) 3569.604644483.290.796
5p8d G 1 ( 5 p , 8 d ) 1382.10951916.880.721
5p8d G 3 ( 5 p , 8 d ) 1113.402261551.500.718
5p9d E a v 513,098.50fixed 513,098.501.000
5p9d ζ ( 5 p ) 13,094.3070112,322.501.063
5p9d ζ ( 9 d ) 89.406866.101.352
5p9d F 2 ( 5 p , 9 d ) 2205.502842770.000.796
5p9d G 1 ( 5 p , 9 d ) 823.00551141.380.721
5p9d G 3 ( 5 p , 9 d ) 673.70136938.880.718
5p10d E a v 529,448.70fixed 529,448.701.000
5p10d ζ ( 5 p ) 13,103.3070112,331.001.063
5p10d ζ ( 10 d ) 61.004845.101.353
5p10d F 2 ( 5 p , 10 d ) 1462.901941837.290.796
5p10d G 1 ( 5 p , 10 d ) 534.4045741.130.721
5p10d G 3 ( 5 p , 10 d ) 442.0096616.000.718
5s5p 3 E a v 158,786.20108 158,557.301.001
5s5p 3 F 2 ( 5 p , 5 p ) 50,863.20408359,873.530.850
5s5p 3 α ( 5 p ) −81.50−3690.00
5s5p 3 ζ ( 5 p ) 12,109.7065111,396.001.063
5s5p 3 G 1 ( 5 s , 5 p ) 57,837.70167778,111.880.740
5s5p 2 6p E a v 433,183.30fixed 433,183.301.000
5s5p 2 6p F 2 ( 5 p , 5 p ) 52,014.40417361,228.710.850
5s5p 2 6p α ( 5 p ) −81.50−3690.00
5s5p 2 6p ζ ( 5 p ) 12,889.8069112,130.101.063
5s5p 2 6p ζ ( 6 p ) 3539.40fixed 3539.401.000
5s5p 2 6p F 2 ( 5 p , 6 p ) 19,386.70fixed 22,807.880.850
5s5p 2 6p G 1 ( 5 s , 5 p ) 59,036.50171779,730.880.740
5s5p 2 6p G 1 ( 5 s , 6 p ) 5993.30fixed 7491.630.800
5s5p 2 6p G 0 ( 5 p , 6 p ) 3700.10fixed 4625.130.800
5s5p 2 6p G 2 ( 5 p , 6 p ) 5112.80fixed 6391.000.800
5s5p 2 7p E a v 540,226.80fixed 540,226.801.000
5s5p 2 7p F 2 ( 5 p , 5 p ) 52,161.50418361,401.880.850
5s5p 2 7p α ( 5 p ) −81.50−3690.00
5s5p 2 7p ζ ( 5 p ) 12,962.0069112,198.001.063
5s5p 2 7p ζ ( 7 p ) 1710.70fixed 1710.701.000
5s5p 2 7p F 2 ( 5 p , 7 p ) 8593.70fixed 10,110.240.850
5s5p 2 7p G 1 ( 5 s , 5 p ) 59,171.80171779,913.630.740
5s5p 2 7p G 1 ( 5 s , 7 p ) 2237.30fixed 2796.630.800
5s5p 2 7p G 0 ( 5 p , 7 p ) 1292.30fixed 1615.380.800
5s5p 2 7p G 2 ( 5 p , 7 p ) 1957.00fixed 2446.250.800
5s5p 2 8p E a v 594,697.10fixed 594,697.101.000
5s5p 2 8p F 2 ( 5 p , 5 p ) 52,221.70419361,472.710.850
5s5p 2 8p α ( 5 p ) −81.50−3690.00
5s5p 2 8p ζ ( 5 p ) 12,992.5069112,226.701.063
5s5p 2 8p ζ ( 8 p ) 960.50fixed 960.501.000
5s5p 2 8p F 2 ( 5 p , 8 p ) 4534.80fixed 5335.060.850
5s5p 2 8p G 1 ( 5 s , 5 p ) 59,228.90171779,990.750.740
5s5p 2 8p G 1 ( 5 s , 8 p ) 1118.30fixed 1397.880.800
5s5p 2 8p G 0 ( 5 p , 8 p ) 629.10fixed 786.380.800
5s5p 2 8p G 2 ( 5 p , 8 p ) 990.10fixed 1237.630.800
5s5p 2 4f E a v 319,549.20fixed 319,549.201.000
5s5p 2 4f F 2 ( 5 p , 5 p ) 50,163.10402359,049.410.850
5s5p 2 4f α ( 5 p ) −81.50−3690.00
5s5p 2 4f ζ ( 4 f ) 320.80fixed 320.801.000
5s5p 2 4f ζ ( 5 p ) 11,601.3062110,917.501.063
5s5p 2 4f F 2 ( 4 f , 5 p ) 43,297.90fixed 50,938.710.850
5s5p 2 4f G 3 ( 4 f , 5 s ) 28,181.50fixed 35,226.880.800
5s5p 2 4f G 2 ( 4 f , 5 p ) 27,235.30fixed 34,044.130.800
5s5p 2 4f G 4 ( 4 f , 5 p ) 20,205.70fixed 25,257.130.800
5s5p 2 4f G 1 ( 5 s , 5 p ) 57,009.20165776,992.880.740
5s5p 2 5f E a v 492,447.80fixed 492,447.801.000
5s5p 2 5f F 2 ( 5 p , 5 p ) 51,824.00416361,004.590.850
5s5p 2 5f α ( 5 p ) −81.50−3690.00
5s5p 2 5f ζ ( 5 p ) 12,741.8068111,990.801.063
5s5p 2 5f ζ ( 5 f ) 81.10fixed 81.101.000
5s5p 2 5f F 2 ( 5 p , 5 f ) 18,460.40fixed 21,718.120.850
5s5p 2 5f G 1 ( 5 s , 5 p ) 58,818.50170779,436.380.740
5s5p 2 5f G 3 ( 5 s , 5 f ) 2828.60fixed 3535.750.800
5s5p 2 5f G 2 ( 5 p , 5 f ) 4572.30fixed 5715.380.800
5s5p 2 5f G 4 ( 5 p , 5 f ) 3798.70fixed 4748.380.800
5s5p 2 6f E a v 568,603.40fixed 568,603.401.000
5s5p 2 6f F 2 ( 5 p , 5 p ) 52,086.20418361,313.180.850
5s5p 2 6f α ( 5 p ) −81.50−3690.00
5s5p 2 6f ζ ( 5 p ) 12,136.40fixed 12,136.401.000
5s5p 2 6f ζ ( 6 f ) 40.10fixed 40.101.000
5s5p 2 6f F 2 ( 5 p , 6 f ) 8604.40fixed 10,122.820.850
5s5p 2 6f G 1 ( 5 s , 5 p ) 59,082.40171779,792.880.740
5s5p 2 6f G 3 ( 5 s , 6 f ) 1647.60fixed 2059.500.800
5s5p 2 6f G 2 ( 5 p , 6 f ) 2691.40fixed 3364.250.800
5s5p 2 6f G 4 ( 5 p , 6 f ) 2148.10fixed 2685.130.800
5s5p 2 7f E a v 610,614.10fixed 610,614.101.000
5s5p 2 7f F 2 ( 5 p , 5 p ) 52,182.00419361,426.000.850
5s5p 2 7f α ( 5 p ) −81.50−3690.00
5s5p 2 7f ζ ( 5 p ) 12,956.6069112,192.901.063
5s5p 2 7f ζ ( 7 f ) 23.10fixed 23.101.000
5s5p 2 7f F 2 ( 5 p , 7 f ) 4739.30fixed 5575.650.850
5s5p 2 7f G 1 ( 5 s , 5 p ) 59,181.30171779,926.380.740
5s5p 2 7f G 3 ( 5 s , 7 f ) 1031.00fixed 1288.750.800
5s5p 2 7f G 2 ( 5 p , 7 f ) 1629.20fixed 2036.500.800
5s5p 2 7f G 4 ( 5 p , 7 f ) 1287.50fixed 1609.380.800
5s5p 2 8f E a v 636,434.50fixed 636,434.501.000
5s5p 2 8f F 2 ( 5 p , 5 p ) 52,225.70419361,477.410.850
5s5p 2 8f α ( 5 p ) −81.50−3690.00
5s5p 2 8f ζ ( 5 p ) 12,984.9069112,219.601.063
5s5p 2 8f ζ ( 8 f ) 14.60fixed 14.601.000
5s5p 2 8f F 2 ( 5 p , 8 f ) 2904.50fixed 3417.060.850
5s5p 2 8f G 1 ( 5 s , 5 p ) 59,226.90171779,988.000.740
5s5p 2 8f G 3 ( 5 s , 8 f ) 679.90fixed 849.880.800
5s5p 2 8f G 2 ( 5 p , 8 f ) 1047.70fixed 1309.630.800
5s5p 2 8f G 4 ( 5 p , 8 f ) 825.20fixed 1031.500.800
5p 3 6s E a v 536,194.20fixed 536,194.201.000
5p 3 6s F 2 ( 5 p , 5 p ) 51,696.90415360,854.940.850
5p 3 6s α ( 5 p ) −81.50−3690.00
5p 3 6s ζ ( 5 p ) 12,653.3068111,907.501.063
5p 3 6s G 1 ( 5 p , 6 s ) 5618.9040727460.880.753
5p 3 7s E a v 667,005.40fixed 667,005.401.000
5p 3 7s F 2 ( 5 p , 5 p ) 52,099.20418361,328.470.850
5p 3 7s α ( 5 p ) −81.50−3690.00
5p 3 7s ζ ( 5 p ) 12,836.9069112,080.301.063
5p 3 7s G 1 ( 5 p , 7 s ) 1912.60fixed 2390.750.800
5p 3 8s E a v 731,155.30fixed 731,155.301.000
5p 3 8s F 2 ( 5 p , 5 p ) 52,194.00419361,440.120.850
5p 3 8s α ( 5 p ) −81.50−3690.00
5p 3 8s ζ ( 5 p ) 12,891.2069112,131.401.063
5p 3 8s G 1 ( 5 p , 8 s ) 903.40fixed 1129.250.800
5p 3 9s E a v 767,693.80fixed 767,693.801.000
5p 3 9s F 2 ( 5 p , 5 p ) 52,232.30419361,485.180.850
5p 3 9s α ( 5 p ) −81.50−3690.00
5p 3 9s ζ ( 5 p ) 12,914.5069112,153.301.063
5p 3 9s G 1 ( 5 p , 9 s ) 509.10fixed 636.380.800
5p 3 10s E a v 790,568.10fixed 790,568.101.000
5p 3 10s F 2 ( 5 p , 5 p ) 52,251.70419361,508.000.850
5p 3 10s α ( 5 p ) −81.50−3690.00
5p 3 10s ζ ( 5 p ) 12,926.5069112,164.601.063
5p 3 10s G 1 ( 5 p , 10 s ) 317.90fixed 397.380.800
5p 3 5d E a v 476,284.60fixed 476,284.601.000
5p 3 5d F 2 ( 5 p , 5 p ) 51,224.20411360,298.470.850
5p 3 5d α ( 5 p ) −81.50−3690.00
5p 3 5d ζ ( 5 p ) 12,276.5066111,552.901.063
5p 3 5d ζ ( 5 d ) 1204.20758890.501.352
5p 3 5d F 2 ( 5 p , 5 d ) 39,602.70509449,739.060.796
5p 3 5d G 1 ( 5 p , 5 d ) 42,328.30280558,704.630.721
5p 3 5d G 3 ( 5 p , 5 d ) 26,778.50523637,316.250.718
5p 3 6d E a v 646,655.70fixed 646,655.701.000
5p 3 6d F 2 ( 5 p , 5 p ) 52,073.50418361,298.240.850
5p 3 6d α ( 5 p ) −81.50−3690.00
5p 3 6d ζ ( 5 p ) 12,799.3068112,044.901.063
5p 3 6d ζ ( 6 d ) 454.40288336.001.352
5p 3 6d F 2 ( 5 p , 6 d ) 14,588.50fixed 17,162.940.850
5p 3 6d G 1 ( 5 p , 6 d ) 7204.60fixed 9005.750.800
5p 3 6d G 3 ( 5 p , 6 d ) 5440.40fixed 6800.500.800
5p 3 7d E a v 721,253.90fixed 721,253.901.000
5p 3 7d F 2 ( 5 p , 5 p ) 52,179.10419361,422.590.850
5p 3 7d α ( 5 p ) −81.50−3690.00
5p 3 7d ζ ( 5 p ) 12,877.3069112,118.301.063
5p 3 7d ζ ( 7 d ) 235.20158173.901.353
5p 3 7d F 2 ( 5 p , 7 d ) 6853.10fixed 8062.470.850
5p 3 7d G 1 ( 5 p , 7 d ) 2832.40fixed 3540.500.800
5p 3 7d G 3 ( 5 p , 7 d ) 2263.10fixed 2828.880.800
5p 3 8d E a v 761,986.60fixed 761,986.601.000
5p 3 8d F 2 ( 5 p , 5 p ) 52,223.70419361,475.060.850
5p 3 8d α ( 5 p ) −81.50−3690.00
5p 3 8d ζ ( 5 p ) 12,907.7069112,146.901.063
5p 3 8d ζ ( 8 d ) 139.4098103.101.352
5p 3 8d F 2 ( 5 p , 8 d ) 3814.40fixed 4487.530.850
5p 3 8d G 1 ( 5 p , 8 d ) 1469.50fixed 1836.880.800
5p 3 8d G 3 ( 5 p , 8 d ) 1207.30fixed 1509.130.800
5p 3 9d E a v 786,954.90fixed 786,954.901.000
5p 3 9d F 2 ( 5 p , 5 p ) 52,246.70419361,502.120.850
5p 3 9d α ( 5 p ) −81.50−3690.00
5p 3 9d ζ ( 5 p ) 12,922.7069112,161.001.063
5p 3 9d ζ ( 9 d ) 89.706866.301.353
5p 3 9d F 2 ( 5 p , 9 d ) 2354.60fixed 2770.120.850
5p 3 9d G 1 ( 5 p , 9 d ) 875.70fixed 1094.630.800
5p 3 9d G 3 ( 5 p , 9 d ) 731.20fixed 914.000.800
5p 3 10d E a v 803,412.10fixed 803,412.101.000
5p 3 10d F 2 ( 5 p , 5 p ) 52,259.70419361,517.410.850
5p 3 10d α ( 5 p ) −81.50−3690.00
5p 3 10d ζ ( 5 p ) 12,931.1069112,168.901.063
5p 3 10d ζ ( 10 d ) 61.104845.201.352
5p 3 10d F 2 ( 5 p , 10 d ) 1560.20fixed 1835.530.850
5p 3 10d G 1 ( 5 p , 10 d ) 568.40fixed 710.500.800
5p 3 10d G 3 ( 5 p , 10 d ) 479.60fixed 599.500.800
5s5p5d 2 E a v 513,986.70fixed 513,986.701.000
5s5p5d 2 F 2 ( 5 d , 5 d ) 40,631.80fixed 47,802.120.850
5s5p5d 2 F 4 ( 5 d , 5 d ) 27,794.90fixed 32,699.880.850
5s5p5d 2 α ( 5 d ) 0.00fixed 0.00
5s5p5d 2 β ( 5 d ) 0.00fixed 0.00
5s5p5d 2 T ( 5 d ) 0.00fixed 0.00
5s5p5d 2 ζ ( 5 p ) 12,602.6067111,859.801.063
5s5p5d 2 ζ ( 5 d ) 1202.30758889.101.352
5s5p5d 2 F 2 ( 5 p , 5 d ) 39,627.40509449,770.120.796
5s5p5d 2 G 1 ( 5 s , 5 p ) 58,598.50170779,139.250.740
5s5p5d 2 G 2 ( 5 s , 5 d ) 31,283.80fixed 39,104.750.800
5s5p5d 2 G 1 ( 5 p , 5 d ) 42,188.20279558,510.250.721
5s5p5d 2 G 3 ( 5 p , 5 d ) 26,699.70522637,206.380.718
5s5p5d6s E a v 570,183.00fixed 570,183.001.000
5s5p5d6s ζ ( 5 p ) 12,972.3069112,207.701.063
5s5p5d6s ζ ( 5 d ) 1260.20798931.901.352
5s5p5d6s F 2 ( 5 p , 5 d ) 40,230.70517450,527.880.796
5s5p5d6s G 1 ( 6 s , 5 p ) 59,065.50171779,770.000.740
5s5p5d6s G 2 ( 6 s , 5 d ) 31,715.30fixed 39,644.130.800
5s5p5d6s G 0 ( 6 s , s ) 3958.50fixed 4948.130.800
5s5p5d6s G 1 ( 5 p , 5 d ) 42,892.70284559,487.380.721
5s5p5d6s G 3 ( 5 p , 5 d ) 27,170.00531637,861.750.718
5s5p5d6s G 1 ( 5 p , s ) 5938.40fixed 7423.000.800
5s5p5d6s G 2 ( 5 d , s ) 13,219.70fixed 16,524.630.800
5s5p6s 2 E a v 635,459.70fixed 635,459.701.000
5s5p6s 2 ζ ( 5 p ) 13,358.1071112,570.801.063
5s5p6s 2 G 1 ( 5 s , 5 p ) 59,529.50172780,396.630.740
5s5p4f 2 E a v 491,309.90fixed 491,309.901.000
5s5p4f 2 F 2 ( 4 f , 4 f ) 57,554.90fixed 67,711.650.850
5s5p4f 2 F 4 ( 4 f , 4 f ) 35,751.00fixed 42,060.000.850
5s5p4f 2 F 6 ( 4 f , 4 f ) 25,615.80fixed 30,136.240.850
5s5p4f 2 α ( 4 f ) 0.00fixed 0.00
5s5p4f 2 β ( 4 f ) 0.00fixed 0.00
5s5p4f 2 G a ( 4 f ) 0.00fixed 0.00
5s5p4f 2 ζ ( 4 f ) 287.30fixed 287.301.000
5s5p4f 2 ζ ( 5 p ) 11,196.1060110,536.201.063
5s5p4f 2 F 2 ( 4 f , 5 p ) 43,131.40fixed 50,742.820.850
5s5p4f 2 G 3 ( 4 f , 5 s ) 28,729.60fixed 35,912.000.800
5s5p4f 2 G 2 ( 4 f , 5 p ) 28,380.30fixed 35,475.380.800
5s5p4f 2 G 4 ( 4 f , 5 p ) 20,822.80fixed 26,028.500.800
5s5p4f 2 G 1 ( 5 s , 5 p ) 56,322.50163776,065.500.740
5p6s-5p5d R d 2 ( 5 p , 6 s , 5 p , 5 d ) d−9894.80−7710−13324.400.743
5p6s-5p5d R e 1 ( 5 p , 6 s , 5 p , 5 d ) −3800.60−2910−5117.900.743
5p6s-5s5p 3 R d 1 ( 5 s , 6 s , 5 p , 5 p ) −662.90−510−892.700.743
5p5d-5s5p 3 R d 1 ( 5 s , 5 d , 5 p , 5 p ) 48226.903731064942.700.743
a Configurations involved in the calculations and their Slater parameters with the corresponding least-squaresfitted (LSF), Hartree–Fock (HFR) values, and their ratios. b Uncertainty of each parameter represents its standard deviation. c Parameters in each numbered group were linked together with their ratio fixed at the HFR level. d All other configuration-interaction (Rk) parameters for both parities were fixed at 70% of their HFR values.

References

  1. Vennes, S.; Chayer, P.; Dupuis, J. Discovery of Photospheric Germanium in Hot DA White Dwarfs. Astrophys. J. Lett. 2005, 622, L121–L124. [Google Scholar] [CrossRef]
  2. Chayer, P.; Vennes, S.; Dupuis, J.; Kruk, J.W. Abundance of Elements beyond the Iron Group in Cool DO White Dwarfs. Astrophys. J. Lett. 2005, 630, L169–L172. [Google Scholar] [CrossRef]
  3. Rauch, T.; Quinet, P.; Knörzer, M.; Hoyer, D.; Werner, K.; Kruk, J.W.; Demleitner, M. Stellar laboratories. IX. New Se V, Sr IV-VII, Te VI, and I VI oscillator strengths and the Se, Sr, Te, and I abundances in the hot white dwarfs G191-B2B and RE 0503-289. Astron. Astrophys. 2017, 606, A105. [Google Scholar] [CrossRef]
  4. Werner, K.; Rauch, T.; Knörzer, M.; Kruk, J.W. First detection of bromine and antimony in hot stars. Astron. Astrophys. 2018, 614, A96. [Google Scholar] [CrossRef]
  5. Löbling, L.; Maney, M.A.; Rauch, T.; Quinet, P.; Gamrath, S.; Kruk, J.W.; Werner, K. First discovery of trans-iron elements in a DAO-type white dwarf (BD-22°3467). Mon. Not. R. Astron. Soc. 2020, 492, 528–548. [Google Scholar] [CrossRef]
  6. Chayer, P.; Mendoza, C.; Meléndez, M.; Deprince, J.; Dupuis, J. Detection of cesium in the atmosphere of the hot He-rich white dwarf HD 149499B. Mon. Not. R. Astron. Soc. 2023, 518, 368–381. [Google Scholar] [CrossRef]
  7. Tauheed, A.; Joshi, Y.N.; Kaufman, V. Analysis of the four lowest configurations of five times ionized cesium (Cs VI). Phys. Scr. 1991, 44, 579–581. [Google Scholar] [CrossRef]
  8. Sansonetti, J.E. Wavelengths, Transition Probabilities, and Energy Levels for the Spectra of Cesium (Cs I-Cs LV). J. Phys. Chem. Ref. Data 2009, 38, 761–923. [Google Scholar] [CrossRef]
  9. Kramida, A.; Ralchenko, Y.; Reader, J.; NIST ASD Team. NIST Atomic Spectra Database, Version 5.8 (Gaithersburg, MD: National Institute of Standards and Technology). 2020. Available online: http://physics.nist.gov/asd (accessed on 1 July 2023).
  10. Radziemski, L.J., Jr.; Fisher, K.J.; Steinhaus, D.W. Calculation of Atomic-Energy-Level Values; Technical Report Univ. California LA-4402; Los Alamos Scientific Lab.: Los Alamos, NM, USA, 1970. [Google Scholar]
  11. Kramida, A. Critical evaluation of data on atomic energy levels, wavelengths, and transition probabilities. Fusion. Sci. Technol. 2013, 63, 313–323. [Google Scholar] [CrossRef]
  12. Kramida, A. Critically evaluated energy levels and spectral lines of singly ionized indium (In II). J. Res. Natl. Inst. Tech. 2013, 118, 52. [Google Scholar] [CrossRef]
  13. Kramida, A. A critical compilation of energy levels, spectral lines, and transition probabilities of singly ionized silver, Ag II. J. Res. Natl. Inst. Tech. 2013, 118, 168. [Google Scholar] [CrossRef]
  14. Haris, K.; Kramida, A.; Tauheed, A. Extended and revised analysis of singly ionized tin: Sn II. Phys. Scr. 2014, 89, 115403. [Google Scholar] [CrossRef]
  15. Husain, A.; Haris, K.; Jabeen, S.; Tauheed, A. Critically evaluated energy levels, wavelengths, transition probabilities, and intensities of six-times ionized cesium: Cs VII. J. Res. Natl. Inst. Tech. 2020, 247, 106956. [Google Scholar] [CrossRef]
  16. Cowan, R.D. The Theory of Atomic Structure and Spectra; University of California Press: Berkeley, CA, USA, 1981. [Google Scholar]
  17. Kramida, A. A suite of atomic structure codes originally developed by R. D. Cowan adapted for Windows-based personal computers. Natl. Inst. Stand. Technol. 2021, 215, 47–48. [Google Scholar] [CrossRef]
  18. Kramida, A. Cowan Code: 50 Years of Growing Impact on Atomic Physics. Atoms 2019, 7, 64. [Google Scholar] [CrossRef]
  19. Kramida, A.E. The program LOPT for least-squares optimization of energy levels. Comput. Phys. Commun. 2011, 182, 419–434. [Google Scholar] [CrossRef]
  20. Eissner, W.; Jones, M.; Nussbaumer, H. Techniques for the calculation of atomic structures and radiative data including relativistic corrections. Comput. Phys. Commun. 1974, 8, 270–306. [Google Scholar] [CrossRef]
  21. Badnell, N.R. A Breit-Pauli distorted wave implementation for AUTOSTRUCTURE. Comput. Phys. Commun. 2011, 182, 1528–1535. [Google Scholar] [CrossRef]
  22. Biémont, E.; Quinet, P.; Zeippen, C.J. Transition Probabilities in Xe V. Phys. Scr. 2005, 71, 163–169. [Google Scholar] [CrossRef]
  23. Zainab, A.; Haris, K.; Gamrath, S.; Quinet, P.; Tauheed, A. Critically Evaluated Atomic Data for the Au IV Spectrum. Astrophys. J. Suppl. Ser. 2023, 267, 12. [Google Scholar] [CrossRef]
  24. Curtis, L.J. Branching Fractions for the 5s25p2 - 5s25p6s Supermultiplet in the Sn Isoelectronic Sequence. Phys. Scr. 2001, 63, 104–107. [Google Scholar] [CrossRef]
  25. Oliver, P.; Hibbert, A. Energy level classifications and Breit Pauli oscillator strengths in neutral tin. J. Phys. B-At. Mol. Opt. 2008, 41, 165003. [Google Scholar] [CrossRef]
  26. Biemont, E.; Hansen, J.E.; Quinet, P.; Zeippen, C.J. Forbidden transitions of astrophysical interest in the 5pk(k = 1–5) configurations. Astron. Astrophys. Suppl. 1995, 111, 333. [Google Scholar]
  27. Kramida, A. Assessing Uncertainties of Theoretical Atomic Transition Probabilities with Monte Carlo Random Trials. Atoms 2014, 2, 86–122. [Google Scholar] [CrossRef] [PubMed]
  28. Peck, E.R.; Reeder, K. Dispersion of Air. J. Opt. Soc. Am. 1972, 62, 958. [Google Scholar] [CrossRef]
Figure 1. Comparison plots for gA−values and S−values: (a,b) computed with our HFR−A and HFR−B models and (c,d) obtained from HFR−B with those of the MCBP model by Chayer et al. [6]. The error bars in panel (d) represent the internal uncertainties of the S-values obtained from the HFR−B model (see the text).
Figure 1. Comparison plots for gA−values and S−values: (a,b) computed with our HFR−A and HFR−B models and (c,d) obtained from HFR−B with those of the MCBP model by Chayer et al. [6]. The error bars in panel (d) represent the internal uncertainties of the S-values obtained from the HFR−B model (see the text).
Atoms 12 00013 g001
Figure 2. A comparison of (a) theoretical branching fractions BF H F R _ B obtained from the gA-values of the present HFR−B model with the semi-empirical BF S E _ C U 01 values (in triangles) reported by Curtis [24] and with the theoretical BF M C B P _ C H 22 (in circles) computed from the MCBP A−values of Chayer et al. [6] for the selected 5 s 2 5 p 2 5 s 2 5 p 6 s transitions, and (b) theoretical BF H F R _ B with the BF M C B P _ C H 22 for the transition 5 s 2 5 p 2 { 5 s 5 p 3 + 5 s 2 5 p 5 d + 5 s 2 5 p 6 s } arrays (see the text).
Figure 2. A comparison of (a) theoretical branching fractions BF H F R _ B obtained from the gA-values of the present HFR−B model with the semi-empirical BF S E _ C U 01 values (in triangles) reported by Curtis [24] and with the theoretical BF M C B P _ C H 22 (in circles) computed from the MCBP A−values of Chayer et al. [6] for the selected 5 s 2 5 p 2 5 s 2 5 p 6 s transitions, and (b) theoretical BF H F R _ B with the BF M C B P _ C H 22 for the transition 5 s 2 5 p 2 { 5 s 5 p 3 + 5 s 2 5 p 5 d + 5 s 2 5 p 6 s } arrays (see the text).
Atoms 12 00013 g002
Table 1. Classified lines of Cs VI.
Table 1. Classified lines of Cs VI.
I obs .  a λ obs .  b σ bClassification  λ Ritz  b δ λ o c  cgA dCF dAcc. egA prev  fLine Ref. g
(arb. u.)(Å)(cm 1 ) (Å)(mÅ)(s 1 ) (s 1 )
5s 2 5p 2   3 P 0 -5s 2 5p6s 1 P 1 378.4639(21) 5.83 × 10 7 0.00E7.71 × 10 7 TW
22396.746(5)252,050(3)5s 2 5p 2   3 P 1 -5s 2 5p6s 1 P 1 396.7443(22)22.32 × 10 9 0.58D9.66 × 10 8 T91
38401.968(5)248,776(3)5s 2 5p 2   3 P 1 -5s 2 5p6s 3 P 2 401.968(3)01.75 × 10 10 0.77D+1.12 × 10 10 T91
15405.518(5)246,598(3)5s 2 5p 2   3 P 2 -5s 2 5p6s 1 P 1 405.5171(23)18.48 × 10 9 0.16D+6.03 × 10 9 T91
40410.312(5)243,717(3)5s 2 5p 2   3 P 0 -5s 2 5p6s 3 P 1 410.310(3)21.44 × 10 10 0.45D+1.09 × 10 10 T91
45410.976(5)243,323(3)5s 2 5p 2   3 P 2 -5s 2 5p6s 3 P 2 410.976(3)03.03 × 10 10 0.76D+2.11 × 10 10 T91
5s 2 5p 2   3 P 0 -5s 2 5p5d 1 P 1 431.007(3) 3.12 × 10 7 0.00E1.10 × 10 8 TW
38431.883(5)231,544(3)5s 2 5p 2   3 P 1 -5s 2 5p6s 3 P 1 431.884(3)−16.57 × 10 9 0.54D+6.27 × 10 9 T91
50434.712(5)230,037(3)5s 2 5p 2   3 P 1 -5s 2 5p6s 3 P 0 434.712(5)01.03 × 10 10 0.69D+9.28 × 10 9 T91
52436.365(5)229,166(3)5s 2 5p 2   1 D 2 -5s 2 5p6s 1 P 1 436.365(3)03.98 × 10 10 0.69C3.33 × 10 10 T91
57442.298(5)226,092(3)5s 2 5p 2   3 P 2 -5s 2 5p6s 3 P 1 442.300(3)−21.99 × 10 10 0.50D+1.71 × 10 10 T91
47442.693(5)225,890(3)5s 2 5p 2   1 D 2 -5s 2 5p6s 3 P 2 442.693(3)01.41 × 10 10 0.75D+1.34 × 10 10 T91
5s 2 5p 2   3 P 1 -5s 2 5p5d 1 P 1 454.875(3) 4.91 × 10 8 0.03D3.66 × 10 8 TW
25466.447(5)214,386.6(23)5s 2 5p 2   3 P 2 -5s 2 5p5d 1 P 1 466.445(3)22.29 × 10 9 0.04D+2.41 × 10 9 T91
5s 2 5p 2   3 P 0 -5s 2 5p5d 3 P 1 466.887(3) 4.24 × 10 7 0.00E1.70 × 10 8 TW
38472.107(5)211,816.4(22)5s 2 5p 2   1 S 0 -5s 2 5p6s 1 P 1 472.109(3)−21.82 × 10 10 0.82C2.70 × 10 10 T91
55478.711(5)208,894.3(22)5s 2 5p 2   3 P 2 -5s 2 5p5d 1 F 3 478.709(3)23.57 × 10 10 0.13C3.00 × 10 10 T91
5s 2 5p 2   1 D 2 -5s 2 5p6s 3 P 1 479.253(4) 4.92 × 10 8 0.01E8.14 × 10 7 TW
38490.613(5)203,826.6(21)5s 2 5p 2   3 P 1 -5s 2 5p5d 3 D 2 490.612(3)17.48 × 10 9 0.04D+1.71 × 10 10 T91
65495.028(5)202,008.8(20)5s 2 5p 2   3 P 1 -5s 2 5p5d 3 P 1 495.024(3)44.62 × 10 10 0.51C4.43 × 10 10 T91
55498.127(5)200,752.0(20)5s 2 5p 2   3 P 1 -5s 2 5p5d 3 P 0 498.127(5)02.50 × 10 10 0.66C2.33 × 10 10 T91
70500.502(5)199,799.4(20)5s 2 5p 2   3 P 0 -5s 2 5p5d 3 D 1 500.5033(24)−17.26 × 10 10 0.50C7.14 × 10 10 T91
58504.097(5)198,374.5(20)5s 2 5p 2   3 P 2 -5s 2 5p5d 3 D 2 504.098(3)−12.78 × 10 10 0.13C3.98 × 10 10 T91
66506.020(5)197,620.6(20)5s 2 5p 2   3 P 1 -5s 2 5p5d 1 D 2 506.024(3)−46.59 × 10 10 0.71C6.94 × 10 10 T91
5s 2 5p 2   1 D 2 -5s 2 5p5d 1 P 1 507.731(4) 2.71 × 10 9 0.04D+3.68 × 10 9 TW
48508.757(5)196,557.5(19)5s 2 5p 2   3 P 2 -5s 2 5p5d 3 P 1 508.757(3)02.03 × 10 10 0.43C1.89 × 10 10 T91
75514.093(5)194,517.3(19)5s 2 5p 2   3 P 2 -5s 2 5p5d 3 D 3 514.090(3)31.96 × 10 11 0.71C1.93 × 10 11 T91
50514.241(5)194,461.4(19)5s 2 5p 2   3 P 0 -5s5p 3   1 P 1 514.2438(22)−31.28 × 10 10 0.17D+8.97 × 10 9 T91
65520.375(5)192,169.1(18)5s 2 5p 2   3 P 2 -5s 2 5p5d 1 D 2 520.383(3)−86.53 × 10 10 0.48C3.76 × 10 10 T91
70522.294(5)191,463.0(18)5s 2 5p 2   1 D 2 -5s 2 5p5d 1 F 3 522.296(4)−22.06 × 10 11 0.72C1.96 × 10 11 T91
5s 2 5p 2   1 S 0 -5s 2 5p6s 3 P 1 522.717(5) 4.77 × 10 9 0.28D+6.98 × 10 9 TW
78m(Cs V)532.992(10)187,620(4)5s 2 5p 2   3 P 1 -5s 2 5p5d 3 D 1 532.980(2)122.10 × 10 10 0.23C1.66 × 10 10 T91
70539.366(5)185,402.9(17)5s 2 5p 2   3 P 1 -5s 2 5p5d 3 P 2 539.364(3)27.43 × 10 10 0.69C5.69 × 10 10 T91
45548.591(5)182,285.2(17)5s 2 5p 2   3 P 1 -5s5p 3   1 P 1 548.5891(21)25.98 × 10 9 0.14D+9.01 × 10 9 T91
5s 2 5p 2   3 P 2 -5s 2 5p5d 3 D 1 548.933(3) 5.85 × 10 8 0.01D+1.47 × 10 9 TW
64552.665(5)180,941.4(16)5s 2 5p 2   1 D 2 -5s 2 5p5d 3 D 2 552.665(3)09.14 × 10 10 0.65C7.36 × 10 10 T91
63555.703(5)179,952.2(16)5s 2 5p 2   3 P 2 -5s 2 5p5d 3 P 2 555.708(3)−53.54 × 10 10 0.21C4.51 × 10 10 T91
55556.777(5)179,605.1(16)5s 2 5p 2   1 S 0 -5s 2 5p5d 1 P 1 556.779(4)−26.32 × 10 10 0.58C5.31 × 10 10 T91
45558.268(5)179,125.4(16)5s 2 5p 2   1 D 2 -5s 2 5p5d 3 P 1 558.271(3)−31.45 × 10 10 0.59C1.44 × 10 10 T91
52564.697(5)177,086.1(16)5s 2 5p 2   1 D 2 -5s 2 5p5d 3 D 3 564.699(4)−22.18 × 10 10 0.14C2.02 × 10 10 T91
8565.503(5)176,833.7(16)5s 2 5p 2   3 P 2 -5s5p 3   1 P 1 565.5053(22)−24.21 × 10 8 0.00D4.44 × 10 8 T91
52569.332(5)175,644.4(15)5s 2 5p 2   3 P 0 -5s5p 3   3 S 1 569.333(3)−18.72 × 10 9 0.19D+8.67 × 10 9 T91
50572.310(5)174,730.5(15)5s 2 5p 2   1 D 2 -5s 2 5p5d 1 D 2 572.301(3)92.02 × 10 10 0.17C3.02 × 10 10 T91
72589.477(5)169,641.9(14)5s 2 5p 2   3 P 2 -5s 2 5p5d 3 F 3 589.477(5)01.50 × 10 10 0.70C1.18 × 10 10 T91
40589.691(5)169,580.3(14)5s 2 5p 2   3 P 1 -5s 2 5p5d 3 F 2 589.695(3)−42.70 × 10 9 0.60D+2.31 × 10 9 T91
42607.020(5)164,739.2(14)5s 2 5p 2   1 D 2 -5s 2 5p5d 3 D 1 607.022(3)−26.19 × 10 9 0.20D+4.72 × 10 9 T91
65609.285(5)164,126.8(13)5s 2 5p 2   3 P 2 -5s 2 5p5d 3 F 2 609.287(3)−25.14 × 10 9 0.39D+4.22 × 10 9 T91
72611.735(5)163,469.5(13)5s 2 5p 2   3 P 1 -5s5p 3   3 S 1 611.735(3)01.62 × 10 10 0.34C1.45 × 10 10 T91
55615.320(5)162,517.1(13)5s 2 5p 2   1 D 2 -5s 2 5p5d 3 P 2 615.317(3)38.90 × 10 9 0.08C1.10 × 10 10 T91
5s 2 5p 2   1 S 0 -5s 2 5p5d 3 P 1 618.145(5) 4.57 × 10 7 0.00E5.68 × 10 5 TW
75627.360(5)159,398.1(13)5s 2 5p 2   1 D 2 -5s5p 3   1 P 1 627.352(3)82.72 × 10 10 0.37C2.65 × 10 10 T91
82632.846(5)158,016.3(12)5s 2 5p 2   3 P 2 -5s5p 3   3 S 1 632.844(3)23.89 × 10 10 0.50C3.60 × 10 10 T91
32638.762(5)156,552.8(12)5s 2 5p 2   3 P 1 -5s5p 3   1 D 2 638.753(3)95.88 × 10 8 0.04D5.08 × 10 8 T91
68648.526(5)154,195.8(12)5s 2 5p 2   3 P 0 -5s5p 3   3 P 1 648.518(3)82.04 × 10 9 0.05D+1.77 × 10 9 T91
5s 2 5p 2   1 D 2 -5s 2 5p5d 3 F 3 656.992(6) 8.23 × 10 5 0.00E3.26 × 10 6 TW
5s 2 5p 2   3 P 2 -5s5p 3   1 D 2 661.804(3) 2.91 × 10 7 0.00E6.77 × 10 6 TW
62678.479(5)147,388.5(11)5s 2 5p 2   1 S 0 -5s 2 5p5d 3 D 1 678.479(4)02.02 × 10 8 0.01E5.38 × 10 6 T91
60681.699(5)146,692.3(11)5s 2 5p 2   1 D 2 -5s 2 5p5d 3 F 2 681.694(3)53.27 × 10 9 0.28D+2.71 × 10 9 T91
5s 2 5p 2   3 P 1 -5s5p 3   3 P 2 701.260(5) 3.07 × 10 7 0.00E4.58 × 10 7 TW
80703.973(5)142,050.9(10)5s 2 5p 2   1 S 0 -5s5p 3   1 P 1 703.978(4)−53.83 × 10 9 0.08D+2.78 × 10 9 T91
25704.104(5)142,024.5(10)5s 2 5p 2   3 P 1 -5s5p 3   3 P 1 704.110(3)−65.84 × 10 9 0.19D+4.50 × 10 9 T91
80bl(Cs VII)711.313(10)140,585.1(20)5s 2 5p 2   1 D 2 -5s5p 3   3 S 1 711.319(4)−64.69 × 10 8 0.01D1.40 × 10 8 T91
25711.953(5)140,458.7(10)5s 2 5p 2   3 P 1 -5s5p 3   3 P 0 711.953(5)02.12 × 10 9 0.18D+1.65 × 10 9 T91
78729.141(5)137,147.7(9)5s 2 5p 2   3 P 2 -5s5p 3   3 P 2 729.141(5)09.94 × 10 9 0.13C6.79 × 10 9 T91
80732.217(5)136,571.5(9)5s 2 5p 2   3 P 2 -5s5p 3   3 P 1 732.223(3)−62.11 × 10 8 0.01D1.42 × 10 8 T91
88748.109(5)133,670.4(9)5s 2 5p 2   1 D 2 -5s5p 3   1 D 2 748.115(4)−68.34 × 10 9 0.11D+4.33 × 10 9 T91
72758.917(5)131,766.7(9)5s 2 5p 2   3 P 0 -5s5p 3   3 D 1 758.921(4)−43.48 × 10 9 0.12D+2.68 × 10 9 T91
5s 2 5p 2   1 S 0 -5s5p 3   3 S 1 811.466(6) 5.17 × 10 8 0.04D3.65 × 10 8 TW
52827.035(5)120,913.9(7)5s 2 5p 2   3 P 1 -5s5p 3   3 D 2 827.037(3)−24.03 × 10 9 0.11D+2.81 × 10 9 T91
50830.465(5)120,414.5(7)5s 2 5p 2   3 P 2 -5s5p 3   3 D 3 830.464(3)13.19 × 10 9 0.09D+2.04 × 10 9 T91
5s 2 5p 2   1 D 2 -5s5p 3   3 P 2 835.320(7) 3.82 × 10 8 0.01D2.01 × 10 8 TW
61836.190(5)119,590.0(7)5s 2 5p 2   3 P 1 -5s5p 3   3 D 1 836.180(3)104.23 × 10 7 0.00E8.20 × 10 6 T91
5s 2 5p 2   1 D 2 -5s5p 3   3 P 1 839.367(4) 3.79 × 10 6 0.00E4.62 × 10 4 TW
30866.096(5)115,460.6(7)5s 2 5p 2   3 P 2 -5s5p 3   3 D 2 866.095(3)14.79 × 10 7 0.00D5.06 × 10 7 T91
34876.127(5)114,138.7(7)5s 2 5p 2   3 P 2 -5s5p 3   3 D 1 876.127(3)02.55 × 10 8 0.05D2.52 × 10 8 T91
54971.046(5)102,981.7(5)5s 2 5p 2   1 D 2 -5s5p 3   3 D 3 971.047(4)−11.48 × 10 9 0.11D+9.46 × 10 8 T91
4982.444(5)101,787.0(5)5s 2 5p 2   1 S 0 -5s5p 3   3 P 1 982.441(4)31.46 × 10 8 0.08D1.24 × 10 8 T91
751020.118(5)98,027.9(5)5s 2 5p 2   1 D 2 -5s5p 3   3 D 2 1020.118(4)06.27 × 10 7 0.01D2.85 × 10 7 T91
221034.060(5)96,706.2(5)5s 2 5p 2   1 D 2 -5s5p 3   3 D 1 1034.065(4)−51.38 × 10 8 0.05D1.49 × 10 8 T91
751055.929(5)94,703.3(4)5s 2 5p 2   3 P 1 -5s5p 3   5 S 2 1055.936(4)−71.67 × 10 8 0.21D1.44 × 10 8 T91
731120.452(5)89,249.7(4)5s 2 5p 2   3 P 2 -5s5p 3   5 S 2 1120.450(4)21.43 × 10 8 0.15D1.27 × 10 8 T91
5s 2 5p 2   1 S 0 -5s5p 3   3 D 1 1260.151(11) 9.42 × 10 6 0.01E4.85 × 10 6 TW
51392.432(5)71,816.8(3)5s 2 5p 2   1 D 2 -5s5p 3   5 S 2 1392.430(4)21.09 × 10 7 0.03D9.74 × 10 6 T91
a Observed relative intensities in arbitrary units, which were taken from T91–Tauheed et al. [7], character of the observed line: bl–blended by a close line, m–masked by a stronger neighboring line. b Observed and Ritz wavelengths (in Å) are given in vacuum for all observed wavenumbers (σ) expressed in cm−1 unit. The quantity given in parentheses is the uncertainty in the last digit. c Difference between the observed and Ritz wavelengths in mÅ, and 1 mÅ = 10−3 Å. d Weighted transition probability (gA-value) and absolute cancellation factor from the present HFR-B calculations (see Section 3.2). e Accuracy code of the gA-value explained in Section 3.2. f gA-values obtained from the A-values reported previously by Chayer et al. [6]. g Line reference: T91–Tauheed et al. [7], TW–this work.
Table 2. Optimized energy levels of Cs VI.
Table 2. Optimized energy levels of Cs VI.
LevelEnergy aUnc. bLeading Compositions c Δ E o c dNo. of Lines e
(cm 1 )(cm 1 )P1P2Comp2P3 Comp3(cm 1 )
5s 2 5p 2   3 P 0 0.00.887125s 2 5p 2   1 S 46
5s 2 5p 2   3 P 1 12,174.50.598 016
5s 2 5p 2   3 P 2 17,627.30.362365s 2 5p 2   1 D −818
5s 2 5p 2   1 D 2 35,060.260.2061365s 2 5p 2   3 P 517
5s 2 5p 2   1 S 0 52,410.40.586125s 2 5p 2   3 P −15
5s5p 3   5 S 2 106,877.180.249175s5p 3   3 P 263
5s5p 3   3 D 1 131,766.00.574125s5p 3   3 P 75s 2 5p5d 3 D -2604
5s5p 3   3 D 2 133,088.10.472145s5p 3   3 P 65s 2 5p5d 3 D −633
5s5p 3   3 D 3 138,041.90.49185s 2 5p5d 3 D 1122
5s5p 3   3 P 0 152,633.21.09275s 2 5p5d 3 P −991
5s5p 3   3 P 1 154,197.70.575125s5p 3   3 D 55s 2 5p5d 3 P 884
5s5p 3   3 P 2 154,774.90.942235s5p 3   1 D 145s5p 3   3 D 1301
5s5p 3   1 D 2 168,729.51.334275s5p 3   3 P 275s 2 5p5d 1 D 1962
5s5p 3   3 S 1 175,644.10.864275s5p 3   1 P −94
5s 2 5p5d 3 F 2 181,753.60.98685s5p 3   1 D 953
5s 2 5p5d 3 F 3 187,269.21.48955s 2 5p5d 3 D −2051
5s5p 3   1 P 1 194,460.30.948245s5p 3   3 S 155s 2 5p5d 1 P −1125
5s 2 5p5d 3 P 2 197,578.01.045225s 2 5p5d 3 D 155s 2 5p5d 1 D 1053
5s 2 5p5d 3 F 4 (199,500)(400)98 0
5s 2 5p5d 3 D 1 199,798.90.860165s 2 5p5d 3 P 85s5p 3   1 P 984
5s 2 5p5d 1 D 2 209,793.61.835375s 2 5p5d 3 D 155s5p 3   1 D −903
5s 2 5p5d 3 D 3 212,145.71.47675s 2 5p5d 3 F 75s 2 5p5d 1 F −462
5s 2 5p5d 3 P 0 212,926.52.09165s5p 3   3 P −341
5s 2 5p5d 3 P 1 214,184.81.266215s 2 5p5d 3 D 65s5p 3   3 P 243
5s 2 5p5d 3 D 2 216,001.61.127445s 2 5p5d 3 P 115s 2 5p5d 1 D 423
5s 2 5p5d 1 F 3 226,522.61.58795s 2 5p5d 3 D −762
5s 2 5p5d 1 P 1 232,015.01.474105s5p 3   1 P 65s 2 5p5d 3 D 842
5s 2 5p6s 3 P 0 242,212398 981
5s 2 5p6s 3 P 1 243,718.41.673215s 2 5p6s 1 P 163
5s 2 5p6s 3 P 2 260,950.51.698 −1093
5s 2 5p6s 1 P 1 264,226.01.473235s 2 5p6s 3 P −94
a Optimized energy values obtained using LOPT code [19]. The value given in parentheses and its uncertainty are the theoretical ones from the LSF of Cowan’s code (see Section 3.2). b Uncertainties resulting from the level optimization procedure include the D1 uncertainty (D1 is close to the minimum estimated dispersion relative to any other term; see further details in ref. [19]). c The LS-coupling percentage compositions determined in this work were made by parametric least-squares fitting with Cowan’s codes (see text), wherein P1 refers to the first percentage value of the configuration and term given in the first column of the table. The remaining percentage (P2, P3) values are provided with their corresponding components. d Differences between the observed and calculated energies in the parametric least-squares fitting. Blank for unobserved levels. e Number of observed lines determining the level in the level optimization.
Table 3. Configurations used in HFR models of Cs VI.
Table 3. Configurations used in HFR models of Cs VI.
Even Parity Odd Parity
Model: HFR-A
5 s 2 5 p 2 , 5 p 4 5 s 5 p 3
5 s 2 5 p 6 p 5 s 2 5 p { ( 5 , 6 ) d + ( 6 , 7 ) s }
5 s 5 p 2 { ( 5 , 6 ) d + ( 6 , 7 ) s } 5 s 5 p 2 6 p
5 p 3 6 p 5 p 3 { ( 5 , 6 ) d + ( 6 , 7 ) s }
5 s 2 5 d 2 , 5 s 2 6 s 2 , 5 s 2 5 d 6 s 5 s 5 p 5 d 2 , 5 s 5 p 6 s 2
5 p 2 5 d 2 , 5 p 2 6 s 2 , 5 p 2 5 d 6 s 5 s 5 p 5 d 6 s
....... .......
No. of Levels a = 5{4} No. of Levels a = 25{13}
SD = 15 cm 1 SD = 276 cm 1
Model: HFR-B
5 s 2 5 p 2 , 5 p 4 5 s 5 p 3
5 s 2 5 p n l ( n 10 , l = p , f ) 5 s 2 5 p n l ( n 10 , l = s , d )
5 s 5 p 2 n l ( n 8 , l = s , d ) 5 s 5 p 2 n l ( n 8 , l = p , f )
5 p 3 n l ( n 10 , l = p , f ) 5 p 3 n l ( n 10 , l = s , d )
5 s 2 4 f 2 , 5 s 2 5 d 2 , 5 s 2 6 s 2 , 5 s 2 6 p 2
5 s 2 5 d 6 s , 5 p 2 5 d 6 s , 5 p 2 5 d 2 5 s 5 p 5 d 2 , 5 s 5 p 6 s 2
5 p 2 6 s 2 , 5 p 2 4 f 2 , 5 s 5 p 5 d 4 f 5 s 5 p 4 f 2 , 5 s 5 p 5 d 6 s
....... .......
No. of Levels a = 5{4} No. of Levels a = 25{13}
SD = 10 cm 1 SD = 155 cm 1
a Total number of known levels and the number of free parameters in the LSF; the latter quantity is given in parentheses.
Table 4. Radiative rates for forbidden lines within the levels of ground 5s 2 5p 2 configuration in Cs VI.
Table 4. Radiative rates for forbidden lines within the levels of ground 5s 2 5p 2 configuration in Cs VI.
This WorkPrevious Work d
Transitions λ Ritz  aA M 1  bA E 2  b%SD cA M 1 A E 2 BF abs f
(Å)( s 1 )( s 1 ) ( s 1 )( s 1 )
3 P 1 1 S 0 2484.59(4)4.170 × 10 2 0.15 0.947
3 P 0 1 D 2 2851.39(5) 1.29 × 10 2 3.00 1.511 × 10 2 0.000
3 P 2 1 S 0 2874.12(5) 2.096 × 10 1 0.30 0.048
3 P 1 1 D 2 4368.30(6)6.032 × 10 1 6.001 × 10 1 0.205.996 × 10 1 5.768 × 10 1 0.545
3 P 0 3 P 2 5671.44(21) 2.6035 × 10 1 0.04 2.542 × 10 1 0.159
3 P 2 1 D 2 5734.67(10)5.027 × 10 1 6.655 × 10 1 0.08 0.455
1 D 2 1 S 0 5762.04(21) 2.4906 × 10 0 0.08 0.006
3 P 0 3 P 1 8211.6(5)2.8743 × 10 1 0.022.884 × 10 1 1.000
3 P 1 3 P 2 18,334.2(12)1.3804 × 10 0 7.889 × 10 4 0.121.406 × 10 0 7.896 × 10 4 0.841
a Ritz wavelengths (in standard air [28]) and the quantity given in parentheses is the uncertainty in the last digit. The wavelength uncertainties are determined in the level optimization procedure (see Section 3.1). b The scaled A-values for the M1 and E2 components from the present HFR-B calculations (see Section 3.3). The scaling was carried out with the help of experimental transition energies computed from Table 2. c Uncertainties (%SD) of the A-values for the M1 and E2 components, obtained using the Monte Carlo method (see the text). d A-values for the M1 and E2 components previously reported by Biemont et al. [26]. f Absolute branching fractions for the spectral lines are calculated from the present A-values given in columns 3 and 4.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Husain, A.; Kunari, H.; Ahmad, T. Energy Levels and Transition Data of Cs VI. Atoms 2024, 12, 13. https://doi.org/10.3390/atoms12030013

AMA Style

Husain A, Kunari H, Ahmad T. Energy Levels and Transition Data of Cs VI. Atoms. 2024; 12(3):13. https://doi.org/10.3390/atoms12030013

Chicago/Turabian Style

Husain, Abid, Haris Kunari, and Tauheed Ahmad. 2024. "Energy Levels and Transition Data of Cs VI" Atoms 12, no. 3: 13. https://doi.org/10.3390/atoms12030013

APA Style

Husain, A., Kunari, H., & Ahmad, T. (2024). Energy Levels and Transition Data of Cs VI. Atoms, 12(3), 13. https://doi.org/10.3390/atoms12030013

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop