Isomers in the Cosmos
Abstract
:1. Introduction
2. 26Al
3. 99Tc
4. 148Pm
5. 176Lu
6. 180Ta
7. Conclusions
Funding
Conflicts of Interest
References
- Burbidge, E.M.; Burbidge, G.R.; Fowler, W.A.; Hoyle, F. Synthesis of the elements in stars. Rev. Mod. Phys. 1957, 29, 547–650. [Google Scholar] [CrossRef]
- Lee, T.; Papanastassiou, D.A.; Wasserburg, G.J. 26Aluminum in the early solar system-Fossil or fuel. Astrophys. J. 1977, 211, L107–L110. [Google Scholar] [CrossRef]
- Mahoney, W.A.; Ling, J.C.; Wheaton, W.A.; Jacobson, A.S. HEAO 3 discovery of 26Al in the interstellar medium. Astrophys. J. 1984, 286, 578–585. [Google Scholar] [CrossRef]
- Diehl, R.; Halloin, H.; Kretschmer, K.; Lichti, G.G.; Schönfelder, V.; Strong, A.W.; von Kienlin, A.; Wang, W.; Jean, P.; Knödlseder, J.; et al. Radioactive 26Al from massive stars in the Galaxy. Nature 2006, 439, 45–47. [Google Scholar] [CrossRef] [PubMed]
- King, J.D. Stellar rates for some reactions affecting production of 26Al (7.3 × 105 yr) during carbon burning. Astrophys. J. 1979, 230, 558–562. [Google Scholar] [CrossRef]
- Norman, E.B. Relative yields of 26Alg/ and 26Alm from the 25Mg(p, γ)reaction. Astrophys. J. 1979, 231, 189–200. [Google Scholar]
- Zhang, H.; Su, J.; Li, Z.H.; Li, Y.J.; Li, E.T.; Chen, C.; He, J.J.; Shen, Y.P.; Lian, G.; Guo, B.; et al. Updated reaction rate of 25Mg (p, γ) 26Al and its astrophysical implication. Phys. Rev. C 2023, 107, 065801. [Google Scholar] [CrossRef]
- Ward, R.A.; Fowler, W.A. Thermalization of long-lived nuclear isomeric states under stellar conditions. Astrophys. J. 1980, 238, 266–286. [Google Scholar] [CrossRef]
- Norman, E.B.; Lesko, K.T.; Chupp, T.E.; Schwalbach, P. 26gAl production cross sections from the 26Mg (p,n)26Al reaction. Nucl. Phys. A 1981, 357, 228–236. [Google Scholar] [CrossRef]
- Merrill, P.W. Technetium in the stars. Science 1952, 115, 484. [Google Scholar]
- Browne, E.; Tuli, J. Nuclear Data Sheets for A = 99. Nucl. Data Sheets 2017, 145, 25. [Google Scholar] [CrossRef]
- Takahashi, K.; Mathews, G.J.; Bloom, S.D. Shell-model calculation of 99Tc beta decay in astrophysical environments. Phys. Rev. C 1986, 33, 296. [Google Scholar] [CrossRef] [PubMed]
- Lesko, K.T.; Norman, E.B.; Larimer, R.M.; Bacelar, J.C.; Beck, E.M. Level scheme of 148Pm and the s-process neutron density. Phys. Rev. C 1989, 39, 619. [Google Scholar] [CrossRef] [PubMed]
- Winters, R.R.; Käppeler, F.; Wisshak, K.; Mengoni, A.; Reffo, G. 148,150 Sm: A test for s-process nucleosynthesis. Astrophys. J. 1986, 300, 41–55. [Google Scholar] [CrossRef]
- Kappeler, N. Neutron capture reactions in astrophysics. AIP Conf. Proc. 1985, 125, 715–731. [Google Scholar]
- Vervoot, J. Lu-Hf Dating: The Lu-Hf Isotope System; Encyclopedia of Scientific Dating; Springer: Dordrecht, The Netherlands, 2014; pp. 1–20. [Google Scholar]
- Lesko, K.T.; Norman, E.B.; Larimer, R.M.; Sur, B.; Beausang, C.B. 176Lu: An unreliable s-process chronometer. Phys. Rev. C 1991, 44, 2850. [Google Scholar] [CrossRef] [PubMed]
- Audouze, J.; Fowler, W.A.; Schramm, D.N. 176Lu and s-process nucleosynthesis. Nature 1972, 238, 8–11. [Google Scholar] [CrossRef]
- Arnould, M. Some Comments about the 176Lu-176Hf Pair. Astron. Astrophys. 1973, 22, 311. [Google Scholar]
- Norman, E.B.; Bertram, T.; Kellogg, S.E.; Wong, P.; Gil, S. Equilibration of 176Lug,m during the s-process. Astrophys. J. 1985, 291, 834–837. [Google Scholar] [CrossRef]
- Klay, N.; Käppeler, F.; Beer, H.; Schatz, G. Nuclear structure of 176Lu and its astrophysical consequences. II. 176Lu, a thermometer for stellar helium burning. Phys. Rev. C 1991, 44, 2839. [Google Scholar] [CrossRef]
- Mccutchan, E.A. Nuclear Data Sheets for A = 180. Nucl. Data Sheets 2015, 126, 151–372. [Google Scholar] [CrossRef]
- Beer, H.; Ward, R.A. Neutron-capture nucleosynthesis of nature’s rarest stable isotope. Nature 1981, 291, 308–310. [Google Scholar] [CrossRef]
- Kellogg, S.E.; Norman, E.B. Observation of the beta decay of 180Hfm. Phys. Rev. C 1985, 31, 1505. [Google Scholar] [CrossRef] [PubMed]
- Kellogg, S.E.; Norman, E.B. Isomer-to-isomer beta decay of 180Hfm and the nucleosynthesis of 180Tam. Phys. Rev. C 1992, 46, 1115. [Google Scholar] [CrossRef] [PubMed]
- Kellogg, S.E.; Norman, E.B. Search for the beta decay of 180Lu to 180Hfm. Phys. Rev. C 1986, 34, 2248. [Google Scholar] [CrossRef] [PubMed]
- Lesko, K.T.; Norman, E.B.; Moltz, D.M.; Larimer, R.M.; Crane, S.G.; Kellogg, S.E. Isomeric levels in 180Lu and the nucleosynthesis of 180Tam. Phys. Rev. C 1986, 34, 2256. [Google Scholar] [CrossRef] [PubMed]
- Runte, E.; Schmidt-Ott, W.D.; Eschner, W.; Rosner, I.; Kirchner, R.; Klepper, O.; Rykaczewski, K. The decay of the new isotope 180Yb and the search for the r-process path to 180mTa. Z. Phys. A 1987, 328, 119–122. [Google Scholar]
- Lakosi, L.; Nguyen, T.C. Photoexcitation of 180Ta by 60Co and 137Cs gamma rays. Nucl. Phys. A 2002, 697, 44–54. [Google Scholar] [CrossRef]
- Dracoulis, G.D.; Mullins, S.M.; Byrne, A.P.; Kondev, F.G.; Kibédi, T.; Bayer, S.; Lane, G.J.; McGoram, T.R.; Davidson, P.M. Intrinsic states and collective structures in 180Ta. Phys. Rev. C 1998, 58, 1444. [Google Scholar] [CrossRef]
- Saitoh, T.R.; Hashimoto, N.; Sletten, G.; Bark, R.A.; Törmänen, S.; Bergström, M.; Furuno, K.; Furutaka, K.; Hagemann, G.B.; Hayakawa, T.; et al. Structure of the doubly odd nucleus 180Ta: Description of 23 bands. Nucl. Phys. A 1999, 660, 121. [Google Scholar] [CrossRef]
- Banerjee, P.; Misch, G.W.; Ghorui, S.K.; Sun, Y. Effective stellar β-decay rates of nuclei with long-lived isomers: 26Al and 34Cl. Phys. Rev. C 2018, 97, 065807. [Google Scholar] [CrossRef]
- Reifarth, R.; Fiebiger, S.; Göbel, K.; Heftrich, T.; Kausch, T.; Köppchen, C.; Kurtulgil, D.; Langer, C.; Thomas, B.; Weigand, M. Treatment of isomers in nucleosynthesis codes. Int. J. Mod. Phys. A 2018, 33, 1843011. [Google Scholar] [CrossRef]
- Misch, G.W.; Sprouse, T.M.; Mumpower, M.R.; Couture, A.J.; Fryer, C.L.; Meyer, B.S.; Sun, Y. Sensitivity of neutron-rich nuclear isomer behavior to uncertainties in direct transitions. Symmetry 2021, 13, 1831. [Google Scholar] [CrossRef]
- Misch, G.W.; Ghorui, S.K.; Banerjee, P.; Sun, Y.; Mumpower, M.R. Astromers: Nuclear isomers in astrophysics. Astrophys. J. Suppl. Ser. 2020, 252, 2. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Norman, E.B. Isomers in the Cosmos. Atoms 2023, 11, 140. https://doi.org/10.3390/atoms11110140
Norman EB. Isomers in the Cosmos. Atoms. 2023; 11(11):140. https://doi.org/10.3390/atoms11110140
Chicago/Turabian StyleNorman, Eric B. 2023. "Isomers in the Cosmos" Atoms 11, no. 11: 140. https://doi.org/10.3390/atoms11110140
APA StyleNorman, E. B. (2023). Isomers in the Cosmos. Atoms, 11(11), 140. https://doi.org/10.3390/atoms11110140