ESNet: Estimating Stellar Parameters from LAMOST Low-Resolution Stellar Spectra
Abstract
:1. Introduction
2. Data
2.1. Sources
2.1.1. LAMOST Survey
2.1.2. SDSS Survey
2.2. Selection
2.3. Pre-Processing
3. Method
3.1. Network Structure
3.1.1. The FE Module
3.1.2. The FS Module
3.1.3. The FM Module
4. Results
4.1. Selection of Model Structure and Estimation of Model Uncertainty
4.2. Evaluation of Predictions
4.3. Comparing the LAMOST Catalog with the SDSS One
4.4. Comparison with Other Methods
4.5. Validation of ESNet Using Other Catalogs
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ivezic, Z.; Schlegel, D.; Uomoto, A.; Bond, N.; Snedden, S. SDSS spectroscopic survey of stars. Mem. Della Soc. Astron. Ital. 2007, 77, 1057. [Google Scholar] [CrossRef]
- Steinmetz, M.; Zwitter, T.; Siebert, A.; Watson, F.G.; Freeman, K.C.; Munari, U.; Campbell, R.; Williams, M.; Seabroke, G.M.; Wyse, R.F.; et al. The radial velocity experiment (RAVE): First data release. Astron. J. 2006, 132, 1645. [Google Scholar] [CrossRef]
- Zhao, G.; Zhao, Y.H.; Chu, Y.Q.; Jing, Y.P.; Deng, L.C. LAMOST spectral survey—An overview. Res. Astron. Astrophys. 2012, 12, 723. [Google Scholar] [CrossRef]
- Cunha, K.; Smith, V.V.; Johnson, J.A.; Bergemann, M.; Mészáros, S.; Shetrone, M.D.; Souto, D.; Prieto, C.A.; Schiavon, R.P.; Frinchaboy, P.; et al. Sodium and oxygen abundances in the open cluster NGC 6791 from APOGEE H-band spectroscopy. Astrophys. J. Lett. 2015, 798, L41. [Google Scholar] [CrossRef]
- Gilmore, G.; Randich, S.; Asplund, M.; Binney, J.; Bonifacio, P.; Drew, J.; Feltzing, S.; Ferguson, A.; Jeffries, R.; Micela, G.; et al. The Gaia-ESO public spectroscopic survey. Messenger 2012, 147, 25–31. [Google Scholar]
- Si, J.M.; Luo, A.L.; Wu, F.Z.; Wu, Y.H. Searching for Rare Celestial Objects Automatically from Stellar Spectraof the Sloan Digital Sky Survey Data Release Eight. Spectrosc. Spectr. Anal. 2015, 35, 834–840. [Google Scholar]
- Santos, N.; Sousa, S.; Mortier, A.; Neves, V.; Adibekyan, V.; Tsantaki, M.; Mena, E.D.; Bonfils, X.; Israelian, G.; Mayor, M.; et al. SWEET-Cat: A catalogue of parameters for Stars With ExoplanETs-I. New atmospheric parameters and masses for 48 stars with planets. Astron. Astrophys. 2013, 556, A150. [Google Scholar] [CrossRef]
- Torres, G.; Andersen, J.; Giménez, A. Accurate masses and radii of normal stars: Modern results and applications. Astron. Astrophys. Rev. 2010, 18, 67–126. [Google Scholar] [CrossRef]
- Matteucci, F. Modelling the chemical evolution of the Milky Way. Astron. Astrophys. Rev. 2021, 29, 5. [Google Scholar] [CrossRef]
- Elsner, B.; Bastian, U.; Liubertas, R.; Scholz, R. Stellar classification from simulated DIVA spectra. I. Solar metallicity stars. Open Astron. 1999, 8, 385–410. [Google Scholar] [CrossRef]
- Sousa, S.; Santos, N.C.; Israelian, G.; Mayor, M.; Monteiro, M. A new code for automatic determination of equivalent widths: Automatic Routine for line Equivalent widths in stellar Spectra (ARES). Astron. Astrophys. 2007, 469, 783–791. [Google Scholar] [CrossRef]
- Sneden, C.; Bean, J.; Ivans, I.; Lucatello, S.; Sobeck, J. MOOG: LTE Line Analysis and Spectrum Synthesis. Available online: https://ui.adsabs.harvard.edu/abs/2011ApJ...736..120M (accessed on 5 September 2023).
- Valenti, J.A.; Piskunov, N. Spectroscopy made easy: A new tool for fitting observations with synthetic spectra. Astron. Astrophys. Suppl. Ser. 1996, 118, 595–603. [Google Scholar] [CrossRef]
- Wu, M.; Pan, J.; Yi, Z.; Wei, P. Rare Object Search From Low-S/N Stellar Spectra in SDSS. IEEE Access 2020, 8, 66475–66488. [Google Scholar] [CrossRef]
- Rose, J.A.; Bower, R.G.; Caldwell, N.; Ellis, R.S.; Sharples, R.M.; Teague, P. Stellar population in early-type galaxies: Further evidence for environmental influences. Astron. J. 1994, 108, 2054–2068. [Google Scholar] [CrossRef]
- Kim, S.; Jeong, H.; Rey, S.C.; Lee, Y.; Lee, J.; Joo, S.J.; Kim, H.S. Compact elliptical galaxies in different local environments: A mixture of galaxies with different origins? Astrophys. J. 2020, 903, 65. [Google Scholar] [CrossRef]
- Ness, M.; Hogg, D.W.; Rix, H.W.; Ho, A.Y.; Zasowski, G. The cannon: A data-driven approach to stellar label determination. Astrophys. J. 2015, 808, 16. [Google Scholar] [CrossRef]
- Casey, A.R.; Hogg, D.W.; Ness, M.; Rix, H.W.; Ho, A.Q.; Gilmore, G. The Cannon 2: A data-driven model of stellar spectra for detailed chemical abundance analyses. arXiv 2016, arXiv:1603.03040. [Google Scholar]
- Fabbro, S.; Venn, K.; O’Briain, T.; Bialek, S.; Kielty, C.; Jahandar, F.; Monty, S. An application of deep learning in the analysis of stellar spectra. Mon. Not. R. Astron. Soc. 2018, 475, 2978–2993. [Google Scholar] [CrossRef]
- Leung, H.W.; Bovy, J. Simultaneous calibration of spectro-photometric distances and the Gaia DR2 parallax zero-point offset with deep learning. Mon. Not. R. Astron. Soc. 2019, 489, 2079–2096. [Google Scholar] [CrossRef]
- Guiglion, G.; Matijevič, G.; Queiroz, A.B.d.A.; Valentini, M.; Steinmetz, M.; Chiappini, C.; Grebel, E.K.; McMillan, P.J.; Kordopatis, G.; Kunder, A.; et al. The RAdial Velocity Experiment (RAVE): Parameterisation of RAVE spectra based on convolutional neural networks. Astron. Astrophys. 2020, 644, A168. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, C.; Deng, L.C. Deriving the stellar labels of LAMOST spectra with the Stellar LAbel Machine (SLAM). Astrophys. J. Suppl. Ser. 2020, 246, 9. [Google Scholar] [CrossRef]
- Xiang, G.; Chen, J.; Qiu, B.; Lu, Y. Estimating Stellar Atmospheric Parameters from the LAMOST DR6 Spectra with SCDD Model. Publ. Astron. Soc. Pac. 2021, 133, 024504. [Google Scholar] [CrossRef]
- Bailer-Jones, C.A. Stellar parameters from very low resolution spectra and medium band filters: Teff, logg and [m/h] using neural networks. arXiv 2000, arXiv:astro-ph/0003071. [Google Scholar]
- Li, X.R.; Pan, R.Y.; Duan, F.Q. Parameterizing stellar spectra using deep neural networks. Res. Astron. Astrophys. 2017, 17, 036. [Google Scholar] [CrossRef]
- Rui, W.; Luo, A.L.; Shuo, Z.; Wen, H.; Bing, D.; Yihan, S.; Kefei, W.; Jianjun, C.; Fang, Z.; Li, Q.; et al. Analysis of Stellar Spectra from LAMOST DR5 with Generative Spectrum Networks. Publ. Astron. Soc. Pac. 2019, 131, 024505. [Google Scholar] [CrossRef]
- Minglei, W.; Jingchang, P.; Zhenping, Y.; Xiaoming, K.; Yude, B. Atmospheric parameter measurement of Low-S/N stellar spectra based on deep learning. Optik 2020, 218, 165004. [Google Scholar] [CrossRef]
- Li, X.; Zeng, S.; Wang, Z.; Du, B.; Kong, X.; Liao, C. Estimating atmospheric parameters from LAMOST low-resolution spectra with low SNR. Mon. Not. R. Astron. Soc. 2022, 514, 4588–4600. [Google Scholar] [CrossRef]
- Luo, A.L.; Zhao, Y.H.; Zhao, G.; Deng, L.C.; Liu, X.W.; Jing, Y.P.; Wang, G.; Zhang, H.T.; Shi, J.R.; Cui, X.Q.; et al. The first data release (DR1) of the LAMOST regular survey. Res. Astron. Astrophys. 2015, 15, 1095. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, M.; Shu, H. The preliminary statistical analysis of LAMOST DR9 low resolution quasi-stellar objects. New Astron. 2023, 101, 102013. [Google Scholar] [CrossRef]
- York, D.G.; Adelman, J.; Anderson Jr, J.E.; Anderson, S.F.; Annis, J.; Bahcall, N.A.; Bakken, J.; Barkhouser, R.; Bastian, S.; Berman, E.; et al. The sloan digital sky survey: Technical summary. Astron. J. 2000, 120, 1579. [Google Scholar] [CrossRef]
- Ahumada, R.; Prieto, C.A.; Almeida, A.; Anders, F.; Anderson, S.F.; Andrews, B.H.; Anguiano, B.; Arcodia, R.; Armengaud, E.; Aubert, M.; et al. The 16th data release of the sloan digital sky surveys: First release from the APOGEE-2 southern survey and full release of eBOSS spectra. Astrophys. J. Suppl. Ser. 2020, 249, 3. [Google Scholar] [CrossRef]
- Pérez, A.E.G.; Prieto, C.A.; Holtzman, J.A.; Shetrone, M.; Mészáros, S.; Bizyaev, D.; Carrera, R.; Cunha, K.; García-Hernández, D.; Johnson, J.A.; et al. ASPCAP: The APOGEE stellar parameter and chemical abundances pipeline. Astron. J. 2016, 151, 144. [Google Scholar] [CrossRef]
- Perryman, M.A.; Lindegren, L.; Kovalevsky, J.; Hoeg, E.; Bastian, U.; Bernacca, P.; Crézé, M.; Donati, F.; Grenon, M.; Grewing, M.; et al. The HIPPARCOS catalogue. Astron. Astrophys. 1997, 323, L49–L52. [Google Scholar]
- Taylor, M. Topcat: Working with data and working with users. arXiv 2017, arXiv:1711.01885. [Google Scholar]
- Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078. [Google Scholar]
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Tolstikhin, I.O.; Houlsby, N.; Kolesnikov, A.; Beyer, L.; Zhai, X.; Unterthiner, T.; Yung, J.; Steiner, A.; Keysers, D.; Uszkoreit, J.; et al. Mlp-mixer: An all-mlp architecture for vision. Adv. Neural Inf. Process. Syst. 2021, 34, 24261–24272. [Google Scholar]
- Dorogush, A.V.; Ershov, V.; Gulin, A. CatBoost: Gradient boosting with categorical features support. arXiv 2018, arXiv:1810.11363. [Google Scholar]
- Cai, B.; Kong, X.; Shi, J.; Gao, Q.; Bu, Y.; Yi, Z. Li-rich Giants Identified from LAMOST DR8 Low-resolution Survey. Astron. J. 2023, 165, 52. [Google Scholar] [CrossRef]
- Ting, Y.S.; Conroy, C.; Rix, H.W.; Cargile, P. The Payne: Self-consistent ab initio fitting of stellar spectra. Astrophys. J. 2019, 879, 69. [Google Scholar] [CrossRef]
- Skrutskie, M.; Cutri, R.; Stiening, R.; Weinberg, M.; Schneider, S.; Carpenter, J.; Beichman, C.; Capps, R.; Chester, T.; Elias, J.; et al. The two micron all sky survey (2MASS). Astron. J. 2006, 131, 1163. [Google Scholar] [CrossRef]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch: An imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 2019, 32, 8024–8035. [Google Scholar]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Price-Whelan, A.M.; Sipőcz, B.; Günther, H.; Lim, P.; Crawford, S.; Conseil, S.; Shupe, D.; Craig, M.; Dencheva, N.; Ginsburg, A.; et al. The astropy project: Building an open-science project and status of the v2. 0 core package. Astron. J. 2018, 156, 123. [Google Scholar]
Structure | Name/Count | MAE () | MAE () | MAE () |
---|---|---|---|---|
ReLU | 355 | 0.09 | 0.04 | |
AF | Logistic | 49 | 0.07 | 0.03 |
Tanh | 51 | 0.08 | 0.04 | |
Loss | L1loss | 49 | 0.07 | 0.03 |
L2loss | 49 | 0.07 | 0.03 | |
3 layers | 49 | 0.07 | 0.04 | |
Linear | 4 layers | 49 | 0.07 | 0.03 |
5 layers | 49 | 0.07 | 0.04 | |
FE | Conv(yes) | 49 | 0.07 | 0.04 |
Conv(no) | 49 | 0.07 | 0.03 |
Structure | |||
---|---|---|---|
mean value | 49 | 0.07 | 0.04 |
standard deviation | 0.547 | 0.0008 | 0.0004 |
SNR | Methods | MAE () | MAE () | MAE () |
---|---|---|---|---|
StarNet | 206 | 0.38 | 0.13 | |
SLAM | 111 | 0.33 | 0.18 | |
StarN | 257 | 0.36 | 0.17 | |
0–10 | SCDD | 169 | 0.34 | 0.15 |
Catboost | 157 | 0.26 | 0.12 | |
Lasso-MLP | 93 | 0.21 | 0.12 | |
DenseNet | 145 | 0.36 | 0.15 | |
This method | 82 | 0.20 | 0.10 | |
StarNet | 207 | 0.35 | 0.09 | |
SLAM | 79 | 0.17 | 0.10 | |
StarN | 212 | 0.25 | 0.14 | |
10–20 | SCDD | 123 | 0.22 | 0.11 |
Catboost | 123 | 0.16 | 0.09 | |
Lasso-MLP | 77 | 0.12 | 0.06 | |
DenseNet | 124 | 0.25 | 0.10 | |
This method | 64 | 0.12 | 0.06 | |
StarNet | 159 | 0.28 | 0.06 | |
SLAM | 48 | 0.08 | 0.04 | |
StarN | 102 | 0.12 | 0.11 | |
>20 | SCDD | 90 | 0.13 | 0.07 |
Catboost | 104 | 0.09 | 0.05 | |
Lasso-MLP | 54 | 0.07 | 0.03 | |
DenseNet | 81 | 0.13 | 0.06 | |
This method | 48 | 0.06 | 0.03 |
SNR | Method | MAE () | MAE () | MAE () |
---|---|---|---|---|
StarNet | 197 | 0.42 | 0.12 | |
SLAM | 161 | 0.27 | 0.17 | |
StarN | 314 | 0.36 | 0.16 | |
0–10 | SCDD | 212 | 0.33 | 0.14 |
Catboost | 213 | 0.24 | 0.13 | |
Lasso-MLP | 158 | 0.17 | 0.10 | |
DenseNet | 202 | 0.32 | 0.13 | |
This method | 146 | 0.17 | 0.10 | |
StarNet | 191 | 0.37 | 0.10 | |
SLAM | 140 | 0.20 | 0.10 | |
StarN | 216 | 0.24 | 0.14 | |
10–20 | SCDD | 175 | 0.23 | 0.11 |
Catboost | 177 | 0.18 | 0.09 | |
Lasso-MLP | 138 | 0.16 | 0.08 | |
DenseNet | 182 | 0.25 | 0.11 | |
This method | 137 | 0.16 | 0.07 |
SNR | Method | MAE () | MAE () | MAE () |
---|---|---|---|---|
StarNet | 298 | 0.48 | 0.15 | |
SLAM | 132 | 0.28 | 0.19 | |
StarN | 355 | 0.35 | 0.14 | |
0–10 | SCDD | 163 | 0.30 | 0.16 |
Catboost | 113 | 0.26 | 0.14 | |
Lasso-MLP | 106 | 0.20 | 0.13 | |
DenseNet | 153 | 0.36 | 0.16 | |
This method | 101 | 0.19 | 0.11 | |
StarNet | 232 | 0.34 | 0.12 | |
SLAM | 95 | 0.19 | 0.12 | |
StarN | 212 | 0.24 | 0.12 | |
10–20 | SCDD | 122 | 0.22 | 0.12 |
Catboost | 83 | 0.17 | 0.10 | |
Lasso-MLP | 82 | 0.14 | 0.09 | |
DenseNet | 126 | 0.25 | 0.12 | |
This method | 75 | 0.14 | 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Qiu, B.; Luo, A.-l.; Ren, F.; Jiang, X. ESNet: Estimating Stellar Parameters from LAMOST Low-Resolution Stellar Spectra. Universe 2023, 9, 416. https://doi.org/10.3390/universe9090416
Wang K, Qiu B, Luo A-l, Ren F, Jiang X. ESNet: Estimating Stellar Parameters from LAMOST Low-Resolution Stellar Spectra. Universe. 2023; 9(9):416. https://doi.org/10.3390/universe9090416
Chicago/Turabian StyleWang, Kun, Bo Qiu, A-li Luo, Fuji Ren, and Xia Jiang. 2023. "ESNet: Estimating Stellar Parameters from LAMOST Low-Resolution Stellar Spectra" Universe 9, no. 9: 416. https://doi.org/10.3390/universe9090416
APA StyleWang, K., Qiu, B., Luo, A. -l., Ren, F., & Jiang, X. (2023). ESNet: Estimating Stellar Parameters from LAMOST Low-Resolution Stellar Spectra. Universe, 9(9), 416. https://doi.org/10.3390/universe9090416