Influence of Alfvén Ion–Cyclotron Waves on the Anisotropy of Solar Wind Turbulence at Ion Kinetic Scales
Abstract
:1. Introduction
2. Data and Methods
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tu, C.Y.; Marsch, E. MHD structures, waves and turbulence in the solar wind: Observations and theories. Space Sci. Rev. 1995, 73, 1–210. [Google Scholar] [CrossRef]
- Goldstein, M.L.; Roberts, D.A.; Matthaeus, W.H. Magnetohydrodynamic Turbulence in the Solar Wind. ARA&A 1995, 33, 283–326. [Google Scholar] [CrossRef]
- Bruno, R.; Carbone, V. The Solar Wind as a Turbulence Laboratory. Living Rev. Sol. Phys. 2013, 10, 2. [Google Scholar] [CrossRef]
- Kolmogorov, A. The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds’ Numbers. Akademiia Nauk SSSR Doklady 1941, 30, 301–305. [Google Scholar]
- Podesta, J.J.; Roberts, D.A.; Goldstein, M.L. Power spectrum of small-scale turbulent velocity fluctuations in the solar wind. J. Geophys. Res. (Space Phys.) 2006, 111, A10109. [Google Scholar] [CrossRef]
- Podesta, J.J.; Roberts, D.A.; Goldstein, M.L. Spectral Exponents of Kinetic and Magnetic Energy Spectra in Solar Wind Turbulence. Astrophys. J. 2007, 664, 543–548. [Google Scholar] [CrossRef]
- Salem, C.; Mangeney, A.; Bale, S.D.; Veltri, P. Solar Wind Magnetohydrodynamics Turbulence: Anomalous Scaling and Role of Intermittency. Astrophys. J. 2009, 702, 537–553. [Google Scholar] [CrossRef]
- Alexandrova, O.; Chen, C.H.K.; Sorriso-Valvo, L.; Horbury, T.S.; Bale, S.D. Solar Wind Turbulence and the Role of Ion Instabilities. Space Sci. Rev. 2013, 178, 101–139. [Google Scholar] [CrossRef]
- Kiyani, K.H.; Osman, K.T.; Chapman, S.C. Dissipation and heating in solar wind turbulence: From the macro to the micro and back again. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 2015, 373, 20140155. [Google Scholar] [CrossRef]
- Roberts, O.W.; Li, X. Evidence of the Ion Cyclotron Resonance at Proton Kinetic Scales in the Solar Wind. Astrophys. J. 2015, 802, 1. [Google Scholar] [CrossRef]
- Leamon, R.J.; Smith, C.W.; Ness, N.F.; Matthaeus, W.H.; Wong, H.K. Observational constraints on the dynamics of the interplanetary magnetic field dissipation range. J. Geophys. Res. 1998, 103, 4775. [Google Scholar] [CrossRef]
- Smith, C.W.; Hamilton, K.; Vasquez, B.J.; Leamon, R.J. Dependence of the Dissipation Range Spectrum of Interplanetary Magnetic Fluctuationson the Rate of Energy Cascade. Astrophys. J. Lett. 2006, 645, L85–L88. [Google Scholar] [CrossRef]
- Bruno, R.; Telloni, D. Spectral Analysis of Magnetic Fluctuations at Proton Scales from Fast to Slow Solar Wind. Astrophys. J. Lett. 2015, 811, L17. [Google Scholar] [CrossRef]
- Wang, T.; Cao, J.B.; Fu, H.; Liu, W.; Dunlop, M. Turbulence in the Earth’s cusp region: The k-filtering analysis. J. Geophys. Res. (Space Phys.) 2014, 119, 9527–9542. [Google Scholar] [CrossRef]
- Wang, T.; Cao, J.; Fu, H.; Meng, X.; Dunlop, M. Compressible turbulence with slow-mode waves observed in the bursty bulk flow of plasma sheet. Geophys. Res. Lett. 2016, 43, 1854–1861. [Google Scholar] [CrossRef]
- Huang, S.Y.; Zhou, M.; Sahraoui, F.; Vaivads, A.; Deng, X.H.; André, M.; He, J.S.; Fu, H.S.; Li, H.M.; Yuan, Z.G.; et al. Observations of turbulence within reconnection jet in the presence of guide field. Geophys. Res. Lett. 2012, 39, L11104. [Google Scholar] [CrossRef]
- Huang, S.Y.; Sahraoui, F.; Deng, X.H.; He, J.S.; Yuan, Z.G.; Zhou, M.; Pang, Y.; Fu, H.S. Kinetic Turbulence in the Terrestrial Magnetosheath: Cluster Observations. Astrophys. J. Lett. 2014, 789, L28. [Google Scholar] [CrossRef]
- Chen, C.H.K.; Boldyrev, S. Nature of Kinetic Scale Turbulence in the Earth’s Magnetosheath. Astrophys. J. 2017, 842, 122. [Google Scholar] [CrossRef]
- Sahraoui, F.; Hadid, L.; Huang, S. Magnetohydrodynamic and kinetic scale turbulence in the near-Earth space plasmas: A (short) biased review. Rev. Mod. Plasma Phys. 2020, 4, 4. [Google Scholar] [CrossRef]
- Li, H.; Jiang, W.; Wang, C.; Verscharen, D.; Zeng, C.; Russell, C.T.; Giles, B.; Burch, J.L. Evolution of the Earth’s Magnetosheath Turbulence: A Statistical Study Based on MMS Observations. Astrophys. J. Lett. 2020, 898, L43. [Google Scholar] [CrossRef]
- Zhu, X.; He, J.; Verscharen, D.; Zhao, J. Composition of Wave Modes in Magnetosheath Turbulence from Sub-ion to Sub-electron Scales. Astrophys. J. 2019, 878, 48. [Google Scholar] [CrossRef]
- Chen, C.H.K.; Horbury, T.S.; Schekochihin, A.A.; Wicks, R.T.; Alexandrova, O.; Mitchell, J. Anisotropy of Solar Wind Turbulence between Ion and Electron Scales. Phys. Rev. Lett. 2010, 104, 255002. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.; Lazarian, A. The Anisotropy of Electron Magnetohydrodynamic Turbulence. Astrophys. J. Lett. 2004, 615, L41–L44. [Google Scholar] [CrossRef]
- Schekochihin, A.A.; Cowley, S.C.; Dorland, W.; Hammett, G.W.; Howes, G.G.; Quataert, E.; Tatsuno, T. Astrophysical Gyrokinetics: Kinetic and Fluid Turbulent Cascades in Magnetized Weakly Collisional Plasmas. Astrophys. J. Suppl. Ser. 2009, 182, 310–377. [Google Scholar] [CrossRef]
- Monin, A.S.; Yaglom, A.M. Statistical Fluid Mechanics: Mechanics of Turbulence; Courier Corporation: North Chelmsford, MA, USA, 1975; Volume 2. [Google Scholar]
- Cho, J.; Lazarian, A. Simulations of Electron Magnetohydrodynamic Turbulence. Astrophys. J. 2009, 701, 236–252. [Google Scholar] [CrossRef]
- Behannon, K.W. Observations of the Interplanetary Magnetic Field between 0.46 and 1 A.U. by the Mariner 10 Spacecraft. Ph.D. Thesis, National Aeronautics and Space Administration Goddard Space Flight Center, Greenbelt, MD, USA, 1976. [Google Scholar]
- Tsurutani, B.T.; Arballo, J.K.; Mok, J.; Smith, E.J.; Mason, G.M.; Tan, L.C. Electromagnetic waves with frequencies near the local proton gyrofrequency: ISEE-3 1 AU observations. Geophys. Res. Lett. 1994, 21, 633–636. [Google Scholar] [CrossRef]
- Jian, L.K.; Russell, C.T.; Luhmann, J.G.; Strangeway, R.J.; Leisner, J.S.; Galvin, A.B. Ion Cyclotron Waves in the Solar Wind Observed by STEREO Near 1 AU. Astrophys. J. Lett. 2009, 701, L105–L109. [Google Scholar] [CrossRef]
- Jian, L.K.; Wei, H.Y.; Russell, C.T.; Luhmann, J.G.; Klecker, B.; Omidi, N.; Isenberg, P.A.; Goldstein, M.L.; Figueroa-Viñas, A.; Blanco-Cano, X. Electromagnetic Waves near the Proton Cyclotron Frequency: STEREO Observations. Astrophys. J. 2014, 786, 123. [Google Scholar] [CrossRef]
- Wicks, R.T.; Alexander, R.L.; Stevens, M.; Wilson, L.B., III; Moya, P.S.; Viñas, A.; Jian, L.K.; Roberts, D.A.; O’Modhrain, S.; Gilbert, J.A.; et al. A Proton-cyclotron Wave Storm Generated by Unstable Proton Distribution Functions in the Solar Wind. Astrophys. J. 2016, 819, 6. [Google Scholar] [CrossRef]
- He, J.; Marsch, E.; Tu, C.; Yao, S.; Tian, H. Possible Evidence of Alfvén-cyclotron Waves in the Angle Distribution of Magnetic Helicity of Solar Wind Turbulence. Astrophys. J. 2011, 731, 85. [Google Scholar] [CrossRef]
- He, J.; Tu, C.; Marsch, E.; Yao, S. Do Oblique Alfvén/Ion-cyclotron or Fast-mode/Whistler Waves Dominate the Dissipation of Solar Wind Turbulence near the Proton Inertial Length? Astrophys. J. Lett. 2012, 745, L8. [Google Scholar] [CrossRef]
- He, J.; Tu, C.; Marsch, E.; Yao, S. Reproduction of the Observed Two-component Magnetic Helicity in Solar Wind Turbulence by a Superposition of Parallel and Oblique Alfvén Waves. Astrophys. J. 2012, 749, 86. [Google Scholar] [CrossRef]
- Podesta, J.J.; Gary, S.P. Magnetic Helicity Spectrum of Solar Wind Fluctuations as a Function of the Angle with Respect to the Local Mean Magnetic Field. Astrophys. J. 2011, 734, 15. [Google Scholar] [CrossRef]
- Podesta, J.J. Observations of Electromagnetic Fluctuations at Ion Kinetic Scales in the Solar Wind. Astrophys. Space Sci. Proc. 2012, 33, 177. [Google Scholar] [CrossRef]
- Lion, S.; Alexandrova, O.; Zaslavsky, A. Coherent Events and Spectral Shape at Ion Kinetic Scales in the Fast Solar Wind Turbulence. Astrophys. J. 2016, 824, 47. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Zhao, G.Q.; Lin, Y.; Wang, X.Y.; Feng, H.Q.; Wu, D.J.; Kasper, J.C. Two Correlations with Enhancement Near the Proton Gyroradius Scale in Solar Wind Turbulence: Parker Solar Probe (PSP) and Wind Observations. Astrophys. J. 2022, 924, 92. [Google Scholar] [CrossRef]
- Lepping, R.P.; Acũna, M.H.; Burlaga, L.F.; Farrell, W.M.; Slavin, J.A.; Schatten, K.H.; Mariani, F.; Ness, N.F.; Neubauer, F.M.; Whang, Y.C.; et al. The Wind Magnetic Field Investigation. Space Sci. Rev. 1995, 71, 207–229. [Google Scholar] [CrossRef]
- Wicks, R.T.; Horbury, T.S.; Chen, C.H.K.; Schekochihin, A.A. Anisotropy of Imbalanced Alfvénic Turbulence in Fast Solar Wind. Phys. Rev. Lett. 2011, 106, 045001. [Google Scholar] [CrossRef]
- Wang, X.; Tu, C.; He, J.; Marsch, E.; Wang, L. The Influence of Intermittency on the Spectral Anisotropy of Solar Wind Turbulence. Astrophys. J. Lett. 2014, 783, L9. [Google Scholar] [CrossRef]
- Bruno, R.; Trenchi, L. Radial Dependence of the Frequency Break between Fluid and Kinetic Scales in the Solar Wind Fluctuations. Astrophys. J. Lett. 2014, 787, L24. [Google Scholar] [CrossRef]
- Chen, C.H.K.; Leung, L.; Boldyrev, S.; Maruca, B.A.; Bale, S.D. Ion-scale spectral break of solar wind turbulence at high and low beta. Geophys. Res. Lett. 2014, 41, 8081–8088. [Google Scholar] [CrossRef]
- Wang, X.; Tu, C.Y.; He, J.S.; Wang, L.H. Ion-Scale Spectral Break in the Normal Plasma Beta Range in the Solar Wind Turbulence. J. Geophys. Res. Space Phys. 2018, 123, 68–75. [Google Scholar] [CrossRef]
- Wang, X.; Tu, C.; He, J.; Wang, L. On the Full-range β Dependence of Ion-scale Spectral Break in the Solar Wind Turbulence. Astrophys. J. 2018, 857, 136. [Google Scholar] [CrossRef]
- Sahraoui, F.; Goldstein, M.L.; Belmont, G.; Canu, P.; Rezeau, L. Three Dimensional Anisotropic k Spectra of Turbulence at Subproton Scales in the Solar Wind. Phys. Rev. Lett. 2010, 105, 131101. [Google Scholar] [CrossRef] [PubMed]
- Roberts, O.W.; Li, X.; Li, B. Kinetic Plasma Turbulence in the Fast Solar Wind Measured by Cluster. Astrophys. J. 2013, 769, 58. [Google Scholar] [CrossRef]
- Horbury, T.S.; Forman, M.; Oughton, S. Anisotropic Scaling of Magnetohydrodynamic Turbulence. Phys. Rev. Lett. 2008, 101, 175005. [Google Scholar] [CrossRef] [PubMed]
- Podesta, J.J. Dependence of Solar-Wind Power Spectra on the Direction of the Local Mean Magnetic Field. Astrophys. J. 2009, 698, 986–999. [Google Scholar] [CrossRef]
- Wei, H.Y.; Jian, L.K.; Russell, C.T.; Omidi, N. Ion Cyclotron Waves in the Solar Wind. Wash. DC Am. Geophys. Union Geophys. Monogr. Ser. 2016, 216, 253–267. [Google Scholar] [CrossRef]
- Telloni, D.; Carbone, F.; Bruno, R.; Zank, G.P.; Sorriso-Valvo, L.; Mancuso, S. Ion Cyclotron Waves in Field-aligned Solar Wind Turbulence. Astrophys. J. Lett. 2019, 885, L5. [Google Scholar] [CrossRef]
- Hamilton, K.; Smith, C.W.; Vasquez, B.J.; Leamon, R.J. Anisotropies and helicities in the solar wind inertial and dissipation ranges at 1 AU. J. Geophys. Res. (Space Phys.) 2008, 113, A01106. [Google Scholar] [CrossRef]
- Gary, S.P.; Smith, C.W. Short-wavelength turbulence in the solar wind: Linear theory of whistler and kinetic Alfvén fluctuations. J. Geophys. Res. (Space Phys.) 2009, 114, A12105. [Google Scholar] [CrossRef]
- Telloni, D.; Bruno, R.; Trenchi, L. Radial Evolution of Spectral Characteristics of Magnetic Field Fluctuations at Proton Scales. Astrophys. J. 2015, 805, 46. [Google Scholar] [CrossRef]
- Bowen, T.A.; Mallet, A.; Huang, J.; Klein, K.G.; Malaspina, D.M.; Stevens, M.; Bale, S.D.; Bonnell, J.W.; Case, A.W.; Chandran, B.D.G.; et al. Ion-scale Electromagnetic Waves in the Inner Heliosphere. Astrophys. J. Suppl. Ser. 2020, 246, 66. [Google Scholar] [CrossRef]
- Alexandrova, O.; Carbone, V.; Veltri, P.; Sorriso-Valvo, L. Solar wind Cluster observations: Turbulent spectrum and role of Hall effect. Planet. Space Sci. 2007, 55, 2224–2227. [Google Scholar] [CrossRef]
- Alexandrova, O.; Carbone, V.; Veltri, P.; Sorriso-Valvo, L. Small-Scale Energy Cascade of the Solar Wind Turbulence. Astrophys. J. 2008, 674, 1153–1157. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Huang, L.; Wang, Y.; Yuan, H. Influence of Alfvén Ion–Cyclotron Waves on the Anisotropy of Solar Wind Turbulence at Ion Kinetic Scales. Universe 2023, 9, 399. https://doi.org/10.3390/universe9090399
Wang X, Huang L, Wang Y, Yuan H. Influence of Alfvén Ion–Cyclotron Waves on the Anisotropy of Solar Wind Turbulence at Ion Kinetic Scales. Universe. 2023; 9(9):399. https://doi.org/10.3390/universe9090399
Chicago/Turabian StyleWang, Xin, Linzhi Huang, Yuxin Wang, and Haochen Yuan. 2023. "Influence of Alfvén Ion–Cyclotron Waves on the Anisotropy of Solar Wind Turbulence at Ion Kinetic Scales" Universe 9, no. 9: 399. https://doi.org/10.3390/universe9090399
APA StyleWang, X., Huang, L., Wang, Y., & Yuan, H. (2023). Influence of Alfvén Ion–Cyclotron Waves on the Anisotropy of Solar Wind Turbulence at Ion Kinetic Scales. Universe, 9(9), 399. https://doi.org/10.3390/universe9090399