Gravitational Quantum Mechanics—Implications for Dark Matter
Abstract
:1. Introduction and Background
2. Mathematical Approach
2.1. Gravitational Potentials: Their Eigenstates and Eigenenergies
2.2. Concept for Determining Optical Cross Sections of Halo Particles
2.3. The Interactions of Photons with Wavefunctions
2.4. Physical Properies and Structure of the Overlap Integral Leading to Weak Interaction
3. Calculation of Cross Section Trends for Simple Systems (Low
3.1. The Variation of Cross Section/Einstein A Coefficients across the State Diagram
3.2. Wavefunction Eigenspectra and Particle Properties in Toy Models
4. Consequences for Astrophysics
4.1. Particle Radial Density Profiles in GQM
4.2. Darkness Fraction and Equilibrium; Significance for Star Formation and Quenching Rates
4.3. How Eigenstate Spatial Oscillation Frequencies Affect Interactivity in Galaxy Halos
4.4. Globular Clusters and Dwarf Spheroidal Galaxies: A Common Primordial Ancestor?
5. The GQM Scenario for Halo Formation—Primordial Black Holes from the Phase Transition and Their Relation to Galaxy Number Density
6. Observational Tests and Predictions from GQM
6.1. Dark Matter Fractions of High-Temperature Halos
6.2. GQM Predictions for Low-Tempertaure Halos: -Dominated, Dark Matter-Free Galaxies, and -Dominated, High-Dark Matter Galaxies
6.3. Other Evidence for Excess HI?
7. Discussion and Summary
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
1 | More recently, a rudimentary transition energy spectrum for these gravitational eigenstates, somewhat analogous to spectral series for electrons, has been demonstrated. |
2 | There are many examples of novel macroscopic quantum effects—long-range quantum entanglement, superconductivity and superconducting quantum interference, and Bose–Einstein quantum states. |
3 | The terms “dark particle,” “dark matter,” and “particle darkness” are taken to mean both non-radiative and optically weak interaction. |
References
- Nesvizhevsky, V.V.; Börner, H.G.; Petukhov, A.K.; Abele, H.; Baeßler, S.; Rueß, F.J.; Stöferle, T.; Westphal, A.; Gagarski, A.M.; Petrov, G.A.; et al. Quantum states of neutrons in the Earth’s gravitational field. Nature 2002, 415, 297–299. [Google Scholar] [CrossRef] [PubMed]
- Nesvizhevsky, V.V.; Börner, H.G.; Gagarski, A.M.; Petoukhov, A.K.; Petrov, G.A.; Abele, H.; Baeßler, S.; Divkovic, G.; Rueß, F.J.; Stöferle, T.; et al. Measurement of quantum states of neutrons in the Earth’s gravitational field. Phys. Rev. D 2003, 67, 102002. [Google Scholar] [CrossRef]
- Jenke, T.; Geltenbort, P.; Lemmel, H.; Abele, H. Realization of a gravity-resonance-spectroscopy technique. Nat. Phys. 2011, 7, 468–472. [Google Scholar] [CrossRef]
- Jenke, T.; Abele, H. Experiments with Gravitationally-bound Ultracold Neutrons at the European Spallation Source ESS. Phys. Procedia Sci. 2014, 51, 67–72. [Google Scholar] [CrossRef]
- Schulz, B. Review on the quantization of gravity. arXiv 2014, arXiv:1409.7977. [Google Scholar] [CrossRef]
- Huggett, N.; Matsubara, K.; Wuthrich, C. (Eds.) Beyond Spacetime, the Foundations of Quantum Gravity; Cambridge University Press: Cambridge, UK, 2020; ISBN 110847702X/9781108477024. [Google Scholar]
- Doran, C.; Lazenby, A.; Dolan, S.; Hinder, I. Fermion absorption cross section of a Schwarzschild black hole. Phys. Rev. D 2005, 71, 124020. [Google Scholar] [CrossRef]
- Vachaspati, T. Schrödinger picture of quantum gravitational collapse. Class. Quantum Gravity 2009, 26, 215007. [Google Scholar] [CrossRef]
- Gossel, G.H.; Berengut, J.C.; Flambaum, V.V. Energy levels of a scalar particle in a static gravitational field close to the black hole limit. Gen. Relativ. Gravit. 2011, 43, 2673–2683. [Google Scholar] [CrossRef]
- Klein, O.; Nishina, Y. On the Scattering of Radiation by Free Electrons According to Dirac’s New Relativistic Quantum Dynamics. In The Oskar Klein Memorial Lectures; Ekspong, G., Ed.; Original in Z. Phys. 52, 853 (1929); translated from the German by Dr Lars Bergström; World Scientific: Singapore, 2014; Volume 2, pp. 253–272. [Google Scholar] [CrossRef]
- Fröwis, F.; Sekatski, P.; Dür, W.; Gisin, N.; Sangouard, N. Macroscopic quantum states: Measures, fragility, and implementations. Rev. Mod. Phys. 2018, 90, 025004. [Google Scholar] [CrossRef]
- Ernest, A.D. Gravitational eigenstates in weak gravity: I. Dipole decay rates of charged particles. J. Phys. A Math. Theor. 2009, 42, 115207. [Google Scholar] [CrossRef]
- Ernest, A.D. Gravitational eigenstates in weak gravity: II. Further approximate methods for decay rates. J. Phys. A Math. Theor. 2009, 42, 115208. [Google Scholar] [CrossRef]
- Ernest, A.D. A Quantum approach to dark matter. In Dark Matter: New Research, 1st ed.; Val Blain, J., Ed.; NOVA Science Publishers: New York, NY, USA, 2006; pp. 91–147. ISBN 1-59454-549-9. [Google Scholar]
- Bullock, J.S.; Boylan-Kolchin, M. Small-Scale Challenges to the ΛCDM Paradigm. Annu. Rev. Astron. Astrophys. 2017, 55, 343–387. [Google Scholar] [CrossRef]
- Ernest, A.D. Gravitational Quantization and Dark Matter. In Advances in Quantum Theory, 1st ed.; Cotaescu, I., Ed.; IntechOpen Ltd.: London, UK, 2011; pp. 221–248. ISBN 978-953-51-0087-4. [Google Scholar]
- Ernest, A.D.; Collins, M.P. Structural features of high-n gravitational eigenstates. Gravit. Cosmol. 2012, 18, 242–248. [Google Scholar] [CrossRef]
- Whinray, T.A.; Ernest, A.D. Relations between Transition Rates and Quantum Numbers in Gravitational Potentials. Gravit. Cosmol. 2018, 24, 97–102. [Google Scholar] [CrossRef]
- Ernest, A.D.; Collins, M.P. Halo formation and evolution: Unification of structure and physical properties. In Proceedings of the International Astronomical Union, IAU XXIX General Assembly, Honolulu, HI, USA, 3–14 August 2015; Cambridge University Press: Cambridge, UK, 2015; Volume 11, pp. 298–299. Available online: https://researchoutput.csu.edu.au/en/publications/halo-formation-and-evolution-unification-of-structure-and-physica (accessed on 20 June 2023). [CrossRef]
- Cawood, C. Globular Clusters and Dwarf Spheroidal Galaxies in the Quantum Dark Matter Scenario: Is There a Connection? Hons. Thesis, Charles Sturt University, Wagga Wagga, Australia, October 2021. [Google Scholar]
- Firth, J. State Lifetimes and Spontaneous Emission Rates of Large n, l Eigenstates for a Proton-like Particle in the Infinite Spherical Well. Hons. Thesis, Charles Sturt University, Wagga Wagga, Australia, October 2022. [Google Scholar]
- Schiff, L.I. Quantum Mechanics, 3rd ed.; McGraw-Hill: New York, NY, USA, 1968. [Google Scholar]
- Ernest, A.D. Can quantum theory explain dark matter? In Proceedings of the IAU Symposium: Dark Matter in Galaxies, ASP Conference Series, Sydney, Australia, 21–25 July 2003; Ryder, S.D., Pisano, D.J., Walker, M.A., Freeman, K.C., Eds.; International Astronomical Union. Cambridge University Press: Cambridge, UK, 2004; Volume 220, pp. 497–498, ISBN 9781583811672. [Google Scholar] [CrossRef]
- Su, B.-Y.; Li, N.; Feng, L. An inflation model for massive primordial black holes to interpret the JWST observations. arXiv 2023, arXiv:2306.05364. [Google Scholar] [CrossRef]
- Carr, B.J. The primordial black hole mass spectrum. Astrophys. J. 1975, 201, 1–19. [Google Scholar] [CrossRef]
- Carr, B.J. Some cosmological consequences of primordial black-hole evaporations. Astrophys. J. 1976, 206, 8–25. [Google Scholar] [CrossRef]
- Carr, B.J. Primordial Black Holes as a Probe of Cosmology and High Energy Physics. arXiv 2003, arXiv:astro-ph/0310838. [Google Scholar] [CrossRef]
- Jedamzik, K.; Niemeyer, J.C. Dynamics of primordial black hole formation. Phys. Rev. D 1999, 59, 124013. [Google Scholar] [CrossRef]
- Afshordi, N.; McDonald, P.; Spergel, D.N. Primordial Black Holes as Dark Matter: The Power Spectrum and Evaporation of Early Structures. Astrophys. J. 2003, 594, L71–L74. [Google Scholar] [CrossRef]
- Pospelov, M.; Pradler, J. Big Bang Nucleosynthesis as a Probe of New Physics. Annu. Rev. Nucl. Part. Sci. 2010, 60, 539–568. [Google Scholar] [CrossRef]
- Hu, W.; Dodelson, S. Cosmic Microwave Background Anisotropies. Annu. Rev. Astron. Astrophys. 2002, 40, 171–216. [Google Scholar] [CrossRef]
- Ernest, A.D.; Collins, M.P. The formation and evolution of dark matter halos early in cosmic history. In Proceedings of the IAU General Assembly, Honolulu, HI, USA, 3–14 August 2015; Available online: https://ui.adsabs.harvard.edu/abs/2015IAUGA..2256032E/abstract (accessed on 20 June 2023).
- Keller, B.W.; Munshi, F.; Trebitsch, M.; Tremmel, M. Can Cosmological Simulations Reproduce the Spectroscopically Confirmed Galaxies Seen at z ≥ 10? Astrophys. J. Lett. 2023, 943, L28. [Google Scholar] [CrossRef]
- Williams, H.; Kelly, P.L.; Chen, W.; Brammer, G.; Zitrin, A.; Treu, T.; Scarlata, C.; Koekemoer, A.M.; Oguri, M.; Lin, Y.H.; et al. A magnified compact galaxy at redshift 9.51 with strong nebular emission lines. Science 2023, 380, 416–420. [Google Scholar] [CrossRef]
- Reardon, D.J.; Zic, A.; Shannon, R.M.; Hobbs, G.B.; Bailes, M.; Di Marco, V.; Kapur, A.; Rogers, A.F.; Thrane, E.; Askew, J.; et al. Search for an Isotropic Gravitational-wave Background with the Parkes Pulsar Timing Array. Astrophys. J. Lett. 2023, 951, L6. [Google Scholar] [CrossRef]
- Fields, B.D. The Primordial Lithium Problem. Annu. Rev. Nucl. Part. Sci. 2011, 61, 47–68. [Google Scholar] [CrossRef]
- Bassett, B.A.; Hlozek, R. Baryon acoustic oscillations. arXiv 2009, arXiv:0910.5224. [Google Scholar] [CrossRef]
- Hodges-Kluck, E.J.; Miller, M.J.; Bregman, J.N. The rotation of hot gas around the Milky Way. Astrophys. J. 2016, 822, 21. [Google Scholar] [CrossRef]
- Carroll, B.W.; Ostlie, D.A. An Introduction to Modern Astrophysics, 2nd ed.; Pearson Addison Wesley: Boston, MA, USA, 2020; pp. 960–961. ISBN 0-8053-0402-9. [Google Scholar]
- Yıldırım, A.; van den Bosch, R.C.; van de Ven, G.; Husemann, B.; Lyubenova, M.; Walsh, J.L.; Gebhardt, K.; Gültekin, K. MRK 1216 and NGC 1277—An orbit-based dynamical analysis of compact, high-velocity dispersion galaxies. Mon. Not. R. Astron. Soc. 2015, 452, 1792–1816. [Google Scholar] [CrossRef]
- Schwarwachter, J.; Combes, F.; Salome, P.; Sun, M.; Krips, M. The overmassive black hole in NGC 1277: New constraints from molecular gas kinematics. Mon. Not. R. Astron. Soc. 2016, 457, 4272–4284. [Google Scholar] [CrossRef]
- Mancera Piña, P.E.; Fraternali, F.; Oosterloo, T.; Adams, E.A.; Oman, K.A.; Leisman, L. No need for dark matter: Resolved kinematics of the ultra-diffuse galaxy AGC 114905. Mon. Not. R. Astron. Soc. 2021, 512, 3230–3242. [Google Scholar] [CrossRef]
- Kalberla, P.M.W.; Kerp, J.; Haud, U. HI filaments are cold and associated with dark molecular gas. Astron. Astrophys. 2020, 639, A26. [Google Scholar] [CrossRef]
- Simon, J.D. The Faintest Dwarf Galaxies. Annu. Rev. Astron. Astrophys. 2019, 57, 375–415. [Google Scholar] [CrossRef]
- Stegmann, J.; Capelo, P.R.; Bortolo, E.; Mayer, L. Improved constraints from ultra-faint dwarf galaxies on primordial black holes as dark matter. Mon. Not. R. Astron. Soc. 2020, 492, 5247–5260. [Google Scholar] [CrossRef]
- Bowman, J.D.; Rogers, A.E.E.; Monsalve, R.A.; Mozdzen, T.J.; Mahesh, N. An absorption profile centred at 78 megahertz in the sky-averaged spectrum. Nature 2018, 555, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Kurth, W.S.; Gurnett, D.A. Observations of a Radial Density Gradient in the Very Local Interstellar Medium by Voyager 2. Astrophys. J. Lett. 2020, 900, L1. [Google Scholar] [CrossRef]
- de Avillez, M.A.; Anela, G.J.; Asgekar, A.; Breitschwerdt, D.; Schnitzeler, D.H. Electrons in the supernova-driven interstellar medium. Astron. Astrophys. 2020, 644, A156. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ernest, A.D. Gravitational Quantum Mechanics—Implications for Dark Matter. Universe 2023, 9, 388. https://doi.org/10.3390/universe9090388
Ernest AD. Gravitational Quantum Mechanics—Implications for Dark Matter. Universe. 2023; 9(9):388. https://doi.org/10.3390/universe9090388
Chicago/Turabian StyleErnest, Allan D. 2023. "Gravitational Quantum Mechanics—Implications for Dark Matter" Universe 9, no. 9: 388. https://doi.org/10.3390/universe9090388
APA StyleErnest, A. D. (2023). Gravitational Quantum Mechanics—Implications for Dark Matter. Universe, 9(9), 388. https://doi.org/10.3390/universe9090388