The Upcoming GAMMA-400 Experiment
Abstract
:1. Introduction
2. The GAMMA-400 Gamma-Ray Telescope
- -
- A scintillation anticoincidence system, AC top, and four lateral AC detectors, AC lat. All anticoincidence detectors are made of two layers of scintillation plastic strips. The anticoincidence system has an efficiency of ~0.9999 for detecting incoming charged particles and a time resolution of ~200 ps;
- -
- The converter–tracker, C (~1 X0, X0 is the radiation interaction length), made from scintillating fibers (SciFi). The converter–tracker consists of 13 detector plane pairs made of SciFi assemblies. The top seven pairs of planes have tungsten (W) converter foils of 0.1 X0. The next four pairs of planes contain tungsten converter foils that are 0.025 X0 thick in each plane. The bottom two pairs of planes have no tungsten;
- -
- Time-of-flight system, ToF, comprising the scintillation detectors S1 and S2 (the ToF signal means that the time of the S1 response must be earlier than the time of the S2 response). A distance of 500 mm between these detectors provides a sufficient flight base for the effective rejection of particles coming from the lower hemisphere with a separation coefficient of ~1000. The ToF time resolution is ~200 ps;
- -
- A two-part electromagnetic calorimeter, comprising CC1 (2 X0) and CC2 (~16 X0). The pre-shower CC1 contains two blocks of CsI(Tl) scintillation crystals and the SciFi detector plane. CC2 consists of CsI(Tl) crystal columns. The total thickness of the CC1 and CC2 calorimeter is ~18 X0 (~0.9 λ0) and ~43 X0 (~2.0 λ0) for vertical and lateral particle detection, respectively (λ0 is the hadronic interaction length);
- -
- Four lateral scintillation detectors, LDs, located around the CC2 calorimeter for detecting particles from lateral directions;
- -
- Scintillation detectors, S3, and shower leakage, S4. These detectors are necessary for improving hadronic and electromagnetic shower separation.
2.1. Gamma-Ray Detection
- (1)
- The on-axis effective area, depending on the energy (Figure 3) using triggers, is as follows:
- (2)
- The GAMMA-400 telescope’s angular resolution, depending on energy, in comparison with Fermi-LAT and CTA (https://www.cta-observatory.org/science/ctao-performance/#1472563157648-91558872-faf1, accessed on 2 August 2023) (Figure 4). The angular resolution for Eγ = 100 GeV is ~0.01°. The improvement in angular resolution was achieved via analog readout in the coordinate detectors, in addition to the long arm between the coordinate detectors in the C and CC1.
- (3)
- The on-axis energy resolution, depending on the energy, in comparison with Fermi-LAT and CTA (https://www.cta-observatory.org/science/ctao-performance/#1472563318157-d0191bc5-0280, accessed on 2 August 2023) (Figure 5). The energy resolution for Eγ = 100 GeV is ~2%.
2.2. Gamma-Ray Bursts
2.3. Electron + Positron Detection
2.4. The Preliminary GAMMA-400 Scientific Program
- (1)
- The GAMMA-400 gamma-ray telescope will continuously operate in a high orbit with a radius of ~200,000 km (after 6 months from its launch) in point-source mode with 100% efficiency over a long period of time (~100 days), with an aperture of ±45° in contrast to the scanning mode of other instruments;
- (2)
- The GAMMA-400 gamma-ray telescope has a high angular resolution of ~0.01° (Eγ = 100 GeV) due to the high coordinate resolution in the SciFi coordinate detectors in the C and CC1 and the long arm between the coordinate detectors in the C and CC1;
- (3)
- The GAMMA-400 gamma-ray telescope has a high energy resolution of ~2% (Eγ = 100 GeV) and the ability to detect incident particles from the top-down and lateral directions;
- (4)
- The GAMMA-400 gamma-ray telescope is very good at separating gamma rays from the background of cosmic rays and backscattering events, as well as for the electrons + positrons from protons.
2.5. The GAMMA-400 Experiment Addresses Important Scientific Problems Remaining Relevant to Date
- (1)
- The high-energy resolution provides the possibility of searching for features in the energy spectra of high-energy gamma-ray emissions up to energies of 1000 GeV, which can be associated with the annihilation or decay of dark matter particles (the most popular DM candidates are WIMPs and ALPs);
- (2)
- The high angular resolution provides the possibility of studying discrete gamma-ray sources and identifying them (according to the fourth Fermi-LAT catalog, gamma-ray emissions from ~6500 sources were recorded, and ~30% of them were not identified);
- (3)
- The high angular resolution also provides the possibility of studying the extended discrete sources’ spatial structures in detail;
- (4)
- The high angular resolution makes it possible to significantly reduce the influence of the background within the potential detection of gamma rays from pair halos around AGNs;
- (5)
- The highly accurate event timing of several μs (due to the AC and ToF time resolutions of ~200 ps and the instrument timing interface accuracy of several μs) provides the possibility to study the source variability, including recording gamma-ray emissions from millisecond pulsars, and to explain the excess of gamma-ray emissions from the Galactic center;
- (6)
- Searching for and studying GRBs will be carried out when a gamma-ray emission is detected from both top-down along the axis of the gamma-ray telescope and from four lateral directions;
- (7)
- Simultaneous observations of discrete gamma-ray sources will be carried out jointly with X-ray telescopes, ground-based facilities, and optical, radio, and neutrino telescopes. Even if the GAMMA-400 telescope is anticipated to have a slightly lower degree of sensitivity to point sources in comparison with the Fermi-LAT telescope, it will be able to detect nearby extragalactic sources, including AGNs, in a wider energy range, beginning from about 20MeV. Moreover, simultaneous observations with ART-XC could be more valuable given that both detectors will be co-directional;
- (8)
- CR electron + positron fluxes will be recorded from top-down directions along the axis of the gamma-ray telescope at energies of up to several TeV (with a calorimeter thickness of 18 X0) and from four lateral directions at energies of up to ~20 TeV (with a calorimeter thickness of 43 X0) and will obtain significantly better measurement statistics.
3. Astrophysical Observatory
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abdollahi, S.; Acero, F.; Baldini, L.; Ballet, J.; Bastieri, D.; Bellazzini, R.; Berenji, B.; Berretta, A.; Bissaldi, E.; Blandford, R.D.; et al. Incremental Fermi large area telescope fourth source catalog. Astrophys. J. Suppl. Ser. 2022, 260, 53. [Google Scholar] [CrossRef]
- Abdollahi, S.; Acero, F.; Ackermann, M.; Ajello, M.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; et al. Fermi large area telescope fourth source catalog. Astrophys. J. Suppl. Ser. 2020, 247, 33. [Google Scholar] [CrossRef] [Green Version]
- Xing, Y.; Wang, Z.; Zheng, D.; Li, J. On the Gamma-Ray Emission of the Andromeda Galaxy M31. Astrophys. J. Lett. 2023, 945, L22. [Google Scholar] [CrossRef]
- Belotsky, K.; Shlepkina, E.; Soloviev, M. Theoretical indication of a possible asymmetry in gamma-radiation between Andromeda halo hemispheres due to Compton scattering on electrons from their hypothetical sources in the halo. arXiv 2020, arXiv:2011.04689. [Google Scholar]
- Dermer, C.; Giebels, B. Active galactic nuclei at gamma-ray energiesNoyaux actifs de galaxie dans le domaine des rayons gamma. C. R. Phys. 2016, 17, 594–616. [Google Scholar] [CrossRef]
- Ajello, M.; Arimoto, M.; Axelsson, M.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bhat, P.N.; Bissaldi, E.; Blandford, R.D.; et al. A decade of gamma-ray bursts observed by Fermi-LAT: The second GRB catalog. Astrophys. J. 2019, 878, 52. [Google Scholar] [CrossRef] [Green Version]
- Von Kienlin, A.; Meegan, C.A.; Paciesas, W.S.; Bhat, P.N.; Bissaldi, E.; Briggs, M.S.; Burns, E.; Cleveland, W.H.; Gibby, M.H.; Giles, M.M.; et al. The Fourth Fermi-GBM Gamma-Ray Burst Catalog: A Decade of Data. Astrophys. J. 2020, 893, 46. [Google Scholar] [CrossRef] [Green Version]
- Lien, A.; Sakamoto, T.; Barthelmy, S.D.; Baumgartner, W.; Chen, K.; Collins, N.R.; Cummings, J.; Gehrels, N.; Krimm, H.A.; Markwardt, C.B.; et al. The Third SWIFT Burst Alert Telescope Gamma-Ray Burst Catalog. Astrophys. J. 2016, 829, 7. [Google Scholar] [CrossRef] [Green Version]
- Leane, R.K.; Slatyer, T.R.; Beacom, J.F.; Ng, K.C. GeV-scale thermal WIMPs: Not even slightly ruled out. Phys. Rev. D 2018, 98, 023016. [Google Scholar] [CrossRef] [Green Version]
- Calore, F.; Carenza, P.; Giannotti, M.; Jaeckel, J.; Mirizzi, A. Bounds on axionlike particles from the diffuse supernova flux. Phys. Rev. D 2020, 102, 123005. [Google Scholar] [CrossRef]
- Chang, J.; Adams, J.H.; Ahn, H.S.; Bashindzhagyan, G.L.; Christl, M.; Ganel, O.; Guzik, T.G.; Isbert, J.; Kim, K.C.; Kuznetsov, E.N.; et al. An excess of cosmic ray electrons at energies of 300–800 GeV. Nature 2008, 456, 362–365. [Google Scholar] [CrossRef]
- Abdollahi, S.; Ackermann, M.; Ajello, M.; Atwood, W.B.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bloom, E.D.; Bonino, R.; et al. Cosmic-ray electron-positron spectrum from 7 GeV to 2 TeV with the Fermi Large Area Telescope. Phys. Rev. D 2017, 95, 082007. [Google Scholar] [CrossRef] [Green Version]
- Adriani, O. et al. [Pamela Collaboration]); Adriani, O.; Barbarino, G.C.; Bazilevskaya, G.A.; Bellotti, R.; Boezio, M.; Bogomolov, E.V.; Bongi, M.; Bonvicini, V.; Bottai, S.; et al. Ten years of PAMELA in space. Nuevo C 2017, 10, 473–522. [Google Scholar]
- Aguilar, M.; Aisa, D.; Alpat, B.; Alvino, A.; Ambrosi, G.; Andeen, K.; Arruda, L.; Attig, N.; Azzarello, P.; Bachlechner, A.; et al. Precision Measurement of the (e+ + e−) Flux in Primary Cosmic Rays from 0.5 GeV to 1 TeV with the Alpha Magnetic Spectrometer on the International Space Station. Phys. Rev. Lett. 2014, 113, 221102. [Google Scholar] [CrossRef] [Green Version]
- Adriani, O.; Akaike, Y.; Asano, K.; Asaoka, Y.; Bagliesi, M.G.; Berti, E.; Bigongiari, G.; Binns, W.R.; Bonechi, S.; Bongi, M.; et al. Extended measurement of the cosmic-ray electron and positron spectrum from 11 GeV to 4.8 TeV with the calorimetric electron telescope on the International Space Station. Phys. Rev. Lett. 2018, 120, 261102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambrosi, G. et al. [DAMPE Collaboration] Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons. Nature 2017, 552, 63–66. [Google Scholar] [CrossRef] [Green Version]
- Tridon, D.B.; Colin, P.; Cossio, L.; Doro, M.; Scalzotto, V. Measurement of the cosmic electron plus positron spectrum with the MAGIC telescopes. arXiv 2011, arXiv:1110.4008. [Google Scholar]
- Staszak, D. et al. [for the VERITAS Collaboration] A Cosmic-ray Electron Spectrum with VERITAS. arXiv 2015, arXiv:1508.06597. [Google Scholar]
- Aharonian, F.; Akhperjanian, A.G.; Anton, G.; de Almeida, U.B.; Bazer-Bachi, A.R.; Becherini, Y.; Behera, B.; Bernlöhr, K.; Bochow, A.; Boisson, C.; et al. Probing the ATIC peak in the cosmic-ray electron spectrum with H.E.S.S. Astron. Astrophys. 2009, 508, 561–564. [Google Scholar] [CrossRef] [Green Version]
- Dogiel, V.; Fradkin, M.; Kurnosova, L.; Razorenov, L.; Rusakovich, M.; Topchiev, N. Some tasks of observational gamma-ray astronomy in the energy range 5-400 GeV. Space Sci. Rev. 1988, 49, 215–226. [Google Scholar] [CrossRef]
- Ginzburg, V.L.; Kaplin, V.A.; Karakash, A.I.; Kurnosova, L.V.; Labenskii, A.G.; Runtso, M.F.; Soldatov, A.P.; Topchiev, N.P.; Fradkin, M.I.; Chernichenko, S.K.; et al. Development of the GAMMA-400 gamma-ray telescope to record cosmic gamma rays with energies up to 1 TeV. Cos. Res. 2007, 45, 449–451. [Google Scholar] [CrossRef]
- Suchkov, S.I.; Arkhangelskiy, A.I.; Baskov, V.A.; Galper, A.M.; Dalkarov, O.D.; L’vov, A.I.; Pappe, N.Y.; Polyansky, V.V.; Topchiev, N.P.; Chernysheva, I.V. Calibrating the prototype calorimeter for the GAMMA-400 gamma-ray telescope on the positron beam at the Pakhra accelerator. Instrum. Exp. Tech. 2021, 64, 669–675. [Google Scholar] [CrossRef]
- Topchiev, N.; Galper, A.; Arkhangelskaja, I.; Arkhangelskiy, A.; Bakaldin, A.; Cherniy, R.; Chernysheva, I.; Gudkova, E.; Gusakov, Y.; Dalkarov, O.; et al. Gamma- and Cosmic-Ray Observations with the GAMMA-400 Gamma-Ray Telescope. Adv. Space Res. 2022, 70, 2773–2793. [Google Scholar] [CrossRef]
- Atwood, W.B.; Abdo, A.A.; Ackermann, M.; Althouse, W.; Anderson, B.; Axelsson, M.; Baldini, L.; Ballet, J.; Band, D.L.; Barbiellini, G.; et al. The large area telescope on the Fermi gamma-ray telescope mission. Astrophys. J. 2009, 697, 1071–1102. [Google Scholar] [CrossRef] [Green Version]
- Cattaneo, P.W. et al. [on behalf of the HERD Collaboration] The space station based detector HERD: Precise high energy cosmic rays physics and multimessenger astronomy. Nucl. Part. Phys. Proc. 2019, 306–308, 85–91. [Google Scholar]
- Schael, S.; Atanasyan, A.; Berdugo, J.; Bretz, T.; Czupalla, M.; Dachwald, B.; von Doetinchem, P.; Duranti, M.; Gast, H.; Karpinski, W.; et al. AMS-100: The next generation magnetic spectrometer in space—An international science platform for physics and astrophysics at Lagrange point 2. Nucl. Instrum. Methods Phys. Res. Sect. A 2019, 944, 162561. [Google Scholar]
GAMMA-400 | Fermi-LAT | ||
---|---|---|---|
Aperture | Top–Down | Four Lateral Sides | Top–Down |
Acceptance, m2 sr | ~0.3 (Ee = 100 GeV) | ~0.5 (Ee = 100 GeV) | 2.5 |
Proton rejection factor | ~104 | ~104 | ~104 |
Calorimeter area, m2 | 0.7 | 4 × 0.24 | 0.85 |
Calorimeter thickness, X0 | 18 | 43 | 8.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suchkov, S.I.; Arkhangelskaja, I.V.; Arkhangelskiy, A.I.; Bakaldin, A.V.; Chernysheva, I.V.; Galper, A.M.; Dalkarov, O.D.; Egorov, A.E.; Kheymits, M.D.; Korotkov, M.G.; et al. The Upcoming GAMMA-400 Experiment. Universe 2023, 9, 369. https://doi.org/10.3390/universe9080369
Suchkov SI, Arkhangelskaja IV, Arkhangelskiy AI, Bakaldin AV, Chernysheva IV, Galper AM, Dalkarov OD, Egorov AE, Kheymits MD, Korotkov MG, et al. The Upcoming GAMMA-400 Experiment. Universe. 2023; 9(8):369. https://doi.org/10.3390/universe9080369
Chicago/Turabian StyleSuchkov, Sergey I., Irina V. Arkhangelskaja, Andrey I. Arkhangelskiy, Aleksey V. Bakaldin, Irina V. Chernysheva, Arkady M. Galper, Oleg D. Dalkarov, Andrey E. Egorov, Maxim D. Kheymits, Mikhail G. Korotkov, and et al. 2023. "The Upcoming GAMMA-400 Experiment" Universe 9, no. 8: 369. https://doi.org/10.3390/universe9080369
APA StyleSuchkov, S. I., Arkhangelskaja, I. V., Arkhangelskiy, A. I., Bakaldin, A. V., Chernysheva, I. V., Galper, A. M., Dalkarov, O. D., Egorov, A. E., Kheymits, M. D., Korotkov, M. G., Leonov, A. A., Leonova, S. A., Malinin, A. G., Mikhailov, V. V., Minaev, P. Y., Pappe, N. Y., Razumeyko, M. V., Topchiev, N. P., & Yurkin, Y. T. (2023). The Upcoming GAMMA-400 Experiment. Universe, 9(8), 369. https://doi.org/10.3390/universe9080369