Re-Evaluation of the Nuclear Magnetic Octupole Moment of 209Bi
Abstract
:1. Introduction
2. Theory
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schwartz, C. Theory of Hyperfine Structure. Phys. Rev. 1955, 97, 380–395. Available online: https://journals.aps.org/pr/abstract/10.1103/PhysRev.97.380 (accessed on 15 September 2022). [CrossRef]
- Williams, S.A. Magnetic octupole moments of axially symmetric deformed nuclei. Phys. Rev. 1962, 125, 340–346. [Google Scholar] [CrossRef]
- Freed, N. The effect of pairing correlations on magnetic-octupole moments. Nuovo Cim. B 1967, 48, 437–442. [Google Scholar] [CrossRef]
- Sen’kov, R.A.; Dmitriev, V.F. Nuclear magnetization distribution and hyperfine splitting in Bi82+ ion. Nucl. Phys. A 2002, 706, 351–364. [Google Scholar] [CrossRef] [Green Version]
- de Groote, R.P.; Moreno, J.; Dobaczewski, J.; Koszorús, A.; Moore, I.; Reponen, M.; Sahoo, B.K.; Yuan, C. Precision measurement of the magnetic octupole moment in 45Sc as a test for state-of-the-art atomic- and nuclear-structure theory. Phys. Lett. B 2022, 827, 136930. [Google Scholar] [CrossRef]
- Beloy, K.; Derevianko, A.; Dzuba, V.A.; Howell, G.T.; Blinov, B.B.; Fortson, E.N. Nuclear magnetic octupole moment and the hyperfine structure of the 5D3/2,5/2 states of the Ba+ ion. Phys. Rev. A 2008, 77, 052503. [Google Scholar] [CrossRef] [Green Version]
- Gerginov, V.; Derevianko, A.; Tanner, C. Observation of the Nuclear Magnetic Octupole Moment of 133Cs. Phys. Rev. Lett. 2003, 91, 072501. [Google Scholar] [CrossRef] [Green Version]
- Beloy, K.; Derevianko, A.; Johnson, W.R. Hyperfine structure of the metastable 3P2 state of alkaline-erath-metal atoms as an accurate probe of nuclear magnetic octupole moments. Phys. Rev. A 2008, 77, 012512. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.K.; Angom, D.; Natarajan, V. Observation of the nuclear magnetic octupole moment of 173Yb from precise measurements of the hyperfine structure in the 3P2 state. Phys. Rev. A 2013, 87, 012512. [Google Scholar] [CrossRef] [Green Version]
- Jönsson, P.; Parpia, F.; Froese Fischer, C. HFS92: A program for relativistic atomic hyperfine structure calculations. Comput. Phys. Commun. 1996, 96, 301–310. [Google Scholar] [CrossRef]
- Li, J.G.; Ekman, J.; Gaigalas, G.; Bieroń, J.; Jönsson, P.; Godefroid, M.; Froese Fischer, C. New version of RHFS code. Comput. Phys. Commun. submitted for publication.
- Froese Fischer, C.; Gaigalas, G.; Jönsson, P.; Bieroń, J. GRASP2018—A Fortran 95 version of the General Relativistic Atomic Structure Package. Comput. Phys. Commun. 2019, 237, 184–187. [Google Scholar] [CrossRef]
- Xiao, D.; Li, J.G.; Campbell, W.C.; Dellaert, T.; McMillin, P.; Ransford, A.; Roman, C.; Derevianko, A. Hyperfine structure of 173Yb+: Toward resolving the 173Yb nuclear-octupole-moment puzzle. Phys. Rev. A 2020, 102, 022810. [Google Scholar] [CrossRef]
- de Groote, R.; Kujanpää, S.; Koszorús, Á.; Li, J.; Moore, I. Magnetic octupole moment of 173Yb using collinear laser spectroscopy. Phys. Rev. A 2021, 103, 032826. [Google Scholar] [CrossRef]
- Brink, D.; Satchler, G. Angular Momentum, 2nd ed.; Oxford University Press: Oxford, UK, 1962; p. 168. [Google Scholar]
- Casimir, H.B.; Karreman, G. On the magnetic octupole moment of a nucleus. Physica 1942, 9, 494–502. [Google Scholar] [CrossRef]
- Gray, C.G.; Stiles, P.J. Spherical tensor approach to multipole expansions. II. Magnetostatic interactions. Can. J. Phys. 1976, 54, 513–518. [Google Scholar] [CrossRef]
- Johnson, W.R. Atomic Structure Theory; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2007; p. 312. [Google Scholar]
- Froese Fischer, C.; Godefroid, M.; Brage, T.; Jönsson, P.; Gaigalas, G. Advanced multiconfiguration methods for complex atoms: I. Energies and wave functions. J. Phys. B At. Mol. Opt. Phys. 2016, 49, 182004. [Google Scholar] [CrossRef] [Green Version]
- Jönsson, P.; Godefroid, M.; Gaigalas, G.; Ekman, J.; Grumer, J.; Li, W.; Li, J.; Brage, T.; Grant, I.P.; Bieroń, J.; et al. An introduction to relativistic theory as implemented in GRASP. Atoms 2022. submitted for publication. [Google Scholar]
- Barzakh, A.; Andreyev, A.N.; Raison, C.; Cubiss, J.G.; Van Duppen, P.; Péru, S.; Hilaire, S.; Goriely, S.; Andel, B.; Antalic, S.; et al. Large Shape Staggering in Neutron-Deficient Bi Isotopes. Phys. Rev. Lett. 2021, 127, 192501. [Google Scholar] [CrossRef]
- Li, J.G.; Bieroń, J.; Dognon, J.P.; Elantkowska, M.; Skripnikov, L.; Berengut, J.C.; Gaigalas, G.; Godefroid, M.; Jönsson, P.; Pyykkö, P.; et al. Atomic and molecular determination of the nuclear quadrupole moment of bismuth. Phys. Rev. A. submitted for publication.
- Boualili, F.Z.; Nemouchi, M.; Godefroid, M.; Jönsson, P. Weak correlation and strong relativistic effects on the hyperfine interaction in fluorine. Phys. Rev. A 2021, 104, 062813. [Google Scholar] [CrossRef]
- Hull, R.; Brink, G. Hyperfine Structure of Bi209. Phys. Rev. A 1970, 1, 685–693. [Google Scholar] [CrossRef]
- Landman, D.A.; Lurio, A. Hyperfine structure of the (6p)3 configuration of Bi209. Phys. Rev. A 1970, 1, 1330–1338. [Google Scholar] [CrossRef]
- Angeli, I.; Marinova, K. Table of experimental nuclear ground state charge radii: An update. At. Data Nucl. Data Tables 2013, 99, 69–95. [Google Scholar] [CrossRef]
- Schwartz, C. Theory of Hyperfine Structure. Phys. Rev. 1957, 105, 173–183. Available online: https://journals.aps.org/pr/abstract/10.1103/PhysRev.105.173 (accessed on 15 September 2022). [CrossRef]
Models | ||||||||
---|---|---|---|---|---|---|---|---|
DHF | 41.9 | −22.5 | −530 | 14.6 | 2954 | 68.9 | 883 | −33.4 |
MR-CI | −572 | −32.4 | −1357 | 24.1 | 2691 | 83.2 | 13,245 | −41.7 |
CV | −540 | −32.9 | −1370 | 24.5 | 3017 | 84.4 | 13,427 | −42.3 |
+Breit | −554 | −32.6 | −1338 | 24.2 | 3007 | 84.3 | 13,365 | −42.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Gaigalas, G.; Bieroń, J.; Ekman, J.; Jönsson, P.; Godefroid, M.; Froese Fischer, C. Re-Evaluation of the Nuclear Magnetic Octupole Moment of 209Bi. Atoms 2022, 10, 132. https://doi.org/10.3390/atoms10040132
Li J, Gaigalas G, Bieroń J, Ekman J, Jönsson P, Godefroid M, Froese Fischer C. Re-Evaluation of the Nuclear Magnetic Octupole Moment of 209Bi. Atoms. 2022; 10(4):132. https://doi.org/10.3390/atoms10040132
Chicago/Turabian StyleLi, Jiguang, Gediminas Gaigalas, Jacek Bieroń, Jörgen Ekman, Per Jönsson, Michel Godefroid, and Charlotte Froese Fischer. 2022. "Re-Evaluation of the Nuclear Magnetic Octupole Moment of 209Bi" Atoms 10, no. 4: 132. https://doi.org/10.3390/atoms10040132
APA StyleLi, J., Gaigalas, G., Bieroń, J., Ekman, J., Jönsson, P., Godefroid, M., & Froese Fischer, C. (2022). Re-Evaluation of the Nuclear Magnetic Octupole Moment of 209Bi. Atoms, 10(4), 132. https://doi.org/10.3390/atoms10040132