Vector Quarkonia at the LHC with Jethad: A High-Energy Viewpoint
Abstract
:Contents | ||
1 | Introduction........................................................................................................................ | 2 |
2 | Vector Quarkonia at the LHC with Jethad.................................................................... | 6 |
2.1 A Glance at High-Energy QCD Phenomenology................................................ | 6 | |
2.2 NLL/NLO+ Hybrid Factorization.......................................................................... | 8 | |
3 | NRQCD Collinear Fragmentation for Vector Quarkonia.......................................... | 11 |
3.1 DGLAP-Evolved NRQCD FFs.............................................................................. | 12 | |
3.2 Natural Stability..................................................................................................... | 14 | |
4 | Phenomenology............................................................................................................... | 17 |
4.1 Jethad v0.5.0: A Basic Overview......................................................................... | 17 | |
4.2 Uncertainty Estimation......................................................................................... | 18 | |
4.3 Final-State Ranges................................................................................................. | 19 | |
4.4 ΔY-Distribution..................................................................................................... | 19 | |
5 | Conclusions and Outlook.............................................................................................. | 23 |
A | Appendix A....................................................................................................................... | 25 |
B | Appendix B....................................................................................................................... | 27 |
C | Reference........................................................................................................................... | 28 |
1. Introduction
2. Vector Quarkonia at the LHC with Jethad
2.1. A Glance at High-Energy QCD Phenomenology
2.2. NLL/NLO Hybrid Factorization
3. NRQCD Collinear Fragmentation for Vector Quarkonia
3.1. DGLAP-Evolved NRQCD FFs
3.2. Natural Stability
4. Phenomenology
4.1. Jethadv0.5.0: A Basic Overview
4.2. Uncertainty Estimation
4.3. Final-State Ranges
- Standard kinematic configurations, characteristic of the ongoing LHC phenomenology, where the quarkonium is identified in the detector barrel only [433], while the jet is reconstructed also in the endcap calorimeters. We have and , so that in the double quarkonium channel and in the quarkonium plus jet channel.
- Extended kinematic configurations, suitable to test the validity of the natural stability at the edges of application of the hybrid factorization, with the quarkonium detected both in the barrel and the endcaps; we have and , so that in the two production channels.
4.4. -Distribution
5. Conclusions and Outlook
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABF | Altarelli–Ball–Forte |
BFKL | Balitsky–Fadin–Kuraev–Lipatov |
BLM | Brodsky–Lepage–Mackenzie |
BNL | Brookhaven National Laboratory |
BSM | Beyond the Standard Model |
CEM | Color Evaporation Model |
CO | Color Octet |
CP | Charge Parity |
CSM | Color Singlet Mechanism |
DGLAP | Dokshitzer–Gribov–Lipatov–Altarelli–Parisi |
DPS | Double-Parton Scattering |
EIC | Electron–Ion Collider |
FCNCs | Flavor-Changing Neutral Currents |
FFs | Fragmentation Functions |
GIM | Glashow–Iliopoulos–Maiani |
LDME | Long-Distance Matrix Element |
LHC | Large Hadron Collider |
LL | Leading Logarithmic |
LO | Leading Order |
LVM | Light Vector Meson |
MPI | Multi-Parton Interaction |
NLL | Next-to-Leading Logarithmic |
NLO | Next-to-Leading Order |
NRQCD | Nonrelativistic QCD |
PDFs | Parton Distribution Functions |
QCD | Quantum Chromodynamics |
SCET | Soft and Collinear Effective Theory |
SLAC | Stanford Linear Accelerator Center |
SM | Standard Model |
TMD | Transverse-Momentum-Dependent |
UGD | Unintegrated Gluon Distribution |
VFNS | Variable-Flavor Number Scheme |
Appendix A. NLO Heavy-Quarkonium Impact Factor
Appendix B. NLO Light-Jet Impact Factor
1 | |
2 |
References
- Gell-Mann, M. Symmetries of baryons and mesons. Phys. Rev. 1962, 125, 1067–1084. [Google Scholar] [CrossRef] [Green Version]
- Gell-Mann, M. A Schematic Model of Baryons and Mesons. Phys. Lett. 1964, 8, 214–215. [Google Scholar] [CrossRef]
- Zweig, G. An SU(3) model for strong interaction symmetry and its breaking. Version 2. In Developments in the Quark Theory of Hadrons. Vol. 1. 1964–1978; Lichtenberg, D.B., Rosen, S.P., Eds.; Hadronic Press: Nonantum, MA, USA, 1964; pp. 22–101. [Google Scholar]
- Fritzsch, H.; Gell-Mann, M.; Leutwyler, H. Advantages of the Color Octet Gluon Picture. Phys. Lett. B 1973, 47, 365–368. [Google Scholar] [CrossRef]
- Kronfeld, A.S.; Quigg, C. Resource Letter: Quantum Chromodynamics. Am. J. Phys. 2010, 78, 1081–1116. [Google Scholar] [CrossRef]
- Peccei, R.D.; Quinn, H.R. CP Conservation in the Presence of Instantons. Phys. Rev. Lett. 1977, 38, 1440–1443. [Google Scholar] [CrossRef] [Green Version]
- Peccei, R.D.; Quinn, H.R. Constraints Imposed by CP Conservation in the Presence of Instantons. Phys. Rev. D 1977, 16, 1791–1797. [Google Scholar] [CrossRef]
- Peccei, R.D. The Strong CP problem and axions. Lect. Notes Phys. 2008, 741, 3–17. [Google Scholar] [CrossRef] [Green Version]
- Duffy, L.D.; van Bibber, K. Axions as Dark Matter Particles. New J. Phys. 2009, 11, 105008. [Google Scholar] [CrossRef]
- Forestell, L.; Morrissey, D.E.; Sigurdson, K. Cosmological Bounds on Non-Abelian Dark Forces. Phys. Rev. D 2018, 97, 075029. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.C.; Reichert, M.; Sannino, F.; Wang, Z.W. Testing the dark SU(N) Yang-Mills theory confined landscape: From the lattice to gravitational waves. Phys. Rev. D 2021, 104, 035005. [Google Scholar] [CrossRef]
- McLerran, L.; Pisarski, R.D. Phases of cold, dense quarks at large N(c). Nucl. Phys. A 2007, 796, 83–100. [Google Scholar] [CrossRef] [Green Version]
- Hidaka, Y.; McLerran, L.D.; Pisarski, R.D. Baryons and the phase diagram for a large number of colors and flavors. Nucl. Phys. A 2008, 808, 117–123. [Google Scholar] [CrossRef] [Green Version]
- McLerran, L.; Reddy, S. Quarkyonic Matter and Neutron Stars. Phys. Rev. Lett. 2019, 122, 122701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchmuller, W.; Wyler, D. Effective Lagrangian Analysis of New Interactions and Flavor Conservation. Nucl. Phys. B 1986, 268, 621–653. [Google Scholar] [CrossRef] [Green Version]
- Witten, E. Baryons in the 1/n Expansion. Nucl. Phys. B 1979, 160, 57–115. [Google Scholar] [CrossRef]
- Dudek, J.J.; Edwards, R.G.; Peardon, M.J.; Richards, D.G.; Thomas, C.E. Toward the excited meson spectrum of dynamical QCD. Phys. Rev. D 2010, 82, 034508. [Google Scholar] [CrossRef] [Green Version]
- Afonin, S.S. The effect of higher dimensional QCD operators on the spectroscopy of bottom-up holographic models. Universe 2021, 7, 102. [Google Scholar] [CrossRef]
- Augustin, J.E.; Boyarski, A.; Breidenbach, M.; Bulos, F.; Dakin, J.T.; Feldman, G.J.; Fischer, G.E.; Fryberger, D.; Hanson, G.; Jean-Marie, B.; et al. Discovery of a Narrow Resonance in e+e- Annihilation. Phys. Rev. Lett. 1974, 33, 1406–1408. [Google Scholar] [CrossRef] [Green Version]
- Aubert, J.J.; Becker, U.; Biggs, P.J.; Burger, J.; Chen, M.; Everhart, G.; Goldhagen, P.; Leong, J.; McCorriston, T.; Rhoades, T.G.; et al. Experimental Observation of a Heavy Particle. J. Phys. Rev. Lett. 1974, 33, 1404–1406. [Google Scholar] [CrossRef] [Green Version]
- Bacci, C.; Balbini Celio, R.; Berna-Rodini, M.; Caton, G.; del Fabbro, R.; G-rilli, M.; Iarocci, E.; Locci, M.; Mencuccini, C.; Murtas, G.P.; et al. Preliminary Result of Frascati (ADONE) on the Nature of a New 3.1-GeV Particle Produced in e+ e- Annihilation. Phys. Rev. Lett. 1974, 33, 1408, Erratum in Phys. Rev. Lett. 1974, 33, 1649. [Google Scholar] [CrossRef] [Green Version]
- Bjørken, B.; Glashow, S. Elementary particles and SU(4). Phys. Lett. 1964, 11, 255–257. [Google Scholar] [CrossRef]
- Glashow, S.L.; Iliopoulos, J.; Maiani, L. Weak Interactions with Lepton-Hadron Symmetry. Phys. Rev. D 1970, 2, 1285-t-1292. [Google Scholar] [CrossRef]
- Wiss, J.; Goldhaber, G.; Abrams, G.S.; Alam, M.S.; Boyarski, A.; Breidenbach, M.; Carithers, W.C.; Cooper, S.; DeVoe, R.; Dorfan, J.; et al. Evidence for Parity Violation in the Decays of the Narrow States Near 1.87-GeV/c**2. Phys. Rev. Lett. 1976, 37, 1531–1534. [Google Scholar] [CrossRef]
- Herb, S.W.; Hom, D.C.; Lederman, L.M.; Sens, J.C.; Snyder, H.D.; Yoh, J.K.; Appel, J.A.; Brown, B.C.; Brown, C.N.; Innes, W.R.; et al. Observation of a Dimuon Resonance at 9.5-GeV in 400-GeV Proton-Nucleus Collisions. Phys. Rev. Lett. 1977, 39, 252–255. [Google Scholar] [CrossRef]
- Bebek, C.; Haggerty, J.; Izen, J.M.; Loomis, W.A.; Pipkin, F.M.; Rohlf, J.; Tanenbaum, W.M.; Wilson, R.; Sadoff, A.J.; Bridges, D.L.; et al. Evidence for New Flavor Production at the Upsilon (4S). Phys. Rev. Lett. 1981, 46, 84. [Google Scholar] [CrossRef] [Green Version]
- Fabiano, N. Top mesons. Eur. Phys. J. C 1998, 2, 345–350. [Google Scholar] [CrossRef] [Green Version]
- Fadin, V.S.; Khoze, V.A. Threshold Behavior of Heavy Top Production in e+ e- Collisions. JETP Lett. 1987, 46, 525–529. [Google Scholar]
- Fadin, V.S.; Khoze, V.A. Production of a pair of heavy quarks in e+ e- annihilation in the threshold region. Sov. J. Nucl. Phys. 1988, 48, 309–313. [Google Scholar]
- Pancheri, G.; Revol, J.P.; Rubbia, C. Precise measurement of the toponium mass from the observation of its two photon decay at the LHC. Phys. Lett. B 1992, 277, 518–523. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, J.H.; Mirkes, E. Toponium production at hadron colliders. Phys. Lett. B 1992, 296, 425–429. [Google Scholar] [CrossRef]
- Kuhn, J.H.; Mirkes, E. QCD corrections to toponium production at hadron colliders. Phys. Rev. D 1993, 48, 179–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabiano, N.; Grau, A.; Pancheri, G. Observability limits for toponium at hadron colliders. Phys. Rev. D 1994, 50, 3173–3175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabiano, N.; Pancheri, G.; Grau, A. Toponium from different potential models. Nuovo Cim. A 1994, 107, 2789–2804. [Google Scholar] [CrossRef]
- Hagiwara, K.; Sumino, Y.; Yokoya, H. Bound-state Effects on Top Quark Production at Hadron Colliders. Phys. Lett. B 2008, 666, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Kiyo, Y.; Kuhn, J.H.; Moch, S.; Steinhauser, M.; Uwer, P. Top-quark pair production near threshold at LHC. Eur. Phys. J. C 2009, 60, 375–386. [Google Scholar] [CrossRef] [Green Version]
- Sumino, Y.; Yokoya, H. Bound-state effects on kinematical distributions of top quarks at hadron colliders. J. High Energy Phys. 2010, 9, 034, Erratum in J. High Energy Phys. 2016, 06, 037. [Google Scholar] [CrossRef] [Green Version]
- Ju, W.L.; Wang, G.; Wang, X.; Xu, X.; Xu, Y.; Yang, L.L. Top quark pair production near threshold: Single/double distributions and mass determination. J. High Energy Phys. 2020, 6, 158. [Google Scholar] [CrossRef]
- Strassler, M.J.; Peskin, M.E. The Heavy top quark threshold: QCD and the Higgs. Phys. Rev. D 1991, 43, 1500–1514. [Google Scholar] [CrossRef]
- Sumino, Y.; Fujii, K.; Hagiwara, K.; Murayama, H.; Ng, C.K. Top quark pair production near threshold. Phys. Rev. D 1993, 47, 56–81. [Google Scholar] [CrossRef]
- Jezabek, M.; Kuhn, J.H.; Teubner, T. Momentum distributions in t anti-t production and decay near threshold. Z. Phys. C 1992, 56, 653–660. [Google Scholar] [CrossRef]
- Fadin, V.S.; Khoze, V.A.; Sjostrand, T. On the Threshold Behavior of Heavy Top Production. Z. Phys. C 1990, 48, 613–622. [Google Scholar] [CrossRef] [Green Version]
- Fuks, B.; Hagiwara, K.; Ma, K.; Zheng, Y.J. Signatures of toponium formation in LHC run 2 data. Phys. Rev. D 2021, 104, 034023. [Google Scholar] [CrossRef]
- Hagiwara, K.; Ma, K.; Yokoya, H. Probing CP violation in e+e- production of the Higgs boson and toponia. J. High Energy Phys. 2016, 6, 048. [Google Scholar] [CrossRef] [Green Version]
- Lansberg, J.P. New Observables in Inclusive Production of Quarkonia. Phys. Rept. 2020, 889, 1–106. [Google Scholar] [CrossRef]
- Scarpa, F. Probing the Gluon Transverse Momentum-Dependent Distributions Inside the Proton through Quarkonium-Pair Production at the LHC. Ph.D. Thesis, University of Groningen, Groningen, The Netherlands, 2020. [Google Scholar]
- Fritzsch, H. Producing Heavy Quark Flavors in Hadronic Collisions: A Test of Quantum Chromodynamics. Phys. Lett. B 1977, 67, 217–221. [Google Scholar] [CrossRef]
- Halzen, F. Cvc for Gluons and Hadroproduction of Quark Flavors. Phys. Lett. B 1977, 69, 105–108. [Google Scholar] [CrossRef]
- Lansberg, J.P. J/ψ, ψ ’ and Υ production at hadron colliders: A Review. Int. J. Mod. Phys. A 2006, 21, 3857–3916. [Google Scholar] [CrossRef] [Green Version]
- Brambilla, N.; Eidelman, S.; Heltsley, B.K.; Vogt, R.; Bodwin, G.T.; Eichten, E.; Frawley, A.D.; Meyer, A.B.; Mitchell, R.E.; Papadimitriou, V.; et al. Heavy Quarkonium: Progress, Puzzles, and Opportunities. Eur. Phys. J. C 2011, 71, 1534. [Google Scholar] [CrossRef] [Green Version]
- Einhorn, M.B.; Ellis, S.D. Hadronic Production of the New Resonances: Probing Gluon Distributions. Phys. Rev. D 1975, 12, 2007. [Google Scholar] [CrossRef]
- Chang, C.H. Hadronic Production of J/ψ Associated With a Gluon. Nucl. Phys. B 1980, 172, 425–434. [Google Scholar] [CrossRef] [Green Version]
- Berger, E.L.; Jones, D.L. Inelastic Photoproduction of J/psi and Upsilon by Gluons. Phys. Rev. D 1981, 23, 1521–1530. [Google Scholar] [CrossRef]
- Baier, R.; Ruckl, R. Hadronic Production of J/psi and Upsilon: Transverse Momentum Distributions. Phys. Lett. B 1981, 102, 364–370. [Google Scholar] [CrossRef]
- Barbieri, R.; Gatto, R.; Remiddi, E. Singular Binding Dependence in the Hadronic Widths of 1++ and 1+- Heavy Quark anti-Quark Bound States. Phys. Lett. B 1976, 61, 465–468. [Google Scholar] [CrossRef] [Green Version]
- Bodwin, G.T.; Braaten, E.; Lepage, G.P. Rigorous QCD predictions for decays of P wave quarkonia. Phys. Rev. D 1992, 46, R1914–R1918. [Google Scholar] [CrossRef] [Green Version]
- Caswell, W.E.; Lepage, G.P. Effective Lagrangians for Bound State Problems in QED, QCD, and Other Field Theories. Phys. Lett. B 1986, 167, 437–442. [Google Scholar] [CrossRef]
- Thacker, B.A.; Lepage, G.P. Heavy quark bound states in lattice QCD. Phys. Rev. D 1991, 43, 196–208. [Google Scholar] [CrossRef]
- Bodwin, G.T.; Braaten, E.; Lepage, G.P. Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium. Phys. Rev. D 1995, 51, 1125–1171, Erratum in Phys. Rev. D 1997, 55, 5853. [Google Scholar] [CrossRef] [Green Version]
- Cho, P.L.; Leibovich, A.K. Color octet quarkonia production. Phys. Rev. D 1996, 53, 150–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, P.L.; Leibovich, A.K. Color octet quarkonia production. 2. Phys. Rev. D 1996, 53, 6203–6217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leibovich, A.K. Psi-prime polarization due to color octet quarkonia production. Phys. Rev. D 1997, 56, 4412–4415. [Google Scholar] [CrossRef] [Green Version]
- Bodwin, G.T.; Braaten, E.; Lee, J. Comparison of the color-evaporation model and the NRQCD factorization approach in charmonium production. Phys. Rev. D 2005, 72, 014004. [Google Scholar] [CrossRef] [Green Version]
- Halzen, F.; Herzog, F.; Glover, E.W.N.; Martin, A.D. The J/ψ as a Trigger in p¯p Collisions. Phys. Rev. D 1984, 30, 700. [Google Scholar] [CrossRef]
- Mangano, M.L. Phenomenology of quarkonium production in hadronic collisions. AIP Conf. Proc. 1996, 357, 120–134. [Google Scholar] [CrossRef]
- Braaten, E.; Fleming, S.; Yuan, T.C. Production of heavy quarkonium in high-energy colliders. Ann. Rev. Nucl. Part. Sci. 1996, 46, 197–235. [Google Scholar] [CrossRef] [Green Version]
- Artoisenet, P. Quarkonium Production Phenomenology. Ph.D. Thesis, Louvain University, Louvain, Belgium, 2009. [Google Scholar]
- Braaten, E.; Yuan, T.C. Gluon fragmentation into heavy quarkonium. Phys. Rev. Lett. 1993, 71, 1673–1676. [Google Scholar] [CrossRef] [Green Version]
- Curci, G.; Furmanski, W.; Petronzio, R. Evolution of Parton Densities Beyond Leading Order: The Nonsinglet Case. Nucl. Phys. B 1980, 175, 27–92. [Google Scholar] [CrossRef] [Green Version]
- Furmanski, W.; Petronzio, R. Singlet Parton Densities Beyond Leading Order. Phys. Lett. B 1980, 97, 437–442. [Google Scholar] [CrossRef] [Green Version]
- Gribov, V.; Lipatov, L. Deep inelastic e p scattering in perturbation theory. Sov. J. Nucl. Phys. 1972, 15, 438–450. [Google Scholar]
- Gribov, V.N.; Lipatov, L.N. e+ e- pair annihilation and deep inelastic e p scattering in perturbation theory. Sov. J. Nucl. Phys. 1972, 15, 675–684. [Google Scholar]
- Lipatov, L.N. The parton model and perturbation theory. Yad. Fiz. 1974, 20, 181–198. [Google Scholar]
- Altarelli, G.; Parisi, G. Asymptotic Freedom in Parton Language. Nucl. Phys. B 1977, 126, 298–318. [Google Scholar] [CrossRef]
- Dokshitzer, Y.L. Calculation of the Structure Functions for Deep Inelastic Scattering and e+ e- Annihilation by Perturbation Theory in Quantum Chromodynamics. Sov. Phys. JETP 1977, 46, 641–653. [Google Scholar]
- Artoisenet, P.; Braaten, E. Gluon fragmentation into quarkonium at next-to-leading order. J. High Energy Phys. 2015, 4, 121. [Google Scholar] [CrossRef] [Green Version]
- Braaten, E.; Cheung, K.M.; Yuan, T.C. Z0 decay into charmonium via charm quark fragmentation. Phys. Rev. D 1993, 48, 4230–4235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, X.C.; Chang, C.H.; Wu, X.G. NLO fragmentation functions of heavy quarks into heavy quarkonia. Phys. Rev. D 2019, 100, 014005. [Google Scholar] [CrossRef] [Green Version]
- Doncheski, M.A.; Fleming, S.; Mangano, M.L. Charmonium production via fragmentation at pp¯ colliders. In Proceedings of the Workshop on Physics at Current Accelerators and the Supercollider; Argonne National Lab.: Lemont, IL, USA, 1993. [Google Scholar]
- Braaten, E.; Doncheski, M.A.; Fleming, S.; Mangano, M.L. Fragmentation production of J/ψ and ψ′ at the Tevatron. Phys. Lett. B 1994, 333, 548–554. [Google Scholar] [CrossRef] [Green Version]
- Cacciari, M.; Greco, M. J/ψ production via fragmentation at the Tevatron. Phys. Rev. Lett. 1994, 73, 1586–1589. [Google Scholar] [CrossRef] [Green Version]
- Cacciari, M.; Greco, M.; Mangano, M.L.; Petrelli, A. Charmonium production at the Tevatron. Phys. Lett. B 1995, 356, 553–560. [Google Scholar] [CrossRef] [Green Version]
- Cacciari, M.; Greco, M. Charm photoproduction via fragmentation. Z. Phys. C 1996, 69, 459–466. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.Q.; Qiu, J.W.; Zhang, H. Heavy quarkonium fragmentation functions from a heavy quark pair. I. S wave. Phys. Rev. D 2014, 89, 094029. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.Q.; Qiu, J.W.; Zhang, H. Heavy quarkonium fragmentation functions from a heavy quark pair. II. P wave. Phys. Rev. D 2014, 89, 094030. [Google Scholar] [CrossRef] [Green Version]
- Nayak, G.C.; Qiu, J.W.; Sterman, G.F. Fragmentation, factorization and infrared poles in heavy quarkonium production. Phys. Lett. B 2005, 613, 45–51. [Google Scholar] [CrossRef]
- Nayak, G.C.; Qiu, J.W.; Sterman, G.F. Fragmentation, NRQCD and NNLO factorization analysis in heavy quarkonium production. Phys. Rev. D 2005, 72, 114012. [Google Scholar] [CrossRef] [Green Version]
- Falk, A.F.; Luke, M.E.; Savage, M.J.; Wise, M.B. Heavy quark fragmentation to polarized quarkonium. Phys. Lett. B 1993, 312, 486–490. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.Q. Perturbative QCD predictions for the fragmentation functions of the P wave mesons with two heavy quarks. Phys. Rev. D 1993, 48, 5181–5189. [Google Scholar] [CrossRef]
- Cho, P.L.; Wise, M.B.; Trivedi, S.P. Gluon fragmentation into polarized charmonium. Phys. Rev. D 1995, 51, R2039–R2043. [Google Scholar] [CrossRef] [Green Version]
- Kang, Z.B.; Qiu, J.W.; Sterman, G. Heavy quarkonium production and polarization. Phys. Rev. Lett. 2012, 108, 102002. [Google Scholar] [CrossRef] [Green Version]
- Kang, Z.B.; Ma, Y.Q.; Qiu, J.W.; Sterman, G. Heavy Quarkonium Production at Collider Energies: Partonic Cross Section and Polarization. Phys. Rev. D 2015, 91, 014030. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.Q.; Qiu, J.W.; Zhang, H. Fragmentation functions of polarized heavy quarkonium. J. High Energy Phys. 2015, 6, 021. [Google Scholar] [CrossRef] [Green Version]
- Lansberg, J.P. On the mechanisms of heavy-quarkonium hadroproduction. Eur. Phys. J. C 2009, 61, 693–703. [Google Scholar] [CrossRef] [Green Version]
- Kang, Z.B.; Ma, Y.Q.; Qiu, J.W.; Sterman, G. Heavy Quarkonium Production at Collider Energies: Factorization and Evolution. Phys. Rev. D 2014, 90, 034006. [Google Scholar] [CrossRef] [Green Version]
- Mangano, M.L.; Nason, P.; Ridolfi, G. Heavy quark correlations in hadron collisions at next-to-leading order. Nucl. Phys. B 1992, 373, 295–345. [Google Scholar] [CrossRef]
- Krämer, M. QCD corrections to inelastic J/psi photoproduction. Nucl. Phys. B 1996, 459, 3–50. [Google Scholar] [CrossRef] [Green Version]
- Petrelli, A.; Cacciari, M.; Greco, M.; Maltoni, F.; Mangano, M.L. NLO production and decay of quarkonium. Nucl. Phys. B 1998, 514, 245–309. [Google Scholar] [CrossRef] [Green Version]
- Maltoni, F.; Mangano, M.L.; Petrelli, A. Quarkonium photoproduction at next-to-leading order. Nucl. Phys. B 1998, 519, 361–393. [Google Scholar] [CrossRef] [Green Version]
- Klasen, M.; Kniehl, B.A.; Mihaila, L.N.; Steinhauser, M. J/ψ plus jet associated production in two-photon collisions at next-to-leading order. Nucl. Phys. B 2005, 713, 487–521. [Google Scholar] [CrossRef] [Green Version]
- Gong, B.; Li, X.Q.; Wang, J.X. QCD corrections to J/ψ production via color octet states at Tevatron and LHC. Phys. Lett. B 2009, 673, 197–200, Erratum in Phys. Lett. B 2010, 693, 612–613. [Google Scholar] [CrossRef] [Green Version]
- Maltoni, F.; Spengler, J.; Bargiotti, M.; Bertin, A.; Bruschi, M.; De Castro, S.; Fabbri, L.; Faccioli, P.; Giacobbe, B.; Grimaldi, F.; et al. Analysis of charmonium production at fixed-target experiments in the NRQCD approach. Phys. Lett. B 2006, 638, 202–208. [Google Scholar] [CrossRef] [Green Version]
- Lansberg, J.P.; Shao, H.S. Production of J/ψ+ηc versus J/ψ+J/ψ at the LHC: Importance of Real αs5 Corrections. Phys. Rev. Lett. 2013, 111, 122001. [Google Scholar] [CrossRef] [Green Version]
- Lansberg, J.P.; Shao, H.S.; Zhang, H.F. ηc′ Hadroproduction at Next-to-Leading Order and its Relevance to ψ′ Production. Phys. Lett. B 2018, 786, 342–346. [Google Scholar] [CrossRef]
- Lansberg, J.P.; Shao, H.S. Associated production of a quarkonium and a Z boson at one loop in a quark-hadron-duality approach. J. High Energy Phys. 2016, 10, 153. [Google Scholar] [CrossRef]
- Lansberg, J.P.; Shao, H.S.; Yamanaka, N.; Zhang, Y.J.; Noûs, C. Complete NLO QCD study of single- and double-quarkonium hadroproduction in the colour-evaporation model at the Tevatron and the LHC. Phys. Lett. B 2020, 807, 135559. [Google Scholar] [CrossRef]
- Chao, K.T.; Ma, Y.Q.; Shao, H.S.; Wang, K.; Zhang, Y.J. J/ψ Polarization at Hadron Colliders in Nonrelativistic QCD. Phys. Rev. Lett. 2012, 108, 242004. [Google Scholar] [CrossRef] [Green Version]
- Shao, H.S.; Ma, Y.Q.; Wang, K.; Chao, K.T. Polarizations of χc1 and χc2 in prompt production at the LHC. Phys. Rev. Lett. 2014, 112, 182003. [Google Scholar] [CrossRef] [Green Version]
- Shao, H.S.; Han, H.; Ma, Y.Q.; Meng, C.; Zhang, Y.J.; Chao, K.T. Yields and polarizations of prompt J/ψ and ψ(2S) production in hadronic collisions. J. High Energy Phys. 2015, 5, 103. [Google Scholar] [CrossRef] [Green Version]
- Kom, C.H.; Kulesza, A.; Stirling, W.J. Pair Production of J/psi as a Probe of Double Parton Scattering at LHCb. Phys. Rev. Lett. 2011, 107, 082002. [Google Scholar] [CrossRef] [Green Version]
- Lansberg, J.P.; Shao, H.S. J/ψ-pair production at large momenta: Indications for double parton scatterings and large αs5 contributions. Phys. Lett. B 2015, 751, 479–486. [Google Scholar] [CrossRef]
- Lansberg, J.P.; Shao, H.S. Towards an automated tool to evaluate the impact of the nuclear modification of the gluon density on quarkonium, D and B meson production in proton–nucleus collisions. Eur. Phys. J. C 2017, 77, 1. [Google Scholar] [CrossRef] [Green Version]
- Kusina, A.; Lansberg, J.P.; Schienbein, I.; Shao, H.S. Gluon Shadowing in Heavy-Flavor Production at the LHC. Phys. Rev. Lett. 2018, 121, 052004. [Google Scholar] [CrossRef] [Green Version]
- Kusina, A.; Lansberg, J.P.; Schienbein, I.; Shao, H.S. Reweighted nuclear PDFs using heavy-flavor production data at the LHC. Phys. Rev. D 2021, 104, 014010. [Google Scholar] [CrossRef]
- Artoisenet, P.; Maltoni, F.; Stelzer, T. Automatic generation of quarkonium amplitudes in NRQCD. J. High Energy Phys. 2008, 2, 102. [Google Scholar] [CrossRef]
- Shao, H.S. HELAC-Onia: An automatic matrix element generator for heavy quarkonium physics. Comput. Phys. Commun. 2013, 184, 2562–2570. [Google Scholar] [CrossRef] [Green Version]
- Shao, H.S. HELAC-Onia 2.0: An upgraded matrix-element and event generator for heavy quarkonium physics. Comput. Phys. Commun. 2016, 198, 238–259. [Google Scholar] [CrossRef] [Green Version]
- Shao, H.S. Boosting perturbative QCD stability in quarkonium production. J. High Energy Phys. 2019, 1, 112. [Google Scholar] [CrossRef] [Green Version]
- Flore, C.; Lansberg, J.P.; Shao, H.S.; Yedelkina, Y. Large-PT inclusive photoproduction of J/ψ in electron-proton collisions at HERA and the EIC. Phys. Lett. B 2020, 811, 135926. [Google Scholar] [CrossRef]
- Lansberg, J.P.; Ozcelik, M.A. Curing the unphysical behaviour of NLO quarkonium production at the LHC and its relevance to constrain the gluon PDF at low scales. Eur. Phys. J. C 2021, 81, 497. [Google Scholar] [CrossRef]
- Colpani Serri, A.; Feng, Y.; Flore, C.; Lansberg, J.P.; Ozcelik, M.A.; Shao, H.S.; Yedelkina, Y. Revisiting NLO QCD corrections to total inclusive J/ψ and Υ photoproduction cross sections in lepton-proton collisions. Phys. Lett. B 2022, 835, 137556. [Google Scholar] [CrossRef]
- Lansberg, J.P.; Nefedov, M.; Ozcelik, M.A. Matching next-to-leading-order and high-energy-resummed calculations of heavy-quarkonium-hadroproduction cross sections. J. High Energy Phys. 2022, 5, 083. [Google Scholar] [CrossRef]
- Lansberg, J.P.; Nefedov, M.; Ozcelik, M.A. Curing the high-energy perturbative instability of vector-quarkonium-photoproduction cross sections at order ααs3 with high-energy factorisation. arXiv 2023, arXiv:2306.02425. [Google Scholar]
- Kotko, P.; Motyka, L.; Stasto, A. Color Reconnection Effects in J/ψ Hadroproduction. arXiv 2023, arXiv:2303.13128. [Google Scholar]
- Gay Ducati, M.B.; Griep, M.T.; Machado, M.V.T. Exclusive photoproduction of J/psi and psi(2S) states in proton-proton collisions at the CERN LHC. Phys. Rev. D 2013, 88, 017504. [Google Scholar] [CrossRef] [Green Version]
- Kniehl, B.A.; Nefedov, M.A.; Saleev, V.A. ψ(2S) and Υ(3S) hadroproduction in the parton Reggeization approach: Yield, polarization, and the role of fragmentation. Phys. Rev. D 2016, 94, 054007. [Google Scholar] [CrossRef] [Green Version]
- Gay Ducati, M.B.; Kopp, F.; Machado, M.V.T.; Martins, S. Photoproduction of Upsilon states in ultraperipheral collisions at the CERN Large Hadron Collider within the color dipole approach. Phys. Rev. D 2016, 94, 094023. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, V.P.; Machado, M.V.T.; Moreira, B.D.; Navarra, F.S.; dos Santos, G.S. Color dipole predictions for the exclusive vector meson photoproduction in pp, pPb, and PbPb collisions at run 2 LHC energies. Phys. Rev. D 2017, 96, 094027. [Google Scholar] [CrossRef] [Green Version]
- Cisek, A.; Schäfer, W.; Szczurek, A. Production of χc pairs with large rapidity separation in kT factorization. Phys. Rev. D 2018, 97, 114018. [Google Scholar] [CrossRef] [Green Version]
- Cepila, J.; Contreras, J.G.; Krelina, M. Coherent and incoherent J/ψ photonuclear production in an energy-dependent hot-spot model. Phys. Rev. C 2018, 97, 024901. [Google Scholar] [CrossRef] [Green Version]
- Maciuła, R.; Szczurek, A.; Cisek, A. J/ψ-meson production within improved color evaporation model with the kT-factorization approach for cc¯ production. Phys. Rev. D 2019, 99, 054014. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, V.P.; Navarra, F.S.; Spiering, D. Exclusive ρ and J/Ψ photoproduction in ultraperipheral pA collisions: Predictions of the gluon saturation models for the momentum transfer distributions. Phys. Lett. B 2019, 791, 299–304. [Google Scholar] [CrossRef]
- Babiarz, I.; Goncalves, V.P.; Pasechnik, R.; Schäfer, W.; Szczurek, A. γ*γ*→ηc(1S,2S) transition form factors for spacelike photons. Phys. Rev. D 2019, 100, 054018. [Google Scholar] [CrossRef] [Green Version]
- Babiarz, I.; Pasechnik, R.; Schäfer, W.; Szczurek, A. Prompt hadroproduction of ηc(1S,2S) in the kT-factorization approach. J. High Energy Phys. 2020, 2, 037. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, V.P.; Palota da Silva, R. Exclusive and diffractive quarkonium—Pair production at the LHC and FCC. Phys. Rev. D 2020, 101, 034025. [Google Scholar] [CrossRef] [Green Version]
- Babiarz, I.; Pasechnik, R.; Schäfer, W.; Szczurek, A. Hadroproduction of scalar P-wave quarkonia in the light-front kT -factorization approach. J. High Energy Phys. 2020, 6, 101. [Google Scholar] [CrossRef]
- Babiarz, I.; Pasechnik, R.; Schäfer, W.; Szczurek, A. Central exclusive production of scalar and pseudoscalar charmonia in the light-front kT-factorization approach. Phys. Rev. D 2020, 102, 114028. [Google Scholar] [CrossRef]
- Kopp, F.; Gay Ducati, M.B.; Machado, M.V.T. Central exclusive χc,b production at high energy colliders and gluon saturation approach. Phys. Lett. B 2020, 806, 135492. [Google Scholar] [CrossRef]
- Guzey, V.; Kryshen, E.; Strikman, M.; Zhalov, M. Nuclear suppression from coherent J/ψ photoproduction at the Large Hadron Collider. Phys. Lett. B 2021, 816, 136202. [Google Scholar] [CrossRef]
- Xie, Y.P.; Goncalves, V.P. Near threshold heavy vector meson photoproduction at LHC and EicC. Eur. Phys. J. C 2021, 81, 645. [Google Scholar] [CrossRef]
- Jenkovszky, L.; Libov, V.; Machado, M.V.T. The reggeometric pomeron and exclusive production of J/ψ(2S) in ultraperipheral collisions at the LHC. Phys. Lett. B 2022, 824, 136836. [Google Scholar] [CrossRef]
- Cisek, A.; Schäfer, W.; Szczurek, A. Exclusive production of ρ meson in gamma-proton collisions: dσ/dt and the role of helicity flip processes. Phys. Lett. B 2023, 836, 137595. [Google Scholar] [CrossRef]
- Ferretti, J.; Santopinto, E.; Naeem Anwar, M.; Bedolla, M.A. The baryo-quarkonium picture for hidden-charm and bottom pentaquarks and LHCb Pc(4380) and Pc(4450) states. Phys. Lett. B 2019, 789, 562–567. [Google Scholar] [CrossRef]
- Ferretti, J.; Santopinto, E. Hidden-charm and bottom tetra- and pentaquarks with strangeness in the hadro-quarkonium and compact tetraquark models. J. High Energy Phys. 2020, 4, 119. [Google Scholar] [CrossRef] [Green Version]
- Dubynskiy, S.; Voloshin, M.B. Hadro-Charmonium. Phys. Lett. B 2008, 666, 344–346. [Google Scholar] [CrossRef] [Green Version]
- Guo, F.K.; Hanhart, C.; Meissner, U.G. Implications of heavy quark spin symmetry on heavy meson hadronic molecules. Phys. Rev. Lett. 2009, 102, 242004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nejad, S.M.M.; Amiri, N. Ground state heavy tetraquark production in heavy quark fragmentation. Phys. Rev. D 2022, 105, 034001. [Google Scholar] [CrossRef]
- Feng, F.; Huang, Y.; Jia, Y.; Sang, W.L.; Xiong, X.; Zhang, J.Y. Fragmentation production of fully-charmed tetraquarks at the LHC. Phys. Rev. D 2022, 106, 114029. [Google Scholar] [CrossRef]
- Feng, F.; Huang, Y.; Jia, Y.; Sang, W.L.; Zhang, J.Y. Exclusive radiative production of fully-charmed tetraquarks at B Factory. Phys. Lett. B 2021, 818, 136368. [Google Scholar] [CrossRef]
- Feng, F.; Huang, Y.; Jia, Y.; Sang, W.L.; Yang, D.S.; Zhang, J.Y. Inclusive production of fully-charmed tetraquarks at LHC. arXiv 2023, arXiv:2304.11142. [Google Scholar]
- Anikin, I.; Ivanov, D.Y.; Pire, B.; Szymanowski, L.; Wallon, S. QCD factorization of exclusive processes beyond leading twist: γT★→ρT impact factor with twist three accuracy. Nucl. Phys. B 2010, 828, 1–68. [Google Scholar] [CrossRef]
- Anikin, I.; Besse, A.; Ivanov, D.Y.; Pire, B.; Szymanowski, L.; Wallon, S. A phenomenological study of helicity amplitudes of high energy exclusive leptoproduction of the rho meson. Phys. Rev. D 2011, 84, 054004. [Google Scholar] [CrossRef] [Green Version]
- Besse, A.; Szymanowski, L.; Wallon, S. Saturation effects in exclusive rhoT, rhoL meson electroproduction. J. High Energy Phys. 2013, 11, 062. [Google Scholar] [CrossRef] [Green Version]
- Bolognino, A.D.; Celiberto, F.G.; Ivanov, D.Y.; Papa, A. Unintegrated gluon distribution from forward polarized ρ-electroproduction. Eur. Phys. J. 2018, C78, 1023. [Google Scholar] [CrossRef] [Green Version]
- Celiberto, F.G. Unraveling the Unintegrated Gluon Distribution in the Proton via ρ-Meson Leptoproduction. Nuovo Cim. 2019, C42, 220. [Google Scholar] [CrossRef]
- Bolognino, A.D.; Celiberto, F.G.; Ivanov, D.Y.; Papa, A.; Schäfer, W.; Szczurek, A. Exclusive production of ρ-mesons in high-energy factorization at HERA and EIC. Eur. Phys. J. C 2021, 81, 846. [Google Scholar] [CrossRef]
- Motyka, L.; Sadzikowski, M.; Stebel, T. Twist expansion of Drell-Yan structure functions in color dipole approach. J. High Energy Phys. 2015, 5, 087. [Google Scholar] [CrossRef] [Green Version]
- Brzeminski, D.; Motyka, L.; Sadzikowski, M.; Stebel, T. Twist decomposition of Drell-Yan structure functions: Phenomenological implications. J. High Energy Phys. 2017, 1, 005. [Google Scholar] [CrossRef] [Green Version]
- Celiberto, F.G.; Gordo Gómez, D.; Sabio Vera, A. Forward Drell-Yan production at the LHC in the BFKL formalism with collinear corrections. Phys. Lett. 2018, B786, 201–206. [Google Scholar] [CrossRef]
- Suzuki, K.; Hayashigaki, A.; Itakura, K.; Alam, J.; Hatsuda, T. Validity of the color dipole approximation for diffractive production of heavy quarkonium. Phys. Rev. D 2000, 62, 031501. [Google Scholar] [CrossRef] [Green Version]
- Cepila, J.; Nemchik, J.; Krelina, M.; Pasechnik, R. Theoretical uncertainties in exclusive electroproduction of S-wave heavy quarkonia. Eur. Phys. J. C 2019, 79, 495. [Google Scholar] [CrossRef]
- Hentschinski, M.; Padrón Molina, E. Exclusive J/Ψ and Ψ(2s) photo-production as a probe of QCD low x evolution equations. Phys. Rev. D 2021, 103, 074008. [Google Scholar] [CrossRef]
- Mulders, P.J.; Rodrigues, J. Transverse momentum dependence in gluon distribution and fragmentation functions. Phys. Rev. 2001, D63, 094021. [Google Scholar] [CrossRef] [Green Version]
- Meissner, S.; Metz, A.; Goeke, K. Relations between generalized and transverse momentum dependent parton distributions. Phys. Rev. 2007, D76, 034002. [Google Scholar] [CrossRef] [Green Version]
- Lorce’, C.; Pasquini, B. Structure analysis of the generalized correlator of quark and gluon for a spin-1/2 target. J. High Energy Phys. 2013, 9, 138. [Google Scholar] [CrossRef] [Green Version]
- Boer, D.; Cotogno, S.; van Daal, T.; Mulders, P.J.; Signori, A.; Zhou, Y.J. Gluon and Wilson loop TMDs for hadrons of spin ≤ 1. J. High Energy Phys. 2016, 10, 013. [Google Scholar] [CrossRef] [Green Version]
- D’Alesio, U.; Murgia, F.; Pisano, C.; Taels, P. Azimuthal asymmetries in semi-inclusive J/ψ+jet production at an EIC. Phys. Rev. 2019, D100, 094016. [Google Scholar] [CrossRef] [Green Version]
- Boer, D.; D’Alesio, U.; Murgia, F.; Pisano, C.; Taels, P. J/ψ meson production in SIDIS: Matching high and low transverse momentum. J. High Energy Phys. 2020, 9, 040. [Google Scholar] [CrossRef]
- Bacchetta, A.; Boer, D.; Pisano, C.; Taels, P. Gluon TMDs and NRQCD matrix elements in J/ψ production at an EIC. Eur. Phys. J. C 2020, 80, 72. [Google Scholar] [CrossRef] [Green Version]
- Boer, D.; Pisano, C.; Taels, P. Extracting color octet NRQCD matrix elements from J/ψ production at the EIC. Phys. Rev. D 2021, 103, 074012. [Google Scholar] [CrossRef]
- D’Alesio, U.; Maxia, L.; Murgia, F.; Pisano, C.; Rajesh, S. J/ψ polarization in semi-inclusive DIS at low and high transverse momentum. J. High Energy Phys. 2022, 3, 037. [Google Scholar] [CrossRef]
- D’Alesio, U.; Maxia, L.; Murgia, F.; Pisano, C.; Rajesh, S. J/ψ polarization in large-PT semi-inclusive deep-inelastic scattering at the EIC. arXiv 2023, arXiv:2301.11987. [Google Scholar] [CrossRef]
- Boer, D.; Bor, J.; Maxia, L.; Pisano, C.; Yuan, F. Transverse momentum dependent shape function for J/ψ production in SIDIS. arXiv 2023, arXiv:2304.09473. [Google Scholar]
- den Dunnen, W.J.; Lansberg, J.P.; Pisano, C.; Schlegel, M. Accessing the Transverse Dynamics and Polarization of Gluons inside the Proton at the LHC. Phys. Rev. Lett. 2014, 112, 212001. [Google Scholar] [CrossRef] [Green Version]
- Boer, D. Gluon TMDs in quarkonium production. Few Body Syst. 2017, 58, 32. [Google Scholar] [CrossRef] [Green Version]
- Lansberg, J.P.; Pisano, C.; Scarpa, F.; Schlegel, M. Pinning down the linearly-polarised gluons inside unpolarised protons using quarkonium-pair production at the LHC. Phys. Lett. B 2018, 784, 217–222, Erratum in Phys. Lett. B 2019, 791, 420–421. [Google Scholar] [CrossRef]
- Scarpa, F.; Boer, D.; Echevarria, M.G.; Lansberg, J.P.; Pisano, C.; Schlegel, M. Studies of gluon TMDs and their evolution using quarkonium-pair production at the LHC. Eur. Phys. J. C 2020, 80, 87. [Google Scholar] [CrossRef] [Green Version]
- D’Alesio, U.; Maxia, L.; Murgia, F.; Pisano, C.; Rajesh, S. Process dependence of the gluon Sivers function in p↑p→J/ψ+X within a TMD scheme in NRQCD. Phys. Rev. D 2020, 102, 094011. [Google Scholar] [CrossRef]
- Echevarria, M.G. Proper TMD factorization for quarkonia production: pp→ηc,b as a study case. J. High Energy Phys. 2019, 10, 144. [Google Scholar] [CrossRef] [Green Version]
- Fleming, S.; Makris, Y.; Mehen, T. An effective field theory approach to quarkonium at small transverse momentum. J. High Energy Phys. 2020, 4, 122. [Google Scholar] [CrossRef] [Green Version]
- del Castillo, R.F.; Echevarria, M.G.; Makris, Y.; Scimemi, I. TMD factorization for dijet and heavy-meson pair in DIS. J. High Energy Phys. 2021, 1, 088. [Google Scholar] [CrossRef]
- Procura, M.; Stewart, I.W. Quark Fragmentation within an Identified Jet. Phys. Rev. D 2010, 81, 074009, Erratum in Phys. Rev. D 2011, 83, 039902. [Google Scholar] [CrossRef]
- Baumgart, M.; Leibovich, A.K.; Mehen, T.; Rothstein, I.Z. Probing Quarkonium Production Mechanisms with Jet Substructure. J. High Energy Phys. 2014, 11, 003. [Google Scholar] [CrossRef] [Green Version]
- Bain, R.; Dai, L.; Hornig, A.; Leibovich, A.K.; Makris, Y.; Mehen, T. Analytic and Monte Carlo Studies of Jets with Heavy Mesons and Quarkonia. J. High Energy Phys. 2016, 6, 121. [Google Scholar] [CrossRef] [Green Version]
- Bain, R.; Makris, Y.; Mehen, T. Transverse Momentum Dependent Fragmenting Jet Functions with Applications to Quarkonium Production. J. High Energy Phys. 2016, 11, 144. [Google Scholar] [CrossRef] [Green Version]
- Bain, R.; Dai, L.; Leibovich, A.; Makris, Y.; Mehen, T. NRQCD Confronts LHCb Data on Quarkonium Production within Jets. Phys. Rev. Lett. 2017, 119, 032002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Echevarria, M.G.; Makris, Y.; Scimemi, I. Quarkonium TMD fragmentation functions in NRQCD. J. High Energy Phys. 2020, 10, 164. [Google Scholar] [CrossRef]
- Mele, B.; Nason, P. The Fragmentation function for heavy quarks in QCD. Nucl. Phys. B 1991, 361, 626–644, Erratum in Nucl. Phys. B 2017, 921, 841–842. [Google Scholar] [CrossRef] [Green Version]
- Cacciari, M.; Greco, M. Large pT hadroproduction of heavy quarks. Nucl. Phys. B 1994, 421, 530–544. [Google Scholar] [CrossRef] [Green Version]
- Celiberto, F.G.; Fucilla, M. Diffractive semi-hard production of a J/ψ or a Υ from single-parton fragmentation plus a jet in hybrid factorization. Eur. Phys. J. C 2022, 82, 929. [Google Scholar] [CrossRef]
- Colferai, D.; Schwennsen, F.; Szymanowski, L.; Wallon, S. Mueller Navelet jets at LHC - complete NLL BFKL calculation. J. High Energy Phys. 2010, 12, 026. [Google Scholar] [CrossRef] [Green Version]
- Celiberto, F.G. Hunting BFKL in semi-hard reactions at the LHC. Eur. Phys. J. C 2021, 81, 691. [Google Scholar] [CrossRef]
- Bolognino, A.D.; Celiberto, F.G.; Fucilla, M.; Ivanov, D.Y.; Papa, A. Inclusive production of a heavy-light dijet system in hybrid high-energy and collinear factorization. Phys. Rev. D 2021, 103, 094004. [Google Scholar] [CrossRef]
- Celiberto, F.G.; Fucilla, M.; Ivanov, D.Y.; Papa, A. High-energy resummation in Λc baryon production. Eur. Phys. J. C 2021, 81, 780. [Google Scholar] [CrossRef]
- Celiberto, F.G. High-energy emissions of light mesons plus heavy flavor at the LHC and the Forward Physics Facility. Phys. Rev. D 2022, 105, 114008. [Google Scholar] [CrossRef]
- Deak, M.; Hautmann, F.; Jung, H.; Kutak, K. Forward Jet Production at the Large Hadron Collider. J. High Energy Phys. 2009, 9, 121. [Google Scholar] [CrossRef] [Green Version]
- van Hameren, A.; Kotko, P.; Kutak, K. Resummation effects in the forward production of Z0+jet at the LHC. Phys. Rev. D 2015, 92, 054007. [Google Scholar] [CrossRef] [Green Version]
- Deak, M.; van Hameren, A.; Jung, H.; Kusina, A.; Kutak, K.; Serino, M. Calculation of the Z+jet cross section including transverse momenta of initial partons. Phys. Rev. D 2019, 99, 094011. [Google Scholar] [CrossRef] [Green Version]
- Van Haevermaet, H.; Van Hameren, A.; Kotko, P.; Kutak, K.; Van Mechelen, P. Trijets in kT-factorisation: Matrix elements vs parton shower. Eur. Phys. J. C 2020, 80, 610. [Google Scholar] [CrossRef]
- van Hameren, A.; Motyka, L.; Ziarko, G. Hybrid kT-factorization and impact factors at NLO. J. High Energy Phys. 2022, 11, 103. [Google Scholar] [CrossRef]
- Bonvini, M.; Marzani, S. Double resummation for Higgs production. Phys. Rev. Lett. 2018, 120, 202003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silvetti, F.; Bonvini, M. Differential heavy quark pair production at small x. Eur. Phys. J. C 2023, 83, 267. [Google Scholar] [CrossRef]
- Bonvini, M.; Marzani, S.; Peraro, T. Small-x resummation from HELL. Eur. Phys. J. C 2016, 76, 597. [Google Scholar] [CrossRef] [Green Version]
- Bonvini, M.; Marzani, S.; Muselli, C. Towards parton distribution functions with small-x resummation: HELL 2.0. J. High Energy Phys. 2017, 12, 117. [Google Scholar] [CrossRef] [Green Version]
- Bonvini, M. Small-x phenomenology at the LHC and beyond: HELL 3.0 and the case of the Higgs cross section. Eur. Phys. J. C 2018, 78, 834. [Google Scholar] [CrossRef] [Green Version]
- Ball, R.D.; Forte, S. Summation of leading logarithms at small x. Phys. Lett. B 1995, 351, 313–324. [Google Scholar] [CrossRef] [Green Version]
- Ball, R.D.; Forte, S. Asymptotically free partons at high-energy. Phys. Lett. B 1997, 405, 317–326. [Google Scholar] [CrossRef] [Green Version]
- Altarelli, G.; Ball, R.D.; Forte, S. Factorization and resummation of small x scaling violations with running coupling. Nucl. Phys. B 2002, 621, 359–387. [Google Scholar] [CrossRef] [Green Version]
- Altarelli, G.; Ball, R.D.; Forte, S. An Anomalous dimension for small x evolution. Nucl. Phys. B 2003, 674, 459–483. [Google Scholar] [CrossRef] [Green Version]
- Altarelli, G.; Ball, R.D.; Forte, S. Perturbatively stable resummed small x evolution kernels. Nucl. Phys. B 2006, 742, 1–40. [Google Scholar] [CrossRef] [Green Version]
- Altarelli, G.; Ball, R.D.; Forte, S. Small x Resummation with Quarks: Deep-Inelastic Scattering. Nucl. Phys. B 2008, 799, 199–240. [Google Scholar] [CrossRef] [Green Version]
- White, C.; Thorne, R. A Global Fit to Scattering Data with NLL BFKL Resummations. Phys. Rev. D 2007, 75, 034005. [Google Scholar] [CrossRef] [Green Version]
- Catani, S.; Ciafaloni, M.; Hautmann, F. Gluon Contributions to Small x Heavy Flavor Production. Phys. Lett. B 1990, 242, 97–102. [Google Scholar] [CrossRef]
- Catani, S.; Ciafaloni, M.; Hautmann, F. High-energy factorization and small x heavy flavor production. Nucl. Phys. B 1991, 366, 135–188. [Google Scholar] [CrossRef]
- Collins, J.C.; Ellis, R. Heavy quark production in very high-energy hadron collisions. Nucl. Phys. B 1991, 360, 3–30. [Google Scholar] [CrossRef]
- Catani, S.; Ciafaloni, M.; Hautmann, F. High-energy factorization in QCD and minimal subtraction scheme. Phys. Lett. B 1993, 307, 147–153. [Google Scholar] [CrossRef]
- Catani, S.; Hautmann, F. Quark anomalous dimensions at small x. Phys. Lett. B 1993, 315, 157–163. [Google Scholar] [CrossRef]
- Catani, S.; Hautmann, F. High-energy factorization and small x deep inelastic scattering beyond leading order. Nucl. Phys. B 1994, 427, 475–524. [Google Scholar] [CrossRef] [Green Version]
- Ball, R.D. Resummation of Hadroproduction Cross-sections at High Energy. Nucl. Phys. B 2008, 796, 137–183. [Google Scholar] [CrossRef] [Green Version]
- Caola, F.; Forte, S.; Marzani, S. Small x resummation of rapidity distributions: The Case of Higgs production. Nucl. Phys. B 2011, 846, 167–211. [Google Scholar] [CrossRef] [Green Version]
- Boussarie, R.; Ducloué, B.; Szymanowski, L.; Wallon, S. Forward J/ψ and very backward jet inclusive production at the LHC. Phys. Rev. D 2018, 97, 014008. [Google Scholar] [CrossRef] [Green Version]
- Hagler, P.; Kirschner, R.; Schafer, A.; Szymanowski, L.; Teryaev, O.V. Towards a solution of the charmonium production controversy: k- perpendicular factorization versus color octet mechanism. Phys. Rev. Lett. 2001, 86, 1446–1449. [Google Scholar] [CrossRef] [Green Version]
- Kniehl, B.A.; Vasin, D.V.; Saleev, V.A. Charmonium production at high energy in the kT -factorization approach. Phys. Rev. D 2006, 73, 074022. [Google Scholar] [CrossRef] [Green Version]
- Gribov, L.V.; Levin, E.M.; Ryskin, M.G. Semihard Processes in QCD. Phys. Rept. 1983, 100, 1–150. [Google Scholar] [CrossRef]
- Celiberto, F.G. High-Energy Resummation in Semi-Hard Processes at the LHC. Ph.D. Thesis, Università della Calabria and INFN-Cosenza, Rende, Italy, 2017. [Google Scholar]
- Bolognino, A.D. From Semi-Hard Processes to the Unintegrated Gluon Distribution: A Phenomenological Path in the High-Energy Framework. Ph.D. Thesis, Università della Calabria and INFN-Cosenza, Rende, Italy, 2021. [Google Scholar]
- Celiberto, F.G.; Fucilla, M.; Papa, A. The high-energy limit of perturbative QCD: Theory and phenomenology. EPJ Web Conf. 2022, 270, 00001. [Google Scholar] [CrossRef]
- Fadin, V.S.; Kuraev, E.; Lipatov, L. On the Pomeranchuk Singularity in Asymptotically Free Theories. Phys. Lett. B 1975, 60, 50–52. [Google Scholar] [CrossRef]
- Kuraev, E.A.; Lipatov, L.N.; Fadin, V.S. Multi-Reggeon Processes in the Yang-Mills Theory. Sov. Phys. JETP 1976, 44, 443–450. [Google Scholar]
- Kuraev, E.; Lipatov, L.; Fadin, V.S. The Pomeranchuk Singularity in Nonabelian Gauge Theories. Sov. Phys. JETP 1977, 45, 199–204. [Google Scholar]
- Balitsky, I.; Lipatov, L. The Pomeranchuk Singularity in Quantum Chromodynamics. Sov. J. Nucl. Phys. 1978, 28, 822–829. [Google Scholar]
- Fadin, V.S.; Lipatov, L.N. BFKL pomeron in the next-to-leading approximation. Phys. Lett. B 1998, 429, 127–134. [Google Scholar] [CrossRef] [Green Version]
- Ciafaloni, M.; Camici, G. Energy scale(s) and next-to-leading BFKL equation. Phys. Lett. B 1998, 430, 349–354. [Google Scholar] [CrossRef] [Green Version]
- Fadin, V.S.; Fiore, R.; Papa, A. The Quark part of the nonforward BFKL kernel and the ’bootstrap’ for the gluon Reggeization. Phys. Rev. D 1999, 60, 074025. [Google Scholar] [CrossRef] [Green Version]
- Fadin, V.S.; Gorbachev, D.A. Nonforward color octet BFKL kernel. JETP Lett. 2000, 71, 222–226. [Google Scholar] [CrossRef]
- Fadin, V.S.; Gorbachev, D.A. Nonforward color-octet kernel of the Balitsky-Fadin-Kuraev-Lipatov equation. Phys. Atom. Nucl. 2000, 63, 2157–2172. [Google Scholar] [CrossRef]
- Fadin, V.S.; Fiore, R. Non-forward BFKL pomeron at next-to-leading order. Phys. Lett. B 2005, 610, 61–66, Erratum in Phys. Lett. B 2005, 621, 320. [Google Scholar] [CrossRef] [Green Version]
- Fadin, V.S.; Fiore, R. Non-forward NLO BFKL kernel. Phys. Rev. D 2005, 72, 014018. [Google Scholar] [CrossRef] [Green Version]
- Caola, F.; Chakraborty, A.; Gambuti, G.; von Manteuffel, A.; Tancredi, L. Three-Loop Gluon Scattering in QCD and the Gluon Regge Trajectory. Phys. Rev. Lett. 2022, 128, 212001. [Google Scholar] [CrossRef]
- Falcioni, G.; Gardi, E.; Maher, N.; Milloy, C.; Vernazza, L. Disentangling the Regge Cut and Regge Pole in Perturbative QCD. Phys. Rev. Lett. 2022, 128, 132001. [Google Scholar] [CrossRef]
- Del Duca, V.; Marzucca, R.; Verbeek, B. The gluon Regge trajectory at three loops from planar Yang-Mills theory. J. High Energy Phys. 2022, 1, 149. [Google Scholar] [CrossRef]
- Byrne, E.P.; Del Duca, V.; Dixon, L.J.; Gardi, E.; Smillie, J.M. One-loop central-emission vertex for two gluons in N = 4 super Yang-Mills theory. J. High Energy Phys. 2022, 8, 271. [Google Scholar] [CrossRef]
- Fadin, V.S.; Fucilla, M.; Papa, A. One-loop Lipatov vertex in QCD with higher ϵ-accuracy. J. High Energy Phys. 2023, 4, 137. [Google Scholar] [CrossRef]
- Fadin, V.S.; Fiore, R.; Kotsky, M.I.; Papa, A. The Gluon impact factors. Phys. Rev. D 2000, 61, 094005. [Google Scholar] [CrossRef] [Green Version]
- Fadin, V.S.; Fiore, R.; Kotsky, M.I.; Papa, A. The Quark impact factors. Phys. Rev. D 2000, 61, 094006. [Google Scholar] [CrossRef] [Green Version]
- Bartels, J.; Colferai, D.; Vacca, G.P. The NLO jet vertex for Mueller-Navelet and forward jets: The Quark part. Eur. Phys. J. C 2002, 24, 83–99. [Google Scholar] [CrossRef]
- Bartels, J.; Colferai, D.; Vacca, G.P. The NLO jet vertex for Mueller-Navelet and forward jets: The Gluon part. Eur. Phys. J. C 2003, 29, 235–249. [Google Scholar] [CrossRef]
- Caporale, F.; Ivanov, D.Y.; Murdaca, B.; Papa, A.; Perri, A. The next-to-leading order jet vertex for Mueller-Navelet and forward jets revisited. J. High Energy Phys. 2012, 2, 101. [Google Scholar] [CrossRef] [Green Version]
- Caporale, F.; Ivanov, D.Y.; Murdaca, B.; Papa, A. Mueller-Navelet small-cone jets at LHC in next-to-leading BFKL. Nucl. Phys. B 2013, 877, 73–94. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, D.Y.; Papa, A. The next-to-leading order forward jet vertex in the small-cone approximation. J. High Energy Phys. 2012, 5, 086. [Google Scholar] [CrossRef] [Green Version]
- Colferai, D.; Niccoli, A. The NLO jet vertex in the small-cone approximation for kt and cone algorithms. J. High Energy Phys. 2015, 4, 071. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, D.Y.; Papa, A. Inclusive production of a pair of hadrons separated by a large interval of rapidity in proton collisions. J. High Energy Phys. 2012, 7, 045. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, D.Y.; Kotsky, M.I.; Papa, A. The Impact factor for the virtual photon to light vector meson transition. Eur. Phys. J. C 2004, 38, 195–213. [Google Scholar] [CrossRef] [Green Version]
- Bartels, J.; Gieseke, S.; Qiao, C.F. The (gamma* —> q anti-q) Reggeon vertex in next-to-leading order QCD. Phys. Rev. D 2001, 63, 056014, Erratum in Phys. Rev. D 2002, 65, 079902. [Google Scholar] [CrossRef] [Green Version]
- Bartels, J.; Gieseke, S.; Kyrieleis, A. The Process gamma*(L) + q —> (q anti-q g) + q: Real corrections to the virtual photon impact factor. Phys. Rev. D 2002, 65, 014006. [Google Scholar] [CrossRef] [Green Version]
- Bartels, J.; Colferai, D.; Gieseke, S.; Kyrieleis, A. NLO corrections to the photon impact factor: Combining real and virtual corrections. Phys. Rev. D 2002, 66, 094017. [Google Scholar] [CrossRef] [Green Version]
- Bartels, J.; Kyrieleis, A. NLO corrections to the gamma* impact factor: First numerical results for the real corrections to gamma*(L). Phys. Rev. D 2004, 70, 114003. [Google Scholar] [CrossRef] [Green Version]
- Fadin, V.S.; Ivanov, D.Y.; Kotsky, M.I. Photon Reggeon interaction vertices in the NLA. Phys. Atom. Nucl. 2002, 65, 1513–1527. [Google Scholar] [CrossRef] [Green Version]
- Balitsky, I.; Chirilli, G.A. Photon impact factor and kT-factorization for DIS in the next-to-leading order. Phys. Rev. D 2013, 87, 014013. [Google Scholar] [CrossRef] [Green Version]
- Hentschinski, M.; Kutak, K.; van Hameren, A. Forward Higgs production within high energy factorization in the heavy quark limit at next-to-leading order accuracy. Eur. Phys. J. C 2021, 81, 112, Erratum in Eur. Phys. J. C 2021, 81, 262. [Google Scholar] [CrossRef]
- Nefedov, M.A. Computing one-loop corrections to effective vertices with two scales in the EFT for Multi-Regge processes in QCD. Nucl. Phys. B 2019, 946, 114715. [Google Scholar] [CrossRef]
- Celiberto, F.G.; Fucilla, M.; Ivanov, D.Y.; Mohammed, M.M.A.; Papa, A. The next-to-leading order Higgs impact factor in the infinite top-mass limit. J. High Energy Phys. 2022, 8, 092. [Google Scholar] [CrossRef]
- Hentschinski, M. Forward Higgs production at NLO using Lipatov’s high energy effective action. SciPost Phys. Proc. 2022, 8, 136. [Google Scholar] [CrossRef]
- Fucilla, M. The Higgs impact factor at next-to-leading order. arXiv 2022, arXiv:2212.01794. [Google Scholar] [CrossRef]
- Hentschinski, M.; Salas, C. Forward Drell-Yan plus backward jet as a test of BFKL evolution. In Proceedings of the 20th International Workshop on Deep-Inelastic Scattering and Related Subjects, Bonn, Germany, 26–30 March 2012. [Google Scholar] [CrossRef]
- Celiberto, F.G.; Ivanov, D.Y.; Murdaca, B.; Papa, A. High-energy resummation in heavy-quark pair photoproduction. Phys. Lett. B 2018, 777, 141–150. [Google Scholar] [CrossRef]
- Bolognino, A.D.; Celiberto, F.G.; Fucilla, M.; Ivanov, D.Y.; Murdaca, B.; Papa, A. Inclusive production of two rapidity-separated heavy quarks as a probe of BFKL dynamics. Proceeds Sci. 2019, DIS2019, 067. [Google Scholar] [CrossRef]
- Bolognino, A.D.; Celiberto, F.G.; Fucilla, M.; Ivanov, D.Y.; Papa, A. High-energy resummation in heavy-quark pair hadroproduction. Eur. Phys. J. C 2019, 79, 939. [Google Scholar] [CrossRef] [Green Version]
- Boussarie, R.; Ducloué, B.; Szymanowski, L.; Wallon, S. Production of a forward J/psi and a backward jet at the LHC. In Proceedings of the International Conference on the Structure and Interactions of the Photon and 21st International Workshop on Photon-Photon Collisions and International Workshop on High Energy Photon Linear Colliders, Novosibirsk, Russia, 15–19 June 2015. [Google Scholar]
- Boussarie, R.; Ducloue, B.; Szymanowski, L.; Wallon, S. Production of a forward J/ψ and a backward jet at the LHC. Proceeds Sci. 2016, DIS2016, 204. [Google Scholar] [CrossRef] [Green Version]
- Boussarie, R.; Ducloué, B.; Szymanowski, L.; Wallon, S. QCD resummation effects in forward J/ψ and very backward jet inclusive production at the LHC. Proceeds Sci. 2018, DIS2017, 063. [Google Scholar] [CrossRef] [Green Version]
- Pire, B.; Szymanowski, L.; Wallon, S. Double diffractive rho-production in gamma* gamma* collisions. Eur. Phys. J. C 2005, 44, 545–558. [Google Scholar] [CrossRef] [Green Version]
- Segond, M.; Szymanowski, L.; Wallon, S. Diffractive production of two rho0(L) mesons in e+e- collisions. Eur. Phys. J. C 2007, 52, 93–112. [Google Scholar] [CrossRef]
- Enberg, R.; Pire, B.; Szymanowski, L.; Wallon, S. BFKL resummation effects in gamma* gamma* —> rho rho. Eur. Phys. J. C 2006, 45, 759–769, Erratum in Eur. Phys. J. C 2007, 51, 1015. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, D.Y.; Papa, A. Electroproduction of two light vector mesons in the next-to-leading approximation. Nucl. Phys. B 2006, 732, 183–199. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, D.Y.; Papa, A. Electroproduction of two light vector mesons in next-to-leading BFKL: Study of systematic effects. Eur. Phys. J. C 2007, 49, 947–955. [Google Scholar] [CrossRef] [Green Version]
- Mueller, A.H.; Navelet, H. An Inclusive Minijet Cross-Section and the Bare Pomeron in QCD. Nucl. Phys. B 1987, 282, 727–744. [Google Scholar] [CrossRef]
- Ducloué, B.; Szymanowski, L.; Wallon, S. Confronting Mueller-Navelet jets in NLL BFKL with LHC experiments at 7 TeV. J. High Energy Phys. 2013, 5, 096. [Google Scholar] [CrossRef] [Green Version]
- Ducloué, B.; Szymanowski, L.; Wallon, S. Evidence for high-energy resummation effects in Mueller-Navelet jets at the LHC. Phys. Rev. Lett. 2014, 112, 082003. [Google Scholar] [CrossRef] [Green Version]
- Caporale, F.; Murdaca, B.; Sabio Vera, A.; Salas, C. Scale choice and collinear contributions to Mueller-Navelet jets at LHC energies. Nucl. Phys. B 2013, 875, 134–151. [Google Scholar] [CrossRef] [Green Version]
- Caporale, F.; Ivanov, D.Y.; Murdaca, B.; Papa, A. Mueller–Navelet jets in next-to-leading order BFKL: Theory versus experiment. Eur. Phys. J. C 2014, 74, 3084, Erratum in Eur. Phys. J. C 2015, 75, 535. [Google Scholar] [CrossRef] [Green Version]
- Caporale, F.; Ivanov, D.Y.; Murdaca, B.; Papa, A. Brodsky-Lepage-Mackenzie optimal renormalization scale setting for semihard processes. Phys. Rev. D 2015, 91, 114009. [Google Scholar] [CrossRef] [Green Version]
- Ducloué, B.; Szymanowski, L.; Wallon, S. Evaluating the double parton scattering contribution to Mueller-Navelet jets production at the LHC. Phys. Rev. D 2015, 92, 076002. [Google Scholar] [CrossRef] [Green Version]
- Celiberto, F.G.; Ivanov, D.Y.; Murdaca, B.; Papa, A. Mueller–Navelet Jets at LHC: BFKL Versus High-Energy DGLAP. Eur. Phys. J. C 2015, 75, 292. [Google Scholar] [CrossRef] [Green Version]
- Celiberto, F.G.; Ivanov, D.Y.; Murdaca, B.; Papa, A. Mueller–Navelet Jets at the LHC: Discriminating BFKL from DGLAP by Asymmetric Cuts. Acta Phys. Polon. Suppl. 2015, 8, 935. [Google Scholar] [CrossRef] [Green Version]
- Celiberto, F.G.; Ivanov, D.Y.; Murdaca, B.; Papa, A. Mueller–Navelet jets at 13 TeV LHC: Dependence on dynamic constraints in the central rapidity region. Eur. Phys. J. C 2016, 76, 224. [Google Scholar] [CrossRef] [Green Version]
- Celiberto, F.G.; Ivanov, D.Y.; Murdaca, B.; Papa, A. BFKL effects and central rapidity dependence in Mueller-Navelet jet production at 13 TeV LHC. Proceeds Sci. 2016, DIS2016, 176. [Google Scholar] [CrossRef] [Green Version]
- Caporale, F.; Celiberto, F.G.; Chachamis, G.; Gordo Gómez, D.; Sabio Vera, A. Inclusive dijet hadroproduction with a rapidity veto constraint. Nucl. Phys. B 2018, 935, 412–434. [Google Scholar] [CrossRef]
- de León, N.B.; Chachamis, G.; Sabio Vera, A. Average minijet rapidity ratios in Mueller–Navelet jets. Eur. Phys. J. C 2021, 81, 1019. [Google Scholar] [CrossRef]
- Celiberto, F.G.; Papa, A. Mueller-Navelet jets at the LHC: Hunting data with azimuthal distributions. Phys. Rev. D 2022, 106, 114004. [Google Scholar] [CrossRef]
- Celiberto, F.G.; Ivanov, D.Y.; Murdaca, B.; Papa, A. High energy resummation in dihadron production at the LHC. Phys. Rev. D 2016, 94, 034013. [Google Scholar] [CrossRef] [Green Version]
- Celiberto, F.G.; Ivanov, D.Y.; Murdaca, B.; Papa, A. Dihadron Production at LHC: BFKL Predictions for Cross Sections and Azimuthal Correlations. AIP Conf. Proc. 2017, 1819, 060005. [Google Scholar] [CrossRef] [Green Version]
- Celiberto, F.G.; Ivanov, D.Y.; Murdaca, B.; Papa, A. Dihadron production at the LHC: Full next-to-leading BFKL calculation. Eur. Phys. J. C 2017, 77, 382. [Google Scholar] [CrossRef]
- Celiberto, F.G.; Ivanov, D.Y.; Murdaca, B.; Papa, A. Inclusive charged light di-hadron production at 7 and 13 TeV LHC in the full NLA BFKL approach. arXiv 2017, arXiv:1709.01128. [Google Scholar]
- Celiberto, F.G.; Ivanov, D.Y.; Murdaca, B.; Papa, A. Inclusive dihadron production at the LHC in NLA BFKL. In Proceedings of the 17th conference on Elastic and Diffractive Scattering, Prague, Czech Republic, 26–30 June 2017. [Google Scholar]
- Caporale, F.; Chachamis, G.; Murdaca, B.; Sabio Vera, A. Balitsky-Fadin-Kuraev-Lipatov Predictions for Inclusive Three Jet Production at the LHC. Phys. Rev. Lett. 2016, 116, 012001. [Google Scholar] [CrossRef] [Green Version]
- Caporale, F.; Celiberto, F.G.; Chachamis, G.; Sabio Vera, A. Multi-Regge kinematics and azimuthal angle observables for inclusive four-jet production. Eur. Phys. J. C 2016, 76, 165. [Google Scholar] [CrossRef] [Green Version]
- Caporale, F.; Celiberto, F.G.; Chachamis, G.; Gordo Gómez, D.; Sabio Vera, A. BFKL azimuthal imprints in inclusive three-jet production at 7 and 13 TeV. Nucl. Phys. B 2016, 910, 374–386. [Google Scholar] [CrossRef] [Green Version]
- Caporale, F.; Celiberto, F.G.; Chachamis, G.; Sabio Vera, A. Inclusive four-jet production: A study of Multi-Regge kinematics and BFKL observables. Proceeds Sci. 2016, DIS2016, 177. [Google Scholar] [CrossRef]
- Caporale, F.; Celiberto, F.G.; Chachamis, G.; Gordo Gómez, D.; Sabio Vera, A. Inclusive Four-jet Production at 7 and 13 TeV: Azimuthal Profile in Multi-Regge Kinematics. Eur. Phys. J. C 2017, 77, 5. [Google Scholar] [CrossRef] [Green Version]
- Celiberto, F.G. BFKL phenomenology: Resummation of high-energy logs in semi-hard processes at LHC. Frascati Phys. Ser. 2016, 63, 43–48. [Google Scholar]
- Caporale, F.; Celiberto, F.G.; Chachamis, G.; Gordo Gómez, D.; Sabio Vera, A. Inclusive three- and four-jet production in multi-Regge kinematics at the LHC. AIP Conf. Proc. 2017, 1819, 060009. [Google Scholar] [CrossRef] [Green Version]
- Caporale, F.; Celiberto, F.G.; Chachamis, G.; Gordo Gomez, D.; Murdaca, B.; Sabio Vera, A. High energy effects in multi-jet production at LHC. arXiv 2017, arXiv:1610.04765. [Google Scholar]
- Chachamis, G.; Caporale, F.; Celiberto, F.G.; Gomez, D.G.; Sabio Vera, A. Inclusive three jet production at the LHC at 7 and 13 TeV collision energies. Proceeds Sci. 2016, DIS2016, 178. [Google Scholar] [CrossRef] [Green Version]
- Caporale, F.; Celiberto, F.G.; Chachamis, G.; Gordo Gómez, D.; Sabio Vera, A. Probing the BFKL dynamics in inclusive three jet production at the LHC. EPJ Web Conf. 2017, 164, 07027. [Google Scholar] [CrossRef] [Green Version]
- Caporale, F.; Celiberto, F.G.; Chachamis, G.; Gordo Gómez, D.; Sabio Vera, A. Stability of Azimuthal-angle Observables under Higher Order Corrections in Inclusive Three-jet Production. Phys. Rev. D 2017, 95, 074007. [Google Scholar] [CrossRef] [Green Version]
- Caporale, F.; Celiberto, F.G.; Gordo Gomez, D.; Sabio Vera, A.; Chachamis, G. Multi-jet production in the high energy limit at LHC. arXiv 2017, arXiv:1801.00014. [Google Scholar]
- Chachamis, G.; Caporale, F.; Celiberto, F.G.; Gordo Gomez, D.; Sabio Vera, A. Azimuthal-angle Observables in Inclusive Three-jet Production. Proceeds Sci. 2018, DIS2017, 067. [Google Scholar] [CrossRef] [Green Version]
- Bolognino, A.D.; Celiberto, F.G.; Ivanov, D.Y.; Mohammed, M.M.A.; Papa, A. Hadron-jet correlations in high-energy hadronic collisions at the LHC. Eur. Phys. J. C 2018, 78, 772. [Google Scholar] [CrossRef] [Green Version]
- Bolognino, A.D.; Celiberto, F.G.; Ivanov, D.Y.; Mohammed, M.M.A.; Papa, A. High-energy effects in forward inclusive dijet and hadron-jet production. Proceeds Sci. 2019, DIS2019, 049. [Google Scholar] [CrossRef]
- Bolognino, A.D.; Celiberto, F.G.; Ivanov, D.Y.; Mohammed, M.M.A.; Papa, A. Inclusive hadron-jet production at the LHC. Acta Phys. Polon. Suppl. 2019, 12, 773. [Google Scholar] [CrossRef] [Green Version]
- Celiberto, F.G.; Ivanov, D.Y.; Papa, A. Diffractive production of Λ hyperons in the high-energy limit of strong interactions. Phys. Rev. D 2020, 102, 094019. [Google Scholar] [CrossRef]
- Celiberto, F.G. Emergence of high-energy dynamics from cascade-baryon detections at the LHC. Eur. Phys. J. C 2023, 83, 332. [Google Scholar] [CrossRef]
- Celiberto, F.G.; Ivanov, D.Y.; Mohammed, M.M.A.; Papa, A. High-energy resummed distributions for the inclusive Higgs-plus-jet production at the LHC. Eur. Phys. J. C 2021, 81, 293. [Google Scholar] [CrossRef]
- Celiberto, F.G.; Ivanov, D.Y.; Mohammed, M.M.A.; Papa, A. High-energy resummation in inclusive hadroproduction of Higgs plus jet. SciPost Phys. Proc. 2022, 8, 039. [Google Scholar] [CrossRef]
- Celiberto, F.G.; Fucilla, M.; Papa, A.; Ivanov, D.Y.; Mohammed, M.M.A. Higgs-plus-jet inclusive production as stabilizer of the high-energy resummation. Proceeds Sci. 2022, EPS-HEP2021, 589. [Google Scholar] [CrossRef]
- Celiberto, F.G.; Fucilla, M.; Ivanov, D.Y.; Mohammed, M.M.A.; Papa, A. Higgs boson production in the high-energy limit of pQCD. Proceeds Sci. 2022, PANIC2021, 352. [Google Scholar] [CrossRef]
- Celiberto, F.G.; Fucilla, M.; Ivanov, D.Y.; Mohammed, M.M.A.; Papa, A. BFKL phenomenology: Resummation of high-energy logs in inclusive processes. SciPost Phys. Proc. 2022, 10, 002. [Google Scholar] [CrossRef]
- Bolognino, A.D.; Celiberto, F.G.; Fucilla, M.; Ivanov, D.Y.; Papa, A. Hybrid high-energy/collinear factorization in a heavy-light dijets system reaction. SciPost Phys. Proc. 2022, 8, 068. [Google Scholar] [CrossRef]
- Golec-Biernat, K.; Motyka, L.; Stebel, T. Forward Drell-Yan and backward jet production as a probe of the BFKL dynamics. J. High Energy Phys. 2018, 12, 091. [Google Scholar] [CrossRef] [Green Version]
- Celiberto, F.G.; Fucilla, M.; Ivanov, D.Y.; Mohammed, M.M.A.; Papa, A. Bottom-flavored inclusive emissions in the variable-flavor number scheme: A high-energy analysis. Phys. Rev. D 2021, 104, 114007. [Google Scholar] [CrossRef]
- Bolognino, A.D.; Celiberto, F.G.; Fucilla, M.; Ivanov, D.Y.; Papa, A. Heavy flavored emissions in hybrid collinear/high energy factorization. Proceeds Sci. 2022, EPS-HEP2021, 389. [Google Scholar] [CrossRef]
- Celiberto, F.G. Stabilizing BFKL via Heavy-flavor and NRQCD Fragmentation. Acta Phys. Polon. Suppl. 2023, 16, 41. [Google Scholar] [CrossRef]
- Bolognino, A.D.; Celiberto, F.G.; Fucilla, M.; Ivanov, D.Y.; Mohammed, M.M.A.; Papa, A. High-energy Signals from Heavy-flavor Physics. Acta Phys. Polon. Suppl. 2023, 16, 17. [Google Scholar] [CrossRef]
- Celiberto, F.G. The high-energy spectrum of QCD from inclusive emissions of charmed B-mesons. Phys. Lett. B 2022, 835, 137554. [Google Scholar] [CrossRef]
- Celiberto, F.G.; Fucilla, M.; Mohammed, M.M.A.; Papa, A. Ultraforward production of a charmed hadron plus a Higgs boson in unpolarized proton collisions. Phys. Rev. D 2022, 105, 114056. [Google Scholar] [CrossRef]
- Celiberto, F.G.; Fucilla, M. Inclusive J/ψ and Υ emissions from single-parton fragmentation in hybrid high-energy and collinear factorization. arXiv 2022, arXiv:2208.07206. [Google Scholar]
- Bolognino, A.D.; Celiberto, F.G.; Ivanov, D.Y.; Papa, A. ρ-meson leptoproduction as testfield for the unintegrated gluon distribution in the proton. Frascati Phys. Ser. 2018, 67, 76–82. [Google Scholar]
- Bolognino, A.D.; Celiberto, F.G.; Ivanov, D.Y.; Papa, A. Leptoproduction of ρ-mesons as discriminator for the unintegrated gluon distribution in the proton. Acta Phys. Polon. Suppl. 2019, 12, 891. [Google Scholar] [CrossRef] [Green Version]
- Bolognino, A.D.; Szczurek, A.; Schaefer, W. Exclusive production of ϕ meson in the γ*p→ϕp reaction at large photon virtualities within kT-factorization approach. Phys. Rev. D 2020, 101, 054041. [Google Scholar] [CrossRef] [Green Version]
- Łuszczak, A.; uszczak, M.; Schäfer, W. Unintegrated gluon distributions from the color dipole cross section in the BGK saturation model. Phys. Lett. B 2022, 835, 137582. [Google Scholar] [CrossRef]
- Bolognino, A.D.; Celiberto, F.G.; Ivanov, D.Y.; Papa, A. Exclusive emissions of rho-mesons and the unintegrated gluon distribution. SciPost Phys. Proc. 2022, 8, 089. [Google Scholar] [CrossRef]
- Bolognino, A.D.; Celiberto, F.G.; Fucilla, M.; Ivanov, D.Y.; Papa, A.; Schäfer, W.; Szczurek, A. Hadron structure at small-x via unintegrated gluon densities. arXiv 2022, arXiv:2202.02513. [Google Scholar] [CrossRef]
- Celiberto, F.G. Phenomenology of the hadronic structure at small-x. arXiv 2022, arXiv:2202.04207. [Google Scholar]
- Bolognino, A.D.; Celiberto, F.G.; Ivanov, D.Y.; Papa, A.; Schäfer, W.; Szczurek, A. Exclusive emissions of polarized ρ mesons at the EIC and the proton content at low x. arXiv 2022, arXiv:2207.05726. [Google Scholar]
- Bautista, I.; Fernandez Tellez, A.; Hentschinski, M. BFKL evolution and the growth with energy of exclusive J/ψ and Υ photoproduction cross sections. Phys. Rev. D 2016, 94, 054002. [Google Scholar] [CrossRef] [Green Version]
- Arroyo Garcia, A.; Hentschinski, M.; Kutak, K. QCD evolution based evidence for the onset of gluon saturation in exclusive photo-production of vector mesons. Phys. Lett. B 2019, 795, 569–575. [Google Scholar] [CrossRef]
- Motyka, L.; Sadzikowski, M.; Stebel, T. Lam-Tung relation breaking in Z0 hadroproduction as a probe of parton transverse momentum. Phys. Rev. 2017, D95, 114025. [Google Scholar] [CrossRef] [Green Version]
- Ball, R.D.; Bertone, V.; Bonvini, M.; Marzani, S.; Rojo, J.; Rottoli, L. Parton distributions with small-x resummation: Evidence for BFKL dynamics in HERA data. Eur. Phys. J. 2018, C78, 321. [Google Scholar] [CrossRef]
- Abdolmaleki, H.; Bertone, V.; Britzger, D.; Camarda, S.; Cooper-Sarkar, A.; Giuli, F.; Glazov, A.; Kusina, A.; Luszczak, A.; Olness, F.; et al. Impact of low-x resummation on QCD analysis of HERA data. Eur. Phys. J. C 2018, 78, 621. [Google Scholar] [CrossRef]
- Bonvini, M.; Giuli, F. A new simple PDF parametrization: Improved description of the HERA data. Eur. Phys. J. Plus 2019, 134, 531. [Google Scholar] [CrossRef]
- Bacchetta, A.; Celiberto, F.G.; Radici, M.; Taels, P. Transverse-momentum-dependent gluon distribution functions in a spectator model. Eur. Phys. J. C 2020, 80, 733. [Google Scholar] [CrossRef]
- Celiberto, F.G. 3D tomography of the nucleon: Transverse-momentum-dependent gluon distributions. Nuovo Cim. 2021, C44, 36. [Google Scholar] [CrossRef]
- Bacchetta, A.; Celiberto, F.G.; Radici, M.; Taels, P. A spectator-model way to transverse-momentum-dependent gluon distribution functions. SciPost Phys. Proc. 2022, 8, 040. [Google Scholar] [CrossRef]
- Bacchetta, A.; Celiberto, F.G.; Radici, M. Toward twist-2 T-odd transverse-momentum-dependent gluon distributions: The f-type Sivers function. Proceeds Sci. 2022, EPS-HEP2021, 376. [Google Scholar] [CrossRef]
- Bacchetta, A.; Celiberto, F.G.; Radici, M. Toward twist-2 T-odd transverse-momentum-dependent gluon distributions: The f-type linearity function. Proceeds Sci. 2022, PANIC2021, 378. [Google Scholar] [CrossRef]
- Bacchetta, A.; Celiberto, F.G.; Radici, M. Towards Leading-twist T-odd TMD Gluon Distributions. JPS Conf. Proc. 2022, 37, 020124. [Google Scholar] [CrossRef]
- Bacchetta, A.; Celiberto, F.G.; Radici, M. Unveiling the proton structure via transverse-momentum-dependent gluon distributions. arXiv 2022, arXiv:2206.07815. [Google Scholar] [CrossRef]
- Bacchetta, A.; Celiberto, F.G.; Radici, M.; Signori, A. Phenomenology of gluon TMDs from ηb,c production. arXiv 2022, arXiv:2208.06252. [Google Scholar]
- Celiberto, F.G. A Journey into the Proton Structure: Progresses and Challenges. Universe 2022, 8, 661. [Google Scholar] [CrossRef]
- Nefedov, M. Sudakov resummation from the BFKL evolution. Phys. Rev. D 2021, 104, 054039. [Google Scholar] [CrossRef]
- Hentschinski, M. Transverse momentum dependent gluon distribution within high energy factorization at next-to-leading order. Phys. Rev. D 2021, 104, 054014. [Google Scholar] [CrossRef]
- Boroun, G.R. The dipole cross section by the unintegrated gluon distribution at small x. arXiv 2023, arXiv:2301.01083. [Google Scholar]
- Brodsky, S.J.; Hautmann, F.; Soper, D.E. Probing the QCD pomeron in e+ e- collisions. Phys. Rev. Lett. 1997, 78, 803–806, Erratum in Phys. Rev. Lett. 1997, 79, 3544.. [Google Scholar] [CrossRef] [Green Version]
- Brodsky, S.J.; Hautmann, F.; Soper, D.E. Virtual photon scattering at high-energies as a probe of the short distance pomeron. Phys. Rev. D 1997, 56, 6957–6979. [Google Scholar] [CrossRef] [Green Version]
- Brodsky, S.J.; Fadin, V.S.; Kim, V.T.; Lipatov, L.N.; Pivovarov, G.B. The QCD pomeron with optimal renormalization. JETP Lett. 1999, 70, 155–160. [Google Scholar] [CrossRef] [Green Version]
- Brodsky, S.J.; Fadin, V.S.; Kim, V.T.; Lipatov, L.N.; Pivovarov, G.B. High-energy QCD asymptotics of photon-photon collisions. JETP Lett. 2002, 76, 249–252. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, M.M.A. Hunting Stabilization Effects of the High-Energy Resummation at the LHC. Ph.D. Thesis, Università della Calabria and INFN-Cosenza, Rende, Italy, 2022. [Google Scholar]
- Celiberto, F.G.; Papa, A. The high-energy QCD dynamics from Higgs-plus-jet correlations at the FCC. arXiv 2023, arXiv:2305.00962. [Google Scholar]
- Celiberto, F.G.; Delle Rose, L.; Fucilla, M.; Gatto, G.; Papa, A. High-energy resummed Higgs-plus-jet distributions at NLL/NLO* with Powheg+Jethad. In Proceedings of the 57th Rencontres de Moriond on QCD and High Energy Interactions, La Thuile, Italy, 25 March–1 April 2023. [Google Scholar]
- Celiberto, F.G.; Fucilla, M.; Ivanov, D.Y.; Mohammed, M.M.A.; Papa, A. Higgs boson production at next-to-leading logarithmic accuracy. In Proceedings of the 57th Rencontres de Moriond on QCD and High Energy Interactions, La Thuile, Italy, 25 March–1 April 2023. [Google Scholar]
- Binosi, D.; Collins, J.; Kaufhold, C.; Theussl, L. JaxoDraw: A Graphical user interface for drawing Feynman diagrams. Version 2.0 release notes. Comput. Phys. Commun. 2009, 180, 1709–1715. [Google Scholar] [CrossRef] [Green Version]
- Bardeen, W.A.; Buras, A.J.; Duke, D.W.; Muta, T. Deep-inelastic scattering beyond the leading order in asymptotically free gauge theories. Phys. Rev. D 1978, 18, 3998–4017. [Google Scholar] [CrossRef] [Green Version]
- Kotikov, A.V.; Lipatov, L.N. NLO corrections to the BFKL equation in QCD and in supersymmetric gauge theories. Nucl. Phys. B 2000, 582, 19–43. [Google Scholar] [CrossRef] [Green Version]
- Furman, M. Study of a Nonleading {QCD} Correction to Hadron Calorimeter Reactions. Nucl. Phys. B 1982, 197, 413–445. [Google Scholar] [CrossRef]
- Aversa, F.; Chiappetta, P.; Greco, M.; Guillet, J.P. QCD Corrections to Parton-Parton Scattering Processes. Nucl. Phys. B 1989, 327, 105. [Google Scholar] [CrossRef]
- Ball, R.D.; Carrazza, S.; Cruz-Martinez, J.; Del Debbio, L.; Forte, S.; Giani, T.; Iranipour, S.; Kassabov, Z.; Latorre, J.I.; Nocera, E.R.; et al. An open-source machine learning framework for global analyses of parton distributions. Eur. Phys. J. C 2021, 81, 958. [Google Scholar]
- Ball, R.D.; Carrazza, S.; Cruz-Martinez, J.; Del Debbio, L.; Forte, S.; Giani, T.; Iranipour, S.; Kassabov, Z.; Latorre, J.I.; Nocera, E.R.; et al. The path to proton structure at 1% accuracy. Eur. Phys. J. C 2022, 82, 428. [Google Scholar] [CrossRef]
- Buckley, A.; Ferrando, J.; Lloyd, S.; Nordström, K.; Page, B.; Rüfenacht, M.; Schönherr, M.; Watt, G. LHAPDF6: Parton density access in the LHC precision era. Eur. Phys. J. C 2015, 75, 132. [Google Scholar] [CrossRef] [Green Version]
- Forte, S.; Garrido, L.; Latorre, J.I.; Piccione, A. Neural network parametrization of deep inelastic structure functions. J. High Energy Phys. 2002, 5, 062. [Google Scholar] [CrossRef] [Green Version]
- Ball, R.D.; Forte, S.; Stegeman, R. Correlation and combination of sets of parton distributions. Eur. Phys. J. C 2021, 81, 1046. [Google Scholar] [CrossRef]
- Bugge, L. Experimental Heavy Quarkonium Physics: Introduction and Survey. In Lectures Presented at the Trondheim Workshop 1984 in Theoretical Physics: Quantum ChromoDynamics in Theory and Experiment. Trondheim, Norway; Report Number: OSLO-86-20. 1986. Available online: https://cds.cern.ch/record/171748/files/Oslo-86-20.pdf (accessed on 30 June 2023).
- Chang, C.H.; Chen, Y.Q. The Production of B(c) or anti-B(c) meson associated with two heavy quark jets in Z0 boson decay. Phys. Rev. D 1992, 46, 3845, Erratum in Phys. Rev. D 1994, 50, 6013. [Google Scholar] [CrossRef]
- Braaten, E.; Cheung, K.M.; Yuan, T.C. Perturbative QCD fragmentation functions for Bc and Bc * production. Phys. Rev. D 1993, 48, R5049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, J.P. Calculating fragmentation functions from definitions. Phys. Lett. B 1994, 332, 398–404. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.C.; Chang, C.H.; Feng, T.F.; Wu, X.G. QCD NLO fragmentation functions for c or b- quark to Bc or Bc* meson and their application. Phys. Rev. D 2019, 100, 034004. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.C.; Chang, C.H.; Wu, X.G.; Zeng, J.; Huang, X.D. Next-to-leading order QCD corrections to the production of Bc and Bc* through W+-boson decays. Phys. Rev. D 2020, 101, 034029. [Google Scholar] [CrossRef] [Green Version]
- Dadfar, S.; Zarrin, S. The production cross section of the Bc and Bc⁎ mesons via the fragmentation of b- quark at the next-to-leading-order accuracy. Phys. Lett. B 2022, 835, 137538. [Google Scholar] [CrossRef]
- Zheng, X.C.; Wu, X.G.; Zhan, X.J.; Wang, G.Y.; Li, H.T. Higgs boson decays to Bc meson in the fragmentation-function approach. Phys. Rev. D 2023, 107, 074005. [Google Scholar] [CrossRef]
- Eichten, E.J.; Quigg, C. Mesons with beauty and charm: Spectroscopy. Phys. Rev. D 1994, 49, 5845–5856. [Google Scholar] [CrossRef] [Green Version]
- Landau, L.D. On the angular momentum of a system of two photons. Dokl. Akad. Nauk SSSR 1948, 60, 207–209. [Google Scholar] [CrossRef]
- Yang, C.N. Selection Rules for the Dematerialization of a Particle Into Two Photons. Phys. Rev. 1950, 77, 242–245. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.C.; Chang, C.H.; Wu, X.G. Fragmentation functions for gluon into Bc or Bc* meson. J. High Energy Phys. 2022, 5, 036. [Google Scholar] [CrossRef]
- Feng, F.; Jia, Y.; Yang, D. Gluon fragmentation into Bc(*) in NRQCD factorization. arXiv 2021, arXiv:2112.15569. [Google Scholar] [CrossRef]
- Braaten, E.; Yuan, T.C. Gluon fragmentation into spin triplet S wave quarkonium. Phys. Rev. D 1995, 52, 6627–6629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, T.C. Perturbative QCD fragmentation functions for production of P wave mesons with charm and beauty. Phys. Rev. D 1994, 50, 5664–5675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogt, A. Efficient evolution of unpolarized and polarized parton distributions with QCD-PEGASUS. Comput. Phys. Commun. 2005, 170, 65–92. [Google Scholar] [CrossRef] [Green Version]
- Salam, G.P.; Rojo, J. A Higher Order Perturbative Parton Evolution Toolkit (HOPPET). Comput. Phys. Commun. 2009, 180, 120–156. [Google Scholar] [CrossRef] [Green Version]
- Botje, M. QCDNUM: Fast QCD Evolution and Convolution. Comput. Phys. Commun. 2011, 182, 490–532. [Google Scholar] [CrossRef] [Green Version]
- Bertone, V.; Carrazza, S.; Rojo, J. APFEL: A PDF Evolution Library with QED corrections. Comput. Phys. Commun. 2014, 185, 1647–1668. [Google Scholar] [CrossRef] [Green Version]
- Carrazza, S.; Ferrara, A.; Palazzo, D.; Rojo, J. APFEL Web: A web-based application for the graphical visualization of parton distribution functions. J. Phys. G 2015, 42, 057001. [Google Scholar] [CrossRef] [Green Version]
- Bertone, V. APFEL++: A new PDF evolution library in C++. Proceeds Sci. 2018, DIS2017, 201. [Google Scholar] [CrossRef] [Green Version]
- Candido, A.; Hekhorn, F.; Magni, G. EKO: Evolution kernel operators. Eur. Phys. J. C 2022, 82, 976. [Google Scholar] [CrossRef]
- Kniehl, B.A.; Kramer, G.; Schienbein, I.; Spiesberger, H. Inclusive D*+- production in p anti-p collisions with massive charm quarks. Phys. Rev. D 2005, 71, 014018. [Google Scholar] [CrossRef] [Green Version]
- Kniehl, B.A.; Kramer, G. D0, D+, D+(s), and Lambda+(c) fragmentation functions from CERN LEP1. Phys. Rev. D 2005, 71, 094013. [Google Scholar] [CrossRef] [Green Version]
- Kniehl, B.A.; Kramer, G. Charmed-hadron fragmentation functions from CERN LEP1 revisited. Phys. Rev. D 2006, 74, 037502. [Google Scholar] [CrossRef] [Green Version]
- Kneesch, T.; Kniehl, B.A.; Kramer, G.; Schienbein, I. Charmed-meson fragmentation functions with finite-mass corrections. Nucl. Phys. B 2008, 799, 34–59. [Google Scholar] [CrossRef] [Green Version]
- Corcella, G.; Ferrera, G. Charm-quark fragmentation with an effective coupling constant. J. High Energy Phys. 2007, 12, 029. [Google Scholar] [CrossRef] [Green Version]
- Anderle, D.P.; Kaufmann, T.; Stratmann, M.; Ringer, F.; Vitev, I. Using hadron-in-jet data in a global analysis of D* fragmentation functions. Phys. Rev. D 2017, 96, 034028. [Google Scholar] [CrossRef] [Green Version]
- Salajegheh, M.; Moosavi Nejad, S.M.; Soleymaninia, M.; Khanpour, H.; Atashbar Tehrani, S. NNLO charmed-meson fragmentation functions and their uncertainties in the presence of meson mass corrections. Eur. Phys. J. C 2019, 79, 999. [Google Scholar] [CrossRef] [Green Version]
- Salajegheh, M.; Moosavi Nejad, S.M.; Delpasand, M. Determination of Ds+ meson fragmentation functions through two different approaches. Phys. Rev. D 2019, 100, 114031. [Google Scholar] [CrossRef]
- Soleymaninia, M.; Khanpour, H.; Moosavi Nejad, S.M. First determination of D*+-meson fragmentation functions and their uncertainties at next-to-next-to-leading order. Phys. Rev. D 2018, 97, 074014. [Google Scholar] [CrossRef] [Green Version]
- Kniehl, B.A.; Kramer, G.; Schienbein, I.; Spiesberger, H. Λc± production in pp collisions with a new fragmentation function. Phys. Rev. D 2020, 101, 114021. [Google Scholar] [CrossRef]
- Delpasand, M.; Moosavi Nejad, S.M.; Soleymaninia, M. Λc+ fragmentation functions from pQCD approach and the Suzuki model. Phys. Rev. D 2020, 101, 114022. [Google Scholar] [CrossRef]
- Binnewies, J.; Kniehl, B.A.; Kramer, G. Inclusive B meson production in e+e- and pp¯ collisions. Phys. Rev. D 1998, 58, 034016. [Google Scholar] [CrossRef] [Green Version]
- Kniehl, B.A.; Kramer, G.; Schienbein, I.; Spiesberger, H. Finite-mass effects on inclusive B meson hadroproduction. Phys. Rev. D 2008, 77, 014011. [Google Scholar] [CrossRef] [Green Version]
- Kniehl, B.A.; Kramer, G.; Schienbein, I.; Spiesberger, H. Inclusive B-Meson Production at the LHC in the GM-VFN Scheme. Phys. Rev. D 2011, 84, 094026. [Google Scholar] [CrossRef] [Green Version]
- Kniehl, B.A.; Kramer, G.; Moosavi Nejad, S.M. Bottom-Flavored Hadrons from Top-Quark Decay at Next-to-Leading order in the General-Mass Variable-Flavor-Number Scheme. Nucl. Phys. B 2012, 862, 720–736. [Google Scholar] [CrossRef] [Green Version]
- Kramer, G.; Spiesberger, H. b-hadron production in the general-mass variable-flavour-number scheme and LHC data. Phys. Rev. D 2018, 98, 114010. [Google Scholar] [CrossRef] [Green Version]
- Kramer, G.; Spiesberger, H. Λb0-baryon production in pp collisions in the general-mass variable-flavour-number scheme and comparison with CMS and LHCb data. Chin. Phys. C 2018, 42, 083102. [Google Scholar] [CrossRef] [Green Version]
- Salajegheh, M.; Moosavi Nejad, S.M.; Khanpour, H.; Kniehl, B.A.; Soleymaninia, M. B-hadron fragmentation functions at next-to-next-to-leading order from a global analysis of e+e- annihilation data. Phys. Rev. D 2019, 99, 114001. [Google Scholar] [CrossRef] [Green Version]
- Kniehl, B.A.; Moosavi Nejad, S.M. Angular analysis of bottom-flavored hadron production in semileptonic decays of polarized top quarks. Phys. Rev. D 2021, 103, 034015. [Google Scholar] [CrossRef]
- Bowler, M.G. e+ e- Production of Heavy Quarks in the String Model. Z. Phys. C 1981, 11, 169. [Google Scholar] [CrossRef]
- Kartvelishvili, V.G.; Likhoded, A.K. Structure Functions and Leptonic Widths of Heavy Mesons. Yad. Fiz. 1985, 42, 1306–1308. [Google Scholar]
- Albino, S.; Kniehl, B.A.; Kramer, G. AKK Update: Improvements from New Theoretical Input and Experimental Data. Nucl. Phys. B 2008, 803, 42–104. [Google Scholar] [CrossRef] [Green Version]
- Soleymaninia, M.; Hashamipour, H.; Khanpour, H.; Spiesberger, H. Fragmentation Functions for Ξ-/Ξ¯+ Using Neural Networks. Nucl. Phys. A 2022, 2023, 01. [Google Scholar] [CrossRef]
- Salam, G.P. A Resummation of large subleading corrections at small x. J. High Energy Phys. 1998, 7, 019. [Google Scholar] [CrossRef]
- Ciafaloni, M.; Colferai, D.; Salam, G.P.; Stasto, A.M. Renormalization group improved small x Green’s function. Phys. Rev. D 2003, 68, 114003. [Google Scholar] [CrossRef] [Green Version]
- Ciafaloni, M.; Colferai, D.; Colferai, D.; Salam, G.P.; Stasto, A.M. Extending QCD perturbation theory to higher energies. Phys. Lett. B 2003, 576, 143–151. [Google Scholar] [CrossRef] [Green Version]
- Ciafaloni, M.; Colferai, D.; Salam, G.P. On factorization at small x. J. High Energy Phys. 2000, 7, 054. [Google Scholar] [CrossRef] [Green Version]
- Ciafaloni, M.; Colferai, D.; Salam, G.P. Renormalization group improved small x equation. Phys. Rev. D 1999, 60, 114036. [Google Scholar] [CrossRef] [Green Version]
- Ciafaloni, M.; Colferai, D. The BFKL equation at next-to-leading level and beyond. Phys. Lett. B 1999, 452, 372–378. [Google Scholar] [CrossRef] [Green Version]
- Sabio Vera, A. An ’All-poles’ approximation to collinear resummations in the Regge limit of perturbative QCD. Nucl. Phys. B 2005, 722, 65–80. [Google Scholar] [CrossRef] [Green Version]
- The CMS collaboration. Azimuthal decorrelation of jets widely separated in rapidity in pp collisions at s = 7 TeV. J. High Energy Phys. 2016, 8, 139. [Google Scholar] [CrossRef] [Green Version]
- Mueller, A.; Xiao, B.W.; Yuan, F. Sudakov Resummation in Small-x Saturation Formalism. Phys. Rev. Lett. 2013, 110, 082301. [Google Scholar] [CrossRef] [Green Version]
- Mueller, A.; Xiao, B.W.; Yuan, F. Sudakov double logarithms resummation in hard processes in the small-x saturation formalism. Phys. Rev. D 2013, 88, 114010. [Google Scholar] [CrossRef] [Green Version]
- Marzani, S. Combining QT and small-x resummations. Phys. Rev. D 2016, 93, 054047. [Google Scholar] [CrossRef] [Green Version]
- Mueller, A.; Szymanowski, L.; Wallon, S.; Xiao, B.W.; Yuan, F. Sudakov Resummations in Mueller-Navelet Dijet Production. J. High Energy Phys. 2016, 3, 096. [Google Scholar] [CrossRef] [Green Version]
- Xiao, B.W.; Yuan, F. BFKL and Sudakov Resummation in Higgs Boson Plus Jet Production with Large Rapidity Separation. Phys. Lett. B 2018, 782, 28–33. [Google Scholar] [CrossRef]
- Andersen, J.R.; Del Duca, V.; Frixione, S.; Schmidt, C.R.; Stirling, W.J. Mueller-Navelet jets at hadron colliders. J. High Energy Phys. 2001, 2, 007. [Google Scholar] [CrossRef]
- Fontannaz, M.; Guillet, J.P.; Heinrich, G. Is a large intrinsic k(T) needed to describe photon + jet photoproduction at HERA? Eur. Phys. J. C 2001, 22, 303–315. [Google Scholar] [CrossRef] [Green Version]
- Ducloué, B.; Szymanowski, L.; Wallon, S. Violation of energy–momentum conservation in Mueller–Navelet jets production. Phys. Lett. B 2014, 738, 311–316. [Google Scholar] [CrossRef]
- The CMS Collaboration. Measurement of the Λb cross section and the Λ ¯ b to Λb ratio with J/ΨΛ decays in pp collisions at s = 7 TeV. Phys. Lett. B 2012, 714, 136–157. [Google Scholar] [CrossRef]
- Sterman, G.F. Summation of Large Corrections to Short Distance Hadronic Cross-Sections. Nucl. Phys. B 1987, 281, 310–364. [Google Scholar] [CrossRef]
- Catani, S.; Trentadue, L. Resummation of the QCD Perturbative Series for Hard Processes. Nucl. Phys. B 1989, 327, 323–352. [Google Scholar] [CrossRef]
- Catani, S.; Mangano, M.L.; Nason, P.; Trentadue, L. The Resummation of soft gluons in hadronic collisions. Nucl. Phys. B 1996, 478, 273–310. [Google Scholar] [CrossRef] [Green Version]
- Bonciani, R.; Catani, S.; Mangano, M.L.; Nason, P. Sudakov resummation of multiparton QCD cross-sections. Phys. Lett. B 2003, 575, 268–278. [Google Scholar] [CrossRef] [Green Version]
- de Florian, D.; Kulesza, A.; Vogelsang, W. Threshold resummation for high-transverse-momentum Higgs production at the LHC. J. High Energy Phys. 2006, 2, 047. [Google Scholar] [CrossRef] [Green Version]
- Ahrens, V.; Becher, T.; Neubert, M.; Yang, L.L. Renormalization-Group Improved Prediction for Higgs Production at Hadron Colliders. Eur. Phys. J. C 2009, 62, 333–353. [Google Scholar] [CrossRef] [Green Version]
- de Florian, D.; Grazzini, M. Higgs production at the LHC: Updated cross sections at s=8 TeV. Phys. Lett. B 2012, 718, 117–120. [Google Scholar] [CrossRef] [Green Version]
- Forte, S.; Ridolfi, G.; Rota, S. Threshold resummation of transverse momentum distributions beyond next-to-leading log. J. High Energy Phys. 2021, 8, 110. [Google Scholar] [CrossRef]
- Mukherjee, A.; Vogelsang, W. Threshold resummation for W-boson production at RHIC. Phys. Rev. D 2006, 73, 074005. [Google Scholar] [CrossRef] [Green Version]
- Bolzoni, P. Threshold resummation of Drell-Yan rapidity distributions. Phys. Lett. B 2006, 643, 325–330. [Google Scholar] [CrossRef] [Green Version]
- Becher, T.; Neubert, M. Threshold resummation in momentum space from effective field theory. Phys. Rev. Lett. 2006, 97, 082001. [Google Scholar] [CrossRef] [Green Version]
- Becher, T.; Neubert, M.; Xu, G. Dynamical Threshold Enhancement and Resummation in Drell-Yan Production. J. High Energy Phys. 2008, 7, 030. [Google Scholar] [CrossRef] [Green Version]
- Bonvini, M.; Forte, S.; Ridolfi, G. Soft gluon resummation of Drell-Yan rapidity distributions: Theory and phenomenology. Nucl. Phys. B 2011, 847, 93–159. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, T.; Mandal, M.K.; Rana, N.; Ravindran, V. Higgs Rapidity Distribution in bb¯ Annihilation at Threshold in N3LO QCD. J. High Energy Phys. 2015, 2, 131. [Google Scholar] [CrossRef]
- Banerjee, P.; Das, G.; Dhani, P.K.; Ravindran, V. Threshold resummation of the rapidity distribution for Drell-Yan production at NNLO+NNLL. Phys. Rev. D 2018, 98, 054018. [Google Scholar] [CrossRef] [Green Version]
- Duhr, C.; Mistlberger, B.; Vita, G. Soft integrals and soft anomalous dimensions at N3LO and beyond. J. High Energy Phys. 2022, 9, 155. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, L.; Wei, S.Y.; Xiao, B.W. Pursuing the Precision Study for Color Glass Condensate in Forward Hadron Productions. Phys. Rev. Lett. 2022, 128, 202302. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, L.; Gao, Z.; Shi, Y.; Wei, S.Y.; Xiao, B.W. Forward inclusive jet productions in pA collisions. Phys. Rev. D 2023, 107, 016016. [Google Scholar] [CrossRef]
- Lansberg, J.P.; Shao, H.S.; Yamanaka, N. Indication for double parton scatterings in W+ prompt J/ψ production at the LHC. Phys. Lett. B 2018, 781, 485–491. [Google Scholar] [CrossRef]
- d’Enterria, D.; Snigirev, A.M. Triple parton scatterings in high-energy proton-proton collisions. Phys. Rev. Lett. 2017, 118, 122001. [Google Scholar] [CrossRef] [Green Version]
- Shao, H.S.; Zhang, Y.J. Triple prompt J/ψ hadroproduction as a hard probe of multiple-parton scatterings. Phys. Rev. Lett. 2019, 122, 192002. [Google Scholar] [CrossRef] [Green Version]
- Roy, D.P.; Sridhar, K. Fragmentation contribution to quarkonium production in hadron collision. Phys. Lett. B 1994, 339, 141–147. [Google Scholar] [CrossRef] [Green Version]
- Chapon, E.; d’Enterria, D.; Ducloue, B.; Echevarria, M.G.; Gossiaux, P.B.; Kartvelishvili, V.; Kasemets, T.; Lansberg, J.P.; McNulty, R.; Price, D.D.; et al. Prospects for quarkonium studies at the high-luminosity LHC. Prog. Part. Nucl. Phys. 2022, 122, 103906. [Google Scholar] [CrossRef]
- Anchordoqui, L.A.; Ariga, A.; Ariga, T.; Bai, W.D.; Balazs, K.; Batell, B.; Boyd, J.; Bramante, J.; Campanelli, M.; Carmona, A.; et al. The Forward Physics Facility: Sites, experiments, and physics potential. Phys. Rept. 2022, 968, 1–50. [Google Scholar] [CrossRef]
- Feng, J.L.; Kling, F.; Reno, M.H.; Rojo, J.; Soldin, D.; Anchordoqui, L.A.; Boyd, J.; Ismail, A.; Harland-Lang, L.; Kelly, K.J.; et al. The Forward Physics Facility at the High-Luminosity LHC. J. Phys. G 2023, 50, 030501. [Google Scholar] [CrossRef]
- Hentschinski, M.; Royon, C.; Peredo, M.A.; Baldenegro, C.; Bellora, A.; Boussarie, R.; Celiberto, F.G.; Cerci, S.; Chachamis, G.; Contreras, J.G.; et al. White Paper on Forward Physics, BFKL, Saturation Physics and Diffraction. Acta Phys. Polon. B 2023, 54, 2. [Google Scholar] [CrossRef]
- Accardi, A.; Albacete, J.L.; Anselmino, M.; Armesto, N.; Aschenauer, E.C.; Bacchetta, A.; Boer, D.; Brooks, W.K.; Burton, T.; Chang, N.B.; et al. Electron Ion Collider: The Next QCD Frontier: Understanding the glue that binds us all. Eur. Phys. J. A 2016, 52, 268. [Google Scholar] [CrossRef] [Green Version]
- Khalek, R.A.; Accardi, A.; Adam, J.; Adamiak, D.; Akers, W.; Albaladejo, M.; Al-bataineh, A.; Alexeev, M.G.; Ameli, F.; Antonioli, P.; et al. Science Requirements and Detector Concepts for the Electron-Ion Collider: EIC Yellow Report. Nucl. Phys. A 2022, 1026, 122447. [Google Scholar] [CrossRef]
- Khalek, R.A.; D’Alesio, U.; Arratia, M.; Bacchetta, A.; Battaglieri, M.; Begel, M.; Boglione, M.; Boughezal, R.; Boussarie, R.; Bozzi, G.; et al. Snowmass 2021 White Paper: Electron Ion Collider for High Energy Physics. In Proceedings of the 2022 Snowmass Summer Study, Seattle, WA, USA, 17–26 July 2022. [Google Scholar]
- Acosta, D.; Barberis, E.; Hurley, N.; Li, W.; Colin, O.M.; Wood, D.; Zuo, X. The Potential of a TeV-Scale Muon-Ion Collider. In Proceedings of the 2022 Snowmass Summer Study, Seattle, WA, USA, 17–26 July 2022. [Google Scholar]
- Aryshev, A.; Behnke, T.; Berggren, M.; Brau, J.; Craig, N.; Freitas, A.; Gaede, F.; Gessner, S.; Gori, S.; Grojean, C.; et al. The International Linear Collider: Report to Snowmass 2021. arXiv 2022, arXiv:2203.07622. [Google Scholar]
- Brunner, O.; Burrows, P.N.; Calatroni, S.; Lasheras, N.C.; Corsini, R.; D’Auria, G.; Doebert, S.; Faus-Golfe, A.; Grudiev, A.; Latina, A.; et al. The CLIC project. arXiv 2022, arXiv:2203.09186. [Google Scholar]
- Arbuzov, A.; Bacchetta, A.; Butenschoen, M.; Celiberto, F.G.; D’Alesio, U.; Deka, M.; Denisenko, I.; Echevarria, M.G.; Efremov, A.; Ivanov, N.Y.; et al. On the physics potential to study the gluon content of proton and deuteron at NICA SPD. Prog. Part. Nucl. Phys. 2021, 119, 103858. [Google Scholar] [CrossRef]
- Abazov, V.M. et al. [The SPD collaboration] Conceptual design of the Spin Physics Detector. arXiv 2021, arXiv:2102.00442. [Google Scholar]
- Bernardi, G.; Brost, E.; Denisov, D.; Landsberg, G.; Aleksa, M.; d’Enterria, D.; Janot, P.; Mangano, M.L.; Selvaggi, M.; Zimmermann, F.; et al. The Future Circular Collider: A Summary for the US 2021 Snowmass Process. arXiv 2022, arXiv:2203.06520. [Google Scholar]
- Amoroso, S.; Apyan, A.; Armesto, N.; Ball, R.D.; Bertone, V.; Bissolotti, C.; Bluemlein, J.; Boughezal, R.; Bozzi, G.; Britzger, D.; et al. Snowmass 2021 whitepaper: Proton structure at the precision frontier. Acta Phys. Polon. B 2022, 53, A1. [Google Scholar] [CrossRef]
- Celiberto, F.G.; Fucilla, M.; Ivanov, D.Y.; Mohammed, M.M.A.; Papa, A. High-energy QCD at colliders: Semi-hard reactions and unintegrated gluon densities: Letter of Interest for SnowMass 2021. In Proceedings of the 2022 Snowmass Summer Study, Seattle, WA, USA, 17–26 July 2022. [Google Scholar]
- Klein, S.; Takaki, D.T.; Adam, J.; Aidala, C.; Angerami, A.; Audurier, B.; Bertulani, C.; Bierlich, C.; Blok, B.; Brandenburg, J.D.; et al. New opportunities at the photon energy frontier. arXiv 2020, arXiv:2009.03838. [Google Scholar]
- Canepa, A.; D’Onofrio, M. Future Accelerator Projects: New Physics at the Energy Frontier (FERMILAB-PUB-22-248-PPD). arXiv 2022, arXiv:2306.12897. [Google Scholar]
- de Blas, J.; Buttazzo, D.; Capdevilla, R.M.; Curtin, D.; Franceschini, R.; Maltoni, F.; Meade, P.R.; Meloni, F.; Su, S.F.; Vryonidou, E.; et al. The physics case of a 3 TeV muon collider stage. arXiv 2022, arXiv:2203.07261. [Google Scholar]
- Aimè, C.; Apyan, A.; Mahmoud, M.A.; Bartosik, N.; Batsch, F.; Bertolin, A.; Bonesini, M.; Bottaro, S.; Buttazzo, D.; Capdevilla, R.M.; et al. Muon Collider Physics Summary. arXiv 2022, arXiv:2203.07256. [Google Scholar]
- Bartosik, N.; Krizka, K.; Griso, S.P.; Aimè, C.; Apyan, A.; Agashe, K.; Allanach, B.C.; Andreetto, P.; Asadi, P.; Mahmoud, M.A.; et al. Simulated Detector Performance at the Muon Collider. In Proceedings of the 2022 Snowmass Summer Study, Seattle, WA, USA, 17–26 July 2022. [Google Scholar]
- Accettura, C.; Adams, D.; Agarwal, R.; Ahdida, C.; Aimè, C.; Amapane, N.; Amorim, D.; Andreetto, P.; Anulli, F.; Appleby, R.; et al. Towards a Muon Collider. arXiv 2023, arXiv:2303.08533. [Google Scholar]
- Vignaroli, N. Charged resonances and MDM bound states at a multi-TeV muon collider. arXiv 2023, arXiv:2304.12362. [Google Scholar]
- Black, K.M.; Jindariani, S.; Li, D.; Maltoni, F.; Meade, P.; Stratakis, D.; Acosta, D.; Agarwal, R.; Agashe, K.; Aimè, C.; et al. Muon Collider Forum Report. arXiv 2022, arXiv:2209.01318. [Google Scholar]
- Dawson, S.; Meade, P.; Ojalvo, I.; Vernieri, C.; Adhikari, S.; Abu-Ajamieh, F.; Alberta, A.; Bahl, H.; Barman, R.; Basso, M.; et al. Report of the Topical Group on Higgs Physics for Snowmass 2021: The Case for Precision Higgs Physics. In Proceedings of the 2022 Snowmass Summer Study, Seattle, WA, USA, 17–26 July 2022. [Google Scholar]
- Bose, T.; Boveia, A.; Doglioni, C.; Griso, S.P.; Hirschauer, J.; Lipeles, E.; Liu, Z.; Shah, N.R.; Wang, L.T.; Agashe, K.; et al. Report of the Topical Group on Physics Beyond the Standard Model at Energy Frontier for Snowmass 2021. In Proceedings of the 2022 Snowmass Summer Study, Seattle, WA, USA, 17–26 July 2022. [Google Scholar]
- Begel, M.; Hoeche, S.; Schmitt, M.; Lin, H.W.; Nadolsky, P.M.; Royon, C.; Lee, Y.J.; Mukherjee, S.; Baldenegro, C.; Campbell, J.; et al. Precision QCD, Hadronic Structure & Forward QCD, Heavy Ions: Report of Energy Frontier Topical Groups 5, 6, 7 submitted to Snowmass 2021. arXiv 2022, arXiv:2209.14872. [Google Scholar]
- Abir, R.; Akushevich, I.; Altinoluk, T.; Anderle, D.P.; Aslan, F.P.; Bacchetta, A.; Balantekin, B.; Barata, J.; Battaglieri, M.; Bertulani, C.A.; et al. The case for an EIC Theory Alliance: Theoretical Challenges of the EIC. arXiv 2023, arXiv:2305.14572. [Google Scholar]
- Accardi, A.; Achenbach, P.; Adhikari, D.; Afanasev, A.; Akondi, C.S.; Akopov, N.; Albaladejo, M.; Albataineh, H.; Albrecht, M.; Almeida-Zamora, B.; et al. Strong Interaction Physics at the Luminosity Frontier with 22 GeV Electrons at Jefferson Lab. arXiv 2023, arXiv:2306.09360. [Google Scholar]
- Gelis, F.; Iancu, E.; Jalilian-Marian, J.; Venugopalan, R. The Color Glass Condensate. Ann. Rev. Nucl. Part. Sci. 2010, 60, 463–489. [Google Scholar] [CrossRef] [Green Version]
- Kovchegov, Y.V.; Levin, E. Quantum Chromodynamics at High Energy; Cambridge University Press: Cambridge, UK, 2012; Volume 33. [Google Scholar] [CrossRef] [Green Version]
- Chirilli, G.A.; Xiao, B.W.; Yuan, F. Inclusive Hadron Productions in pA Collisions. Phys. Rev. D 2012, 86, 054005. [Google Scholar] [CrossRef] [Green Version]
- Boussarie, R.; Grabovsky, A.V.; Szymanowski, L.; Wallon, S. Impact factor for high-energy two and three jets diffractive production. J. High Energy Phys. 2014, 9, 026. [Google Scholar] [CrossRef] [Green Version]
- Benic, S.; Fukushima, K.; Garcia-Montero, O.; Venugopalan, R. Probing gluon saturation with next-to-leading order photon production at central rapidities in proton-nucleus collisions. J. High Energy Phys. 2017, 1, 115. [Google Scholar] [CrossRef] [Green Version]
- Benić, S.; Fukushima, K.; Garcia-Montero, O.; Venugopalan, R. Constraining unintegrated gluon distributions from inclusive photon production in proton–proton collisions at the LHC. Phys. Lett. B 2019, 791, 11–16. [Google Scholar] [CrossRef]
- Roy, K.; Venugopalan, R. NLO impact factor for inclusive photon+dijet production in e+A DIS at small x. Phys. Rev. D 2020, 101, 034028. [Google Scholar] [CrossRef] [Green Version]
- Roy, K.; Venugopalan, R. Extracting many-body correlators of saturated gluons with precision from inclusive photon+dijet final states in deeply inelastic scattering. Phys. Rev. D 2020, 101, 071505. [Google Scholar] [CrossRef]
- Beuf, G.; Hänninen, H.; Lappi, T.; Mäntysaari, H. Color Glass Condensate at next-to-leading order meets HERA data. Phys. Rev. D 2020, 102, 074028. [Google Scholar] [CrossRef]
- Iancu, E.; Mueller, A.H.; Triantafyllopoulos, D.N. Probing Parton Saturation and the Gluon Dipole via Diffractive Jet Production at the Electron-Ion Collider. Phys. Rev. Lett. 2022, 128, 202001. [Google Scholar] [CrossRef] [PubMed]
- Iancu, E.; Mueller, A.H.; Triantafyllopoulos, D.N.; Wei, S.Y. Probing gluon saturation via diffractive jets in ultra-peripheral nucleus-nucleus collisions. arXiv 2023, arXiv:2304.12401. [Google Scholar]
- Wallon, S. The QCD shockwave approach at NLO: Towards precision physics in gluonic saturation. In Proceedings of the Diffraction and Low-x 2022, Corigliano Calabro, Italy, 24–30 September 2023. [Google Scholar]
- Hatta, Y.; Xiao, B.W.; Yuan, F.; Zhou, J. Anisotropy in Dijet Production in Exclusive and Inclusive Processes. Phys. Rev. Lett. 2021, 126, 142001. [Google Scholar] [CrossRef]
- Hatta, Y.; Xiao, B.W.; Yuan, F.; Zhou, J. Azimuthal angular asymmetry of soft gluon radiation in jet production. Phys. Rev. D 2021, 104, 054037. [Google Scholar] [CrossRef]
- Caucal, P.; Salazar, F.; Venugopalan, R. Dijet impact factor in DIS at next-to-leading order in the Color Glass Condensate. J. High Energy Phys. 2021, 11, 222. [Google Scholar] [CrossRef]
- Caucal, P.; Salazar, F.; Schenke, B.; Venugopalan, R. Back-to-back inclusive dijets in DIS at small x: Sudakov suppression and gluon saturation at NLO. J. High Energy Phys. 2022, 11, 169. [Google Scholar] [CrossRef]
- Taels, P.; Altinoluk, T.; Beuf, G.; Marquet, C. Dijet photoproduction at low x at next-to-leading order and its back-to-back limit. J. High Energy Phys. 2022, 10, 184. [Google Scholar] [CrossRef]
- Fucilla, M.; Grabovsky, A.V.; Li, E.; Szymanowski, L.; Wallon, S. NLO computation of diffractive di-hadron production in a saturation framework. J. High Energy Phys. 2023, 3, 159. [Google Scholar] [CrossRef]
- Kotko, P.; Kutak, K.; Marquet, C.; Petreska, E.; Sapeta, S.; van Hameren, A. Improved TMD factorization for forward dijet production in dilute-dense hadronic collisions. J. High Energy Phys. 2015, 9, 106. [Google Scholar] [CrossRef] [Green Version]
- van Hameren, A.; Kotko, P.; Kutak, K.; Marquet, C.; Petreska, E.; Sapeta, S. Forward di-jet production in p+Pb collisions in the small-x improved TMD factorization framework. J. High Energy Phys. 2016, 12, 034, Erratum in J. High Energy Phys. 2019, 02, 158. [Google Scholar] [CrossRef] [Green Version]
- Altinoluk, T.; Boussarie, R.; Marquet, C.; Taels, P. Photoproduction of three jets in the CGC: Gluon TMDs and dilute limit. arXiv 2020, arXiv:2001.00765. [Google Scholar] [CrossRef]
- Altinoluk, T.; Marquet, C.; Taels, P. Low-x improved TMD approach to the lepto- and hadroproduction of a heavy-quark pair. J. High Energy Phys. 2021, 6, 085. [Google Scholar] [CrossRef]
- Boussarie, R.; Mäntysaari, H.; Salazar, F.; Schenke, B. The importance of kinematic twists and genuine saturation effects in dijet production at the Electron-Ion Collider. J. High Energy Phys. 2021, 9, 178. [Google Scholar] [CrossRef]
- Caucal, P.; Salazar, F.; Schenke, B.; Stebel, T.; Venugopalan, R. Back-to-back inclusive di-jets in DIS at small xBj: Gluon Weizsäcker-Williams distribution at NLO. arXiv 2023, arXiv:2304.03304. [Google Scholar]
- Kang, Z.B.; Ma, Y.Q.; Venugopalan, R. Quarkonium production in high energy proton-nucleus collisions: CGC meets NRQCD. J. High Energy Phys. 2014, 1, 056. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.Q.; Venugopalan, R. Comprehensive Description of J/ψ Production in Proton-Proton Collisions at Collider Energies. Phys. Rev. Lett. 2014, 113, 192301. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.Q.; Venugopalan, R.; Zhang, H.F. J/ψ production and suppression in high energy proton-nucleus collisions. Phys. Rev. D 2015, 92, 071901. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.Q.; Stebel, T.; Venugopalan, R. J/ψ polarization in the CGC+NRQCD approach. J. High Energy Phys. 2018, 12, 057. [Google Scholar] [CrossRef] [Green Version]
- Stebel, T.; Watanabe, K. Jψ polarization in high multiplicity pp and pA collisions: CGC + NRQCD approach. Phys. Rev. D 2021, 104, 034004. [Google Scholar] [CrossRef]
- Mäntysaari, H.; Penttala, J. Exclusive heavy vector meson production at next-to-leading order in the dipole picture. Phys. Lett. B 2021, 823, 136723. [Google Scholar] [CrossRef]
- Mäntysaari, H.; Penttala, J. Complete calculation of exclusive heavy vector meson production at next-to-leading order in the dipole picture. J. High Energy Phys. 2022, 8, 247. [Google Scholar] [CrossRef]
- Nocera, E.R. Towards a Neural Network Determination of Charged Pion Fragmentation Functions. In Proceedings of the 22nd International Symposium on Spin Physics, Urbana, IL, USA, 25–30 September 2016. [Google Scholar]
- Bertone, V.; Carrazza, S.; Nocera, E.R.; Hartland, N.P.; Rojo, J. Towards a Neural Network determination of Pion Fragmentation Functions. In Proceedings of the Parton Radiation and Fragmentation from LHC to FCC-ee: CERN, Geneva, Switzerland, 22–23 November 2016; pp. 19–25. [Google Scholar]
- Bertone, V.; Carrazza, S.; Hartland, N.P.; Nocera, E.R.; Rojo, J. A determination of the fragmentation functions of pions, kaons, and protons with faithful uncertainties. Eur. Phys. J. C 2017, 77, 516. [Google Scholar] [CrossRef] [Green Version]
- Bertone, V.; Hartland, N.P.; Nocera, E.R.; Rojo, J.; Rottoli, L. Charged hadron fragmentation functions from collider data. Eur. Phys. J. C 2018, 78, 651. [Google Scholar] [CrossRef] [Green Version]
- Khalek, R.A.; Bertone, V.; Nocera, E.R. Determination of unpolarized pion fragmentation functions using semi-inclusive deep-inelastic-scattering data. Phys. Rev. D 2021, 104, 034007. [Google Scholar] [CrossRef]
- Abdul Khalek, R.; Bertone, V.; Khoudli, A.; Nocera, E.R. Pion and kaon fragmentation functions at next-to-next-to-leading order. Phys. Lett. B 2022, 834, 137456. [Google Scholar] [CrossRef]
- Soleymaninia, M.; Hashamipour, H.; Khanpour, H. Neural network QCD analysis of charged hadron fragmentation functions in the presence of SIDIS data. Phys. Rev. D 2022, 105, 114018. [Google Scholar] [CrossRef]
- Alwall, J.; Frederix, R.; Frixione, S.; Hirschi, V.; Maltoni, F.; Mattelaer, O.; Shao, H.S.; Stelzer, T.; Torrielli, P.; Zaro, M. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. J. High Energy Phys. 2014, 7, 079. [Google Scholar] [CrossRef] [Green Version]
- Safronov, A.; Flore, C.; Kikola, D.; Kusina, A.; Lansberg, J.P.; Mattelaer, O.; Shao, H.S. A tool for automated perturbative cross section computations of asymmetric hadronic collisions at next-to-leading order using the MadGraph5_aMC@NLO framework. Proceeds Sci. 2022, ICHEP2022, 494. [Google Scholar] [CrossRef]
- Flore, C. NLOAccess: Automated online computations for collider physics. Eur. Phys. J. A 2023, 59, 46. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Celiberto, F.G. Vector Quarkonia at the LHC with Jethad: A High-Energy Viewpoint. Universe 2023, 9, 324. https://doi.org/10.3390/universe9070324
Celiberto FG. Vector Quarkonia at the LHC with Jethad: A High-Energy Viewpoint. Universe. 2023; 9(7):324. https://doi.org/10.3390/universe9070324
Chicago/Turabian StyleCeliberto, Francesco Giovanni. 2023. "Vector Quarkonia at the LHC with Jethad: A High-Energy Viewpoint" Universe 9, no. 7: 324. https://doi.org/10.3390/universe9070324