Design and Construction of a Variable-Angle Three-Beam Stimulated Resonant Photon Collider toward eV-Scale ALP Search
Abstract
:1. Introduction
2. Kinematics in Three-Beam Stimulated Resonant Photon Collider,
3. Basic Design to Realize Variable Collision Angles
4. Concrete Designs for the Large- and Narrow-Angle Setups
5. Verification of the Rotary Stage System
6. Realistic Sensitivity Projections
7. Conclusions and Future Plans
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nambu, Y.; Jona-Lasinio, G. Dynamical model of elementary particles based on an analogy with superconductivity. Phys. Rev. 1961, 122, 345. [Google Scholar] [CrossRef] [Green Version]
- Goldstone, J. Field theories with ≪ Superconductor≫ solutions. Il Nuovo Cim. 1961, 19, 154–164. [Google Scholar] [CrossRef] [Green Version]
- Goldstone, J.; Salam, A.; Weinberg, S. Broken symmetries. Phys. Rev. 1962, 127, 965. [Google Scholar] [CrossRef]
- Weinberg, S. A new light boson? Phys. Rev. Lett. 1978, 40, 223. [Google Scholar] [CrossRef]
- Wilczek, F. Problem of Strong P and T Invariance in the Presence of Instantons. Phys. Rev. Lett. 1978, 40, 271. [Google Scholar] [CrossRef]
- Peccei, R.D.; Quinn, H.R. CP Conservation in the Presence of Pseudoparticles. Phys. Rev. Lett. 1977, 38, 1440. [Google Scholar] [CrossRef] [Green Version]
- Peccei, R.D. The Strong CP problem and axions. Lect. Notes Phys. 2008, 741, 3–17. [Google Scholar] [CrossRef] [Green Version]
- Preskill, J.; Wise, M.B.; Wilczek, F. Cosmology of the invisible axion. Phys. Lett. B 1983, 120, 127. [Google Scholar] [CrossRef] [Green Version]
- Abbott, L.F.; Sikivie, P. A cosmological bound on the invisible axion. Phys. Lett. B 1983, 120, 133–136. [Google Scholar] [CrossRef]
- Dine, M.; Fischler, W. The not-so-harmless axion. Phys. Lett. B 1983, 120, 137–141. [Google Scholar] [CrossRef]
- Daido, R.; Takahashi, F.; Yin, W. The ALP miracle: Unified inflaton and dark matter. J. Cosmol. Astropart. Phys. 2017, 2017, 044. [Google Scholar] [CrossRef] [Green Version]
- Daido, R.; Takahashi, F.; Yin, W. The ALP miracle revisited. J. High Energy Phys. 2018, 2018, 104. [Google Scholar] [CrossRef] [Green Version]
- Fujii, Y.; Homma, K. An approach toward the laboratory search for the scalar field as a candidate of Dark Energy. Prog. Theor. Phys. 2014, 126, 531–553, Erratum in Prog. Theor. Exp. Phys. 2014, 2014, 089203. [Google Scholar] [CrossRef] [Green Version]
- Homma, K.; Kirita, Y. Stimulated radar collider for probing gravitationally weak coupling pseudo Nambu-Goldstone bosons. J. High Energy Phys. 2020, 2020, 95. [Google Scholar] [CrossRef]
- Homma, K.; Hasebe, T.; Kume, K. The first search for sub-eV scalar fields via four-wave mixing at a quasi-parallel laser collider. Prog. Theor. Exp. Phys. 2014, 2014, 083C01. [Google Scholar] [CrossRef] [Green Version]
- Hasebe, T.; Homma, K.; Nakamiya, Y.; Matsuura, K.; Otani, K.; Hashida, M.; Inoue, S.; Sakabe, S. Search for sub-eV scalar and pseudoscalar resonances via four-wave mixing with a laser collider. Prog. Theor. Exp. Phys. 2015, 2015, 073C01. [Google Scholar] [CrossRef] [Green Version]
- Nobuhiro, A.; Hirahara, Y.; Homma, K.; Kirita, Y.; Ozaki, T.; Nakamiya, Y.; Hashida, M.; Inoue, S.; Sakabe, S. Extended search for sub-eV axion-like resonances via four-wave mixing with a quasi-parallel laser collider in a high-quality vacuum system. Prog. Theor. Exp. Phys. 2020, 2020, 073C01. [Google Scholar] [CrossRef]
- The SAPPHIRES Collaboration; Homma, K.; Kirita, Y.; Hashida, M.; Hirahara, Y.; Inoue, S.; Ishibashi, F.; Nakamiya, Y.; Neagu, L.; Nobuhiro, A.; et al. Search for sub-eV axion-like resonance states via stimulated quasi-parallel laser collisions with the parameterization including fully asymmetric collisional geometry. J. High Energy Phys. 2021, 2021, 108. [Google Scholar] [CrossRef]
- The SAPPHIRES Collaboration; Kirita, Y.; Hasada, T.; Hashida, M.; Hirahara, Y.; Homma, K.; Inoue, S.; Ishibashi, F.; Nakamiya, Y.; Neagu, L.; et al. Search for sub-eV axion-like particles in a stimulated resonant photon-photon collider with two laser beams based on a novel method to discriminate pressure-independent components. J. High Energy Phys. 2022, 2022, 176. [Google Scholar] [CrossRef]
- Homma, K.; Ishibashi, F.; Kirita, Y.; Hasada, T. Sensitivity to axion-like particles with a three-beam stimulated resonant photon collider around the eV mass range. Universe 2023, 9, 20. [Google Scholar] [CrossRef]
- Ishibashi, F.; Hasada, T.; Homma, K.; Kirita, Y.; Kanai, T.; Masuno, S.; Tokita, S.; Hashida, M. Pilot search for axion-like particles by a three-beam stimulated resonant photon collider with short pulse lasers. Universe 2023, 9, 123. [Google Scholar] [CrossRef]
- Ejlli, A.; Della Valle, F.; Gastaldi, U.; Messineo, G.; Pengo, R.; Ruoso, G.; Zavattini, G. The PVLAS experiment: A 25 year effort to measure vacuum magnetic birefringence. Phys. Rep. 2020, 871, 1–74. [Google Scholar] [CrossRef]
- Ehret, K.; Frede, M.; Ghazaryan, S.; Hildebrandt, M.; Knabbe, E.A.; Kracht, D.; Lindner, A.; List, J.; Meier, T.; Meyer, N.; et al. New ALPS results on hidden-sector lightweights. Phys. Lett. B 2010, 689, 149–155. [Google Scholar] [CrossRef]
- Ballou, R.; Deferne, G.; Finger, M., Jr.; Finger, M.; Flekova, L.; Hosek, J.; Kunc, S.; Macuchova, K.; Meissner, K.; Pugnat, P.; et al. New exclusion limits on scalar and pseudoscalar axionlike particles from light shining through a wall. Phys. Rev. D 2015, 92, 092002. [Google Scholar] [CrossRef] [Green Version]
- Astier, P.; Autiero, D.; Baldisseri, A.; Baldo-Ceolin, M.; Ballocchi, G.; Banner, M.; Bassompierre, G.; Benslama, K.; Besson, N.; Bird, I.; et al. Search for eV (pseudo) scalar penetrating particles in the SPS neutrino beam. Phys. Lett. B 2000, 479, 371–380. [Google Scholar] [CrossRef] [Green Version]
- Ayala, A.; Domínguez, I.; Giannotti, M.; Mirizzi, A.; Straniero, O. Revisiting the bound on axion-photon coupling from Globular Clusters. Phys. Rev. Lett. 2014, 113, 191302. [Google Scholar] [CrossRef] [Green Version]
- Regis, M.; Taoso, M.; Vaz, D.; Brinchmann, J.; Zoutendijk, S.L.; Bouché, N.F.; Steinmetz, M. Searching for light in the darkness: Bounds on ALP dark matter with the optical MUSE-faint survey. Phys. Lett. 2021, 814, 136075. [Google Scholar] [CrossRef]
- CAST Collaboration. Probing eV-scale axions with CAST. J. Cosmol. Astropart. Phys. 2009, 02, 008. [Google Scholar]
- CAST Collaboration. Search for Sub-eV Mass Solar Axions by the CERN Axion Solar Telescope with 3He Buffer Gas. Phys. Rev. Lett. 2011, 107, 261302. [Google Scholar] [CrossRef] [Green Version]
- CAST Collaboration. Search for Solar Axions by the CERN Axion Solar Telescope with 3 He Buffer Gas: Closing the Hot Dark Matter Gap. Phys. Rev. Lett. 2014, 112, 091302. [Google Scholar] [CrossRef] [Green Version]
- CAST Collaboration. New CAST limit on the axion-photon interaction. Nat. Phys. 2017, 13, 584. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.E. Weak-Interaction Singlet and Strong CP Invariance. Phys. Rev. Lett. 1979, 43, 103. [Google Scholar] [CrossRef]
- Shifman, M.A.; Vainshtein, A.I.; Zakharov, V.I. Can confinement ensure natural CP invariance of strong interactions? Nucl. Phys. B 1980, 166, 493–506. [Google Scholar] [CrossRef]
- Zhitnitskii, A.P. Possible suppression of axion-hadron interactions. Sov. J. Nucl. Phys. 1980, 31, 260. [Google Scholar]
Item | Parabolic Mirror Type | Rotary Stage Type |
---|---|---|
Adjustment | easy | difficult |
Size | large | compact (vacuum chamber compatible) |
Angle range | narrow | wide |
Focal length | angle-dependently variable | fixed |
Flexibility | low (custom-ordered mirror) | high (catalog items) |
Parameters | Values |
---|---|
Two equal creation laser pulses | |
Central wavelength of creation laser | 800 nm ()/400 nm ()/267 nm (3) |
Relative linewidth of creation laser, | |
Duration time of creation laser, | 40 fs |
Creation laser energy per , | 1 mJ |
Beam diameter of creation laser beam, | 0.005 m |
Focal length of narrow-angle setup | m |
Focal length of large-angle setup | m |
Polarization | left-handed circular polarization |
One inducing laser pulse | |
Central wavelength of inducing laser | 1064 nm ()/532 nm ()/355 nm (3) |
Relative linewidth of inducing laser, | |
Duration time of inducing laser beam, | 9 ns |
Inducing laser energy per , | 100 mJ |
Beam diameter of inducing laser beam, | m |
Focal length of narrow-angle setup | m |
Focal length of large-angle setup | m |
Polarization | right-handed circular polarization |
Overall detection efficiency, | 5% |
Number of shots per collision angle, | shots |
50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasada, T.; Homma, K.; Kirita, Y. Design and Construction of a Variable-Angle Three-Beam Stimulated Resonant Photon Collider toward eV-Scale ALP Search. Universe 2023, 9, 355. https://doi.org/10.3390/universe9080355
Hasada T, Homma K, Kirita Y. Design and Construction of a Variable-Angle Three-Beam Stimulated Resonant Photon Collider toward eV-Scale ALP Search. Universe. 2023; 9(8):355. https://doi.org/10.3390/universe9080355
Chicago/Turabian StyleHasada, Takumi, Kensuke Homma, and Yuri Kirita. 2023. "Design and Construction of a Variable-Angle Three-Beam Stimulated Resonant Photon Collider toward eV-Scale ALP Search" Universe 9, no. 8: 355. https://doi.org/10.3390/universe9080355
APA StyleHasada, T., Homma, K., & Kirita, Y. (2023). Design and Construction of a Variable-Angle Three-Beam Stimulated Resonant Photon Collider toward eV-Scale ALP Search. Universe, 9(8), 355. https://doi.org/10.3390/universe9080355