K X-ray Emission for Slow Oxygen Ions Approaching a Copper Metal Surface
Abstract
:1. Introduction
2. Experiments
3. Results and Discussion
3.1. X-ray Emission for Interaction of Oxygen Ions with No K-Vacancies
3.2. X-ray Emission for Interaction of Oxygen Ions with A K-Vacancy
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Briand, J.P.; De Billy, L.; Charles, P.; Essabaa, S.; Briand, P.; Geller, R.; Desclaux, J.P.; Bliman, S.; Ristori, C. Production of hollow atoms by the excitation of highly charged ions in interaction with a metallic surface. Phys. Rev. Lett. 1990, 65, 159–162. [Google Scholar] [CrossRef]
- Arnau, A.; Aumayr, F.; Echenique, P.M.; Grether, M.; Heiland, W.; Limburg, J.; Morgenstern, R.; Roncin, P.; Schippers, S.; Schuch, R.; et al. Interaction of slow multicharged ions with solid surfaces. Surf. Sci. Rep. 1997, 27, 117–239. [Google Scholar] [CrossRef]
- Schenkel, T.; Hamza, A.V.; Barnes, A.V.; Schneider, D.H. Interaction of slow, very highly charged ions with surfaces. Prog. Surf. Sci. 1999, 61, 23–84. [Google Scholar] [CrossRef]
- Wilhelm, R.A.; El-Said, A.S.; Krok, F.; Heller, R.; Gruber, E.; Aumayr, F.; Facsko, S. Highly charged ion induced nanostructures at surfaces by strong electronic excitations. Prog. Surf. Sci. 2015, 90, 377–395. [Google Scholar] [CrossRef] [Green Version]
- El-Said, A.S.; Heller, R.; Meissl, W.; Ritter, R.; Facsko, S.; Lemell, C.; Solleder, B.; Gebeshuber, I.C.; Betz, G.; Toulemonde, M.; et al. Creation of nanohillocks on CaF2 surfaces by single slow highly charged ions. Phys. Rev. Lett. 2008, 100, 237601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulz-Ertner, D.; Tsujii, H. Particle radiation therapy using proton and heavier ion beams. J. Clin. Oncol. 2007, 25, 953–964. [Google Scholar] [CrossRef] [Green Version]
- Parks, D.C.; Stöckli, M.P.; Bell, E.W.; Ratliff, L.P.; Schmieder, R.W.; Serpa, F.G.; Gillaspy, J.D. Non-kinetic damage on insulating materials by highly charged ion bombardment. Nucl. Instrum. Methods Phys. Res. B 1998, 134, 46. [Google Scholar] [CrossRef]
- Hagstrum, H.D. Auger ejection of electrons from tungsten by noble gas ions. Phys. Rev. 1954, 96, 325. [Google Scholar] [CrossRef]
- Arifov, U.; Kishinev, L.M.; Mukhamad, E.S.; Parilis, E. Auger-neutralization of multicharged ions in a metal surface. Phys. Technol. Phys. 1973, 18, 240. [Google Scholar]
- Burgdörfer, J.; Lerner, P.; Meyer, F.W. Above-surface neutralization of highly charged ions: The classical over-the-barrier model. Phys. Rev. A 1991, 44, 5674. [Google Scholar] [CrossRef] [PubMed]
- Nedeljković, N.N.; Majkić, M.D. Intermediate stages of the Rydberg-level population of multiply charged ions escaping solid surfaces. Phys. Rev. A 2007, 76, 042902. [Google Scholar] [CrossRef]
- Nedeljković, N.N.; Nedeljković, L.D.; Mirković, M.A. Electron capture into large-l Rydberg states of multiply charged ions escaping from solid surfaces. Phys. Rev. A 2003, 68, 012721. [Google Scholar] [CrossRef]
- Nedeljković, N.N.; Majkić, M.D.; Božanić, D.K.; Dojčilović, R.J. Dynamics of the Rydberg state population of slow highly charged ions impinging a solid surface at arbitrary collision geometry. J. Phys. B At. Mol. Opt. Phys. 2016, 49, 125201. [Google Scholar] [CrossRef]
- Machicoane, G.A.; Schenkel, T.; Niedermayr, T.R.; Newmann, M.W.; Hamza, A.V.; Barnes, A.V.; McDonald, J.W.; Tanis, J.A.; Schneider, D.H. Internal dielectronic excitation in highly charged ions colliding with surfaces. Phys. Rev. A 2002, 65, 042903. [Google Scholar] [CrossRef]
- Hell, N.; Beiersdorfer, P.; Brown, G.V.; Eckart, M.E.; Kelley, R.L.; Kilbourne, C.A.; Leutenegger, M.A.; Lockard, T.E.; Porter, F.S.; Wilms, J. Highly charged ions in a new era of high resolution X-ray astrophysics. X-ray Spectrom. 2020, 49, 218. [Google Scholar] [CrossRef]
- Knapen, J.H.; Erroz-Ferrer, S.; Roa, J.; Bakos, J.; Cisternas, M.; Leaman, R.; Szymanek, N. Optical imaging for the Spitzer Survey of Stellar Structure in Galaxies Data release and notes on interacting galaxies. Astron. Astrophys. 2014, 569, A91. [Google Scholar] [CrossRef] [Green Version]
- Aharonian, F.; Akamatsu, H.; Akimoto, F.; Allen, S.W.; Angelini, L.; Audard, M.; Awaki, H.; Axelsson, M.; Bamba, A.; Bautz, M.W.; et al. Solar abundance ratios of the iron-peak elements in the Perseus cluster. Nature 2017, 551, 478. [Google Scholar]
- Beiersdorfer, P. Laboratory X-ray astrophysics. Ann. Rev. Astron. Astrophys. 2003, 41, 343. [Google Scholar] [CrossRef]
- Zhang, B.Z.; Song, Z.Y.; Liu, X.; Qian, C.; Fang, X.; Shao, C.J.; Wang, W.; Liu, J.L.; Xu, J.K.; Feng, Y.; et al. K-shell ionization of 25–100 keV Nq+ (q = 3, 5) ions impinging on Al and Cu surfaces. Eur. Phys. J. D 2022, 76, 49. [Google Scholar] [CrossRef]
- Wang, W.; Song, Z.Y.; Zhang, B.Z.; Liu, X.; Qian, C.; Fang, X.; Shao, C.J.; Liu, J.L.; Zhang, M.W.; Xu, J.K.; et al. K-X-ray emission of 1.5–20 keV/q Oq+ (q = 3, 5, 6) and Nq+ (q = 3, 5) ions impinging on nickel surface. Eur. Phys. J. Plus. 2022, 137, 1015. [Google Scholar] [CrossRef]
- Chen, X.M.; Shao, J.X.; Yang, Z.H.; Zhang, H.Q.; Cui, Y.; Xu, X.; Xiao, G.Q.; Zhao, Y.T.; Zhang, X.A.; Zhang, Y.P. K-shell ionization cross section of aluminium induced by low-energy highly charged argon ions. Eur. Phys. J. D 2007, 41, 281. [Google Scholar] [CrossRef]
- Hubbell, J.H.; Trehan, P.N.; Singh, N.; Chand, B.; Mehta, D.; Garg, M.L.; Garg, R.R.; Singh, S.; Puri, S. A review, bibliography, and tabulation of K, L, and higher atomic shell X-ray fluorescence yields. J. Phys. Chem. Ref. Data 1994, 23, 339. [Google Scholar]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM—The stopping and range of ions in matter (2010). Nucl. Inst. Meth. Phys. B 2010, 268, 1818. [Google Scholar] [CrossRef]
- McGuire, J.H.; Richard, P. Procedure for computing cross sections for single and multiple ionization of atoms in the Binary-encounter approximation by the impact of heavy charged particles. Phys. Rev. A 1973, 8, 1374. [Google Scholar] [CrossRef]
Charge State of Oxygen Ions | Center of the X-ray Peak/eV | Error of the X-ray Peak/eV |
---|---|---|
3 | 531.3 | 1.2 |
5 | 532.7 | 0.5 |
6 | 535.0 | 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Z.; Liu, X.; Zhang, M.; Xu, J.; Feng, Y.; Zhang, B.; Wang, W.; Liu, J.; Shao, C.; Yu, D.; et al. K X-ray Emission for Slow Oxygen Ions Approaching a Copper Metal Surface. Atoms 2022, 10, 124. https://doi.org/10.3390/atoms10040124
Song Z, Liu X, Zhang M, Xu J, Feng Y, Zhang B, Wang W, Liu J, Shao C, Yu D, et al. K X-ray Emission for Slow Oxygen Ions Approaching a Copper Metal Surface. Atoms. 2022; 10(4):124. https://doi.org/10.3390/atoms10040124
Chicago/Turabian StyleSong, Zhangyong, Xuan Liu, Mingwu Zhang, Junkui Xu, Yong Feng, Bingzhang Zhang, Wei Wang, Junliang Liu, Caojie Shao, Deyang Yu, and et al. 2022. "K X-ray Emission for Slow Oxygen Ions Approaching a Copper Metal Surface" Atoms 10, no. 4: 124. https://doi.org/10.3390/atoms10040124
APA StyleSong, Z., Liu, X., Zhang, M., Xu, J., Feng, Y., Zhang, B., Wang, W., Liu, J., Shao, C., Yu, D., Guo, Y., & Chen, L. (2022). K X-ray Emission for Slow Oxygen Ions Approaching a Copper Metal Surface. Atoms, 10(4), 124. https://doi.org/10.3390/atoms10040124