A Novel, Low-Cost, Position-Sensitive Neutron Detector to Support Thick-Target Inverse Kinematics Experiments for Nuclear Data Measurements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Thick-Target Inverse Kinematics
2.2. ATTIKUS Overview
2.3. Monte-Carlo Simulations
2.3.1. Efficiency Studies
2.3.2. Basic Position Resolution Studies
2.3.3. Optical Simulation
2.3.4. Detailed Position Resolution Studies
2.3.5. Simulations under Beam Conditions
3. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Burbidge, E.M.; Burbidge, G.R.; Fowler, W.A.; Hoyle, F. Synthesis of the elements in stars. Rev. Mod. Phys. 1957, 29, 547–650. [Google Scholar] [CrossRef] [Green Version]
- Gallmeister, K.; Mosel, U.; Weil, J. Neutrino-induced reactions on nuclei. Phys. Rev. C 2016, 94, 035502. [Google Scholar] [CrossRef] [Green Version]
- Reifarth, R.; Erbacher, P.; Fiebiger, S.; Göbel, K.; Heftrich, T.; Heil, M.; Käppeler, F.; Klapper, N.; Kurtulgil, D.; Langer, C.; et al. Neutron-induced cross sections. Eur. Phys. J. Plus 2018, 133, 424. [Google Scholar] [CrossRef]
- Wiescher, M.; Köppeler, F.; Langanke, K. Critical reactions in contemporary nuclear astrophysics. Ann. Rev. Astron. Astrophys. 2012, 50, 165–210. [Google Scholar] [CrossRef]
- Rolfs, C.; Rodney, W.S. Cauldrons in the Cosmos; The University of Chicago Press: Chicago, IL, USA, 1988. [Google Scholar]
- Aprahamian, A.; Langanke, K.; Wiescher, M. Nuclear structure aspects in nuclear astrophysics. Prog. Part. Nucl. Phys. 2005, 54, 535–613. [Google Scholar] [CrossRef]
- Smith, M.S. Nuclear Data Relevant for Astrophysics. J. Nucl. Sci. Technol. 2002, 39, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Bernstein, L.A.; Brown, D.A.; Koning, A.J.; Rearden, B.T.; Romano, C.E.; Sonzogni, A.A.; Younes, W. Our future nuclear data needs. Annu. Rev. Nucl. Part. Sci. 2019, 69, 109–136. [Google Scholar] [CrossRef]
- Plompen, A.J.; Cabellos, O.; De Saint, Jean, C.; Fleming, M.; Algora, A.; Angelone, M.; Žerovnik, G. The joint evaluated fission and fusion nuclear data library, JEFF-3.3. Eur. Phys. J. A 2020, 56, 1–108. [Google Scholar] [CrossRef]
- Pomp, S.; Bartlett, D.T.; Mayer, S.; Reitz, G.; Röttger, S.; Silari, M.; Smit, F.D.; Vincke, H.; Yasuda, H. High-energy quasi-monoenergetic neutron fields: Existing facilities and future needs. Radiat. Prot. Dosim. 2014, 161, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Cieślak, M.J.; Gamage, K.A.A.; Glover, R. Critical Review of Scintillating Crystals for Neutron Detection. Crystals 2019, 9, 480. [Google Scholar] [CrossRef] [Green Version]
- Jastaniah, S.D.; Sellin, P.J. Digital techniques for n/γ pulse shape discrimination and capture-gated neutron spectroscopy using liquid scintillators. Nucl. Instruments Meth. Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2004, 517, 202–210. [Google Scholar] [CrossRef]
- Zaitseva, N.; Rupert, B.L.; Pawełczak, I.; Glenn, A.; Martinez, H.P.; Carman, L.; Payne, S. Plastic scintillators with efficient neutron/gamma pulse shape discrimination. Nucl. Instruments Meth. Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2012, 668, 88–93. [Google Scholar] [CrossRef]
- Di Pietro, A.; Torresi, D.; Zadro, M.; Cosentino, L.; Ducoin, C.; Figuera, P.; Strano, E. The inverse kinematics thick target scattering method as a tool to study cluster states in exotic nuclei. J. Phys. Conf. Ser. 2012, 366, 012013. [Google Scholar] [CrossRef] [Green Version]
- Ciani, G.F.; Csedreki, L.; Rapagnani, D.; Aliotta, M.; Balibrea-Correa, J.; Barile, F.; Bemmerer, D.; Best, A.; Boeltzig, A.; Broggini, C.; et al. Direct Measurement of the 13C(α,n)16O Cross Section into the s-Process Gamow Peak. Phys. Rev. Lett. 2021, 127, 152701. [Google Scholar] [CrossRef]
- Pignatari, M.; Gallino, R.; Heil, M.; Wiescher, M.; Käppeler, F.; Herwig, F.; Bisterzo, S. The weak s-process in massive stars and its dependence on the neutron capture cross sections. Astrophys. J. 2010, 710, 1557. [Google Scholar] [CrossRef]
- Bisterzo, S.; Gallino, R.; Käppeler, F.; Wiescher, M.; Imbriani, G.; Straniero, O.; Cristallo, S.; Görres, J.; Deboer, R.J. The branchings of the main s-process: Their sensitivity to α-induced reactions on 13C and 22Ne and to the uncertainties of the nuclear network. Mon. Not. R. Astron. Soc. 2015, 449, 506–527. [Google Scholar] [CrossRef] [Green Version]
- Courcelle, A. Need for 16O(n,α) Measurement and Evaluation in the Range 2.5 to 10 MeV. 2005. Available online: http://www.nea.fr/html/dbdata/hprl/ (accessed on 1 April 2020).
- Giorginis, G.; Khryachkov, V.; Corcalciuc, V.; Kievets, M. The cross section of the 16O(n,α)13C reaction in the MeV energy range. In International Conference on Nuclear Data for Science and Technology; EDP Sciences: Les Ulis, France, 2007; pp. 525–528. [Google Scholar]
- Nurmukhanbetova, A.K.; Goldberg, V.Z.; Nauruzbayev, D.K.; Rogachev, G.V.; Golovkov, M.S.; Mynbayev, N.A.; Artemov, S. Thick target inverse kinematics approach for neutron emission. Phys. Rev. Res. 2020, 2, 032036. [Google Scholar]
- Ashenfelter, J.; Balantekin, A.B.; Band, H.R.; Bass, C.D.; Bergeron, D.E.; Berish, D.; Bowden, N.S. Performance of a segmented 6Li-loaded liquid scintillator detector for the PROSPECT experiment. J. Instrum. 2018, 13, P06023. [Google Scholar] [CrossRef] [Green Version]
- Steer, C.; Stowell, J.P.; Thompson, L. CRESTA: Cosmic rays for Engineering, Scientific, and Technology Applications. Available online: https://gitlab.com/cosmicraysim/cresta (accessed on 1 May 2020).
- Agostinelli, S.; GEANT4 Collaboration. GEANT4–A simulation toolkit. Nucl. Instrum. Meth. A 2003, 506, 25. [Google Scholar] [CrossRef] [Green Version]
- Jetter, S.; Dwyer, D.; Jiang, W.Q.; Liu, D.W.; Wang, Y.F.; Wang, Z.M.; Wen, L.J. PMT waveform modeling at the daya bay experiment. Chin. Phys. C 2012, 36, 733. [Google Scholar] [CrossRef]
- Gran Sasso Malczewski, D.; Kisiel, J.; Dorda, J. Gamma background measurements in the Gran Sasso National Laboratory. J. Radioanal. Nucl. Chem. 2013, 295, 749–754. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smith, R.; Stowell, J.P.; Barker, D.; Thompson, L.F. A Novel, Low-Cost, Position-Sensitive Neutron Detector to Support Thick-Target Inverse Kinematics Experiments for Nuclear Data Measurements. Universe 2023, 9, 274. https://doi.org/10.3390/universe9060274
Smith R, Stowell JP, Barker D, Thompson LF. A Novel, Low-Cost, Position-Sensitive Neutron Detector to Support Thick-Target Inverse Kinematics Experiments for Nuclear Data Measurements. Universe. 2023; 9(6):274. https://doi.org/10.3390/universe9060274
Chicago/Turabian StyleSmith, R., J. P. Stowell, D. Barker, and L. F. Thompson. 2023. "A Novel, Low-Cost, Position-Sensitive Neutron Detector to Support Thick-Target Inverse Kinematics Experiments for Nuclear Data Measurements" Universe 9, no. 6: 274. https://doi.org/10.3390/universe9060274
APA StyleSmith, R., Stowell, J. P., Barker, D., & Thompson, L. F. (2023). A Novel, Low-Cost, Position-Sensitive Neutron Detector to Support Thick-Target Inverse Kinematics Experiments for Nuclear Data Measurements. Universe, 9(6), 274. https://doi.org/10.3390/universe9060274