The Zoo of Isolated Neutron Stars
Abstract
:1. Introduction
2. Main Species in the Zoo
2.1. Radio Pulsars
2.2. Central Compact Objects
2.3. Magnetars
2.4. Magnificent Seven
3. Standard Evolution and Its Problems
4. Double Nature and Non-Standard Evolution
4.1. Magnetic Field Decay
4.2. Werewolves and Secret Agents
4.3. Fallback and Hall Attractor
5. New Puzzle, New Tracks
6. Toward Accretion from the ISM
7. Magnetars and FRBs
8. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AINS | Accreting isolated neutron star |
AXP | Anomalous X-ray pulsar |
BH | Blackhole |
CCO | Central compact object |
FRB | Fast radio burst |
HMXB | High-mass X-ray binary |
ISM | Interstellar medium |
LMXB | Low-mass X-ray binary |
M7 | Magnificent seven |
mPSR | Millisecond radio pulsar |
NS | Neutron star |
PSR | Radio pulsar |
SGR | Soft gamma-ray repeater |
sGRB | Short gamma-ray burst |
SN | Supernova |
SNR | Supernova remnant |
WD | White dwarf |
XDINS | X-ray, dim, isolated neutron star |
1 | https:www.atnf.csiro.au/people/pulsar/psrcat/, accessed on 30 May 2023. |
2 | See the on-line catalog at http://www.iasf-milano.inaf.it/~deluca/cco/main.htm, accessed on 30 May 2023. Mostly, the parameters of the CCOs mentioned in this subsection refer to this catalog. |
3 | http://www.physics.mcgill.ca/~pulsar/magnetar/main.html, accessed on 30 May 2023. |
References
- Giacconi, R.; Gursky, H.; Waters, J.R. Two Sources of Cosmic X-rays in Scorpius and Sagittarius. Nature 1964, 204, 981–982. [Google Scholar] [CrossRef]
- Giacconi, R.; Gursky, H.; Kellogg, E.; Schreier, E.; Tananbaum, H. Discovery of Periodic X-ray Pulsations in Centaurus X-3 from UHURU. Astrophys. J. 1971, 167, L67. [Google Scholar] [CrossRef]
- Belloni, D.; Schreiber, M.R. Overall Binary Evolution Theory. arXiv 2023, arXiv:2303.08997. [Google Scholar] [CrossRef]
- Bisnovatyi-Kogan, G.S.; Komberg, B.V. Possible evolution of a binary-system radio pulsar as an old object with a weak magnetic field. Sov. Astron. Lett. 1976, 2, 130–132. [Google Scholar]
- Backer, D.C.; Kulkarni, S.R.; Heiles, C.; Davis, M.M.; Goss, W.M. A millisecond pulsar. Nature 1982, 300, 615–618. [Google Scholar] [CrossRef]
- Papitto, A.; Ferrigno, C.; Bozzo, E.; Rea, N.; Pavan, L.; Burderi, L.; Burgay, M.; Campana, S.; di Salvo, T.; Falanga, M.; et al. Swings between rotation and accretion power in a binary millisecond pulsar. Nature 2013, 501, 517–520. [Google Scholar] [CrossRef] [Green Version]
- Farrow, N.; Zhu, X.J.; Thrane, E. The Mass Distribution of Galactic Double Neutron Stars. Astrophys. J. 2019, 876, 18. [Google Scholar] [CrossRef] [Green Version]
- Tauris, T.M.; Kramer, M.; Freire, P.C.C.; Wex, N.; Janka, H.T.; Langer, N.; Podsiadlowski, P.; Bozzo, E.; Chaty, S.; Kruckow, M.U.; et al. Formation of Double Neutron Star Systems. Astrophys. J. 2017, 846, 170. [Google Scholar] [CrossRef] [Green Version]
- Baiotti, L.; Rezzolla, L. Binary neutron star mergers: A review of Einstein’s richest laboratory. Rep. Prog. Phys. 2017, 80, 096901. [Google Scholar] [CrossRef] [Green Version]
- Andrews, J.J.; Taggart, K.; Foley, R. A Sample of Neutron Star and Black Hole Binaries Detected through Gaia DR3 Astrometry. arXiv 2022, arXiv:2207.00680. [Google Scholar] [CrossRef]
- Hewish, A.; Bell, S.J.; Pilkington, J.D.H.; Scott, P.F.; Collins, R.A. Observation of a Rapidly Pulsating Radio Source. Nature 1968, 217, 709–713. [Google Scholar] [CrossRef]
- Manchester, R.N.; Hobbs, G.B.; Teoh, A.; Hobbs, M. The Australia Telescope National Facility Pulsar Catalogue. Astron. J. 2005, 129, 1993–2006. [Google Scholar] [CrossRef]
- McLaughlin, M.A.; Lyne, A.G.; Lorimer, D.R.; Kramer, M.; Faulkner, A.J.; Manchester, R.N.; Cordes, J.M.; Camilo, F.; Possenti, A.; Stairs, I.H.; et al. Transient radio bursts from rotating neutron stars. Nature 2006, 439, 817–820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beskin, V.S. Radio pulsars: Already fifty years! Phys. Uspekhi 2018, 61, 353–380. [Google Scholar] [CrossRef] [Green Version]
- Philippov, A.; Tchekhovskoy, A.; Li, J.G. Time evolution of pulsar obliquity angle from 3D simulations of magnetospheres. Mon. Not. R. Astron. Soc. 2014, 441, 1879–1887. [Google Scholar] [CrossRef] [Green Version]
- Pétri, J. The illusion of neutron star magnetic field estimates. Mon. Not. R. Astron. Soc. 2019, 485, 4573–4587. [Google Scholar] [CrossRef]
- Rozwadowska, K.; Vissani, F.; Cappellaro, E. On the rate of core collapse supernovae in the milky way. New Astron. 2021, 83, 101498. [Google Scholar] [CrossRef]
- Tauris, T.M.; Manchester, R.N. On the Evolution of Pulsar Beams. Mon. Not. R. Astron. Soc. 1998, 298, 625–636. [Google Scholar] [CrossRef] [Green Version]
- Han, J.L.; Wang, C.; Wang, P.F.; Wang, T.; Zhou, D.J.; Sun, J.H.; Yan, Y.; Su, W.Q.; Jing, W.C.; Chen, X.; et al. The FAST Galactic Plane Pulsar Snapshot survey: I. Project design and pulsar discoveries. Res. Astron. Astrophys. 2021, 21, 107. [Google Scholar] [CrossRef]
- Pan, Z.; Qian, L.; Ma, X.; Liu, K.; Wang, L.; Luo, J.; Yan, Z.; Ransom, S.; Lorimer, D.; Li, D.; et al. FAST Globular Cluster Pulsar Survey: Twenty-four Pulsars Discovered in 15 Globular Clusters. Astrophys. J. Lett. 2021, 915, L28. [Google Scholar] [CrossRef]
- Levin, L.; Armour, W.; Baffa, C.; Barr, E.; Cooper, S.; Eatough, R.; Ensor, A.; Giani, E.; Karastergiou, A.; Karuppusamy, R.; et al. Pulsar Searches with the SKA. In Pulsar Astrophysics the Next Fifty Years; Weltevrede, P., Perera, B.B.P., Preston, L.L., Sanidas, S., Eds.; Cambridge University Press: Cambridge, UK, 2018; Volume 337, pp. 171–174. [Google Scholar] [CrossRef] [Green Version]
- Lyne, A.G.; Lorimer, D.R. High birth velocities of radio pulsars. Nature 1994, 369, 127–129. [Google Scholar] [CrossRef]
- Wongwathanarat, A.; Janka, H.T.; Müller, E. Three-dimensional neutrino-driven supernovae: Neutron star kicks, spins, and asymmetric ejection of nucleosynthesis products. Astron. Astrophys. 2013, 552, A126. [Google Scholar] [CrossRef] [Green Version]
- Igoshev, A.P.; Frantsuzova, A.; Gourgouliatos, K.N.; Tsichli, S.; Konstantinou, L.; Popov, S.B. Initial periods and magnetic fields of neutron stars. Mon. Not. R. Astron. Soc. 2022, 514, 4606–4619. [Google Scholar] [CrossRef]
- Chrimes, A.A.; Levan, A.J.; Groot, P.J.; Lyman, J.D.; Nelemans, G. The Galactic neutron star population - I. An extragalactic view of the Milky Way and the implications for fast radio bursts. Mon. Not. R. Astron. Soc. 2021, 508, 1929–1946. [Google Scholar] [CrossRef]
- De Luca, A. Central compact objects in supernova remnants. J. Phys. Conf. Ser. 2017, 932, 012006. [Google Scholar] [CrossRef]
- Gourgouliatos, K.N.; Hollerbach, R.; Igoshev, A.P. Powering central compact objects with a tangled crustal magnetic field. Mon. Not. R. Astron. Soc. 2020, 495, 1692–1699. [Google Scholar] [CrossRef]
- Pavlov, G.G.; Zavlin, V.E.; Aschenbach, B.; Trümper, J.; Sanwal, D. The Compact Central Object in Cassiopeia A: A Neutron Star with Hot Polar Caps or a Black Hole? Astrophys. J. Lett. 2000, 531, L53–L56. [Google Scholar] [CrossRef] [Green Version]
- Potekhin, A.Y.; De Luca, A.; Pons, J.A. Neutron Stars—Thermal Emitters. Space Sci. Rev. 2015, 191, 171–206. [Google Scholar] [CrossRef] [Green Version]
- Potekhin, A.Y.; Chabrier, G. Magnetic neutron star cooling and microphysics. Astron. Astrophys. 2018, 609, A74. [Google Scholar] [CrossRef] [Green Version]
- Page, D.; Lattimer, J.M.; Prakash, M.; Steiner, A.W. Minimal Cooling of Neutron Stars: A New Paradigm. ApJ Suppl. Ser. 2004, 155, 623–650. [Google Scholar] [CrossRef] [Green Version]
- Aguilera, D.N.; Pons, J.A.; Miralles, J.A. The Impact of Magnetic Field on the Thermal Evolution of Neutron Stars. Astrophys. J. Lett. 2008, 673, L167. [Google Scholar] [CrossRef] [Green Version]
- Abramkin, V.; Pavlov, G.G.; Shibanov, Y.; Kargaltsev, O. Thermal and Nonthermal Emission in the Optical-UV Spectrum of PSR B0950+08. Astrophys. J. 2022, 924, 128. [Google Scholar] [CrossRef]
- Kantor, E.M.; Gusakov, M.E. Long-lasting accretion-powered chemical heating of millisecond pulsars. Mon. Not. R. Astron. Soc. 2021, 508, 6118–6127. [Google Scholar] [CrossRef]
- Yanagi, K.; Nagata, N.; Hamaguchi, K. Cooling theory faced with old warm neutron stars: Role of non-equilibrium processes with proton and neutron gaps. Mon. Not. R. Astron. Soc. 2020, 492, 5508–5523. [Google Scholar] [CrossRef]
- Shabaltas, N.; Lai, D. The Hidden Magnetic Field of the Young Neutron Star in Kesteven 79. Astrophys. J. 2012, 748, 148. [Google Scholar] [CrossRef] [Green Version]
- Bogdanov, S. Modeling the X-rays from the Central Compact Object PSR J1852+0040 in Kesteven 79: Evidence for a Strongly Magnetized Neutron Star. Astrophys. J. 2014, 790, 94. [Google Scholar] [CrossRef]
- Bernal, C.G.; Page, D.; Lee, W.H. Hypercritical Accretion onto a Newborn Neutron Star and Magnetic Field Submergence. Astrophys. J. 2013, 770, 106. [Google Scholar] [CrossRef] [Green Version]
- Tuohy, I.; Garmire, G. Discovery of a compact X-ray source at the center of the SNR RCW 103. Astrophys. J. Lett. 1980, 239, L107–L110. [Google Scholar] [CrossRef]
- Popov, S.B.; Kaurov, A.A.; Kaminker, A.D. Central Compact Objects in Kes 79 and RCW 103 as ‘Hidden’ Magnetars with Crustal Activity. Publ. Astron. Soc. Aust. 2015, 32, e018. [Google Scholar] [CrossRef] [Green Version]
- D’Aì, A.; Evans, P.A.; Burrows, D.N.; Kuin, N.P.M.; Kann, D.A.; Campana, S.; Maselli, A.; Romano, P.; Cusumano, G.; La Parola, V.; et al. Evidence for the magnetar nature of 1E 161348-5055 in RCW 103. Mon. Not. R. Astron. Soc. 2016, 463, 2394–2404. [Google Scholar] [CrossRef] [Green Version]
- Rea, N.; Borghese, A.; Esposito, P.; Coti Zelati, F.; Bachetti, M.; Israel, G.L.; De Luca, A. Magnetar-like Activity from the Central Compact Object in the SNR RCW103. Astrophys. J. Lett. 2016, 828, L13. [Google Scholar] [CrossRef] [Green Version]
- De Luca, A.; Caraveo, P.A.; Mereghetti, S.; Tiengo, A.; Bignami, G.F. A Long-Period, Violently Variable X-ray Source in a Young Supernova Remnant. Science 2006, 313, 814–817. [Google Scholar] [CrossRef]
- Ronchi, M.; Rea, N.; Graber, V.; Hurley-Walker, N. Long-period Pulsars as Possible Outcomes of Supernova Fallback Accretion. Astrophys. J. 2022, 934, 184. [Google Scholar] [CrossRef]
- Palmer, D.M.; Barthelmy, S.; Gehrels, N.; Kippen, R.M.; Cayton, T.; Kouveliotou, C.; Eichler, D.; Wijers, R.A.M.J.; Woods, P.M.; Granot, J.; et al. A giant γ-ray flare from the magnetar SGR 1806-20. Nature 2005, 434, 1107–1109. [Google Scholar] [CrossRef] [PubMed]
- Mazets, E.P.; Golentskii, S.V.; Ilinskii, V.N.; Aptekar, R.L.; Guryan, I.A. Observations of a flaring X-ray pulsar in Dorado. Nature 1979, 282, 587–589. [Google Scholar] [CrossRef]
- Vedrenne, G.; Zenchenko, V.M.; Kurt, V.G.; Niel, M.; Hurley, K.; Estulin, I.V. Observations of the X-ray burster 0525.9-66.1. Pisma v Astronomicheskii Zhurnal 1979, 5, 588–594. [Google Scholar]
- Olausen, S.A.; Kaspi, V.M. The McGill Magnetar Catalog. ApJ Suppl. Ser. 2014, 212, 6. [Google Scholar] [CrossRef] [Green Version]
- Esposito, P.; Rea, N.; Israel, G.L. Magnetars: A Short Review and Some Sparse Considerations. Astrophys. Space Sci. Libr. 2021, 461, 97–142. [Google Scholar] [CrossRef]
- Gavriil, F.P.; Kaspi, V.M.; Woods, P.M. Magnetar-like X-ray bursts from an anomalous X-ray pulsar. Nature 2002, 419, 142–144. [Google Scholar] [CrossRef] [Green Version]
- Gavriil, F.P.; Gonzalez, M.E.; Gotthelf, E.V.; Kaspi, V.M.; Livingstone, M.A.; Woods, P.M. Magnetar-Like Emission from the Young Pulsar in Kes 75. Science 2008, 319, 1802. [Google Scholar] [CrossRef] [Green Version]
- Turolla, R.; Esposito, P. Low-Magnetic Magnetars. Int. J. Mod. Phys. D 2013, 22, 1330024. [Google Scholar] [CrossRef]
- Tiengo, A.; Esposito, P.; Mereghetti, S.; Turolla, R.; Nobili, L.; Gastaldello, F.; Götz, D.; Israel, G.L.; Rea, N.; Stella, L.; et al. A variable absorption feature in the X-ray spectrum of a magnetar. Nature 2013, 500, 312–314. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez Castillo, G.A.; Israel, G.L.; Tiengo, A.; Salvetti, D.; Turolla, R.; Zane, S.; Rea, N.; Esposito, P.; Mereghetti, S.; Perna, R.; et al. The outburst decay of the low magnetic field magnetar SWIFT J1822.3-1606: Phase-resolved analysis and evidence for a variable cyclotron feature. Mon. Not. R. Astron. Soc. 2016, 456, 4145–4155. [Google Scholar] [CrossRef] [Green Version]
- Popov, S.B.; Pons, J.A.; Miralles, J.A.; Boldin, P.A.; Posselt, B. Population synthesis studies of isolated neutron stars with magnetic field decay. Mon. Not. R. Astron. Soc. 2010, 401, 2675–2686. [Google Scholar] [CrossRef]
- Beniamini, P.; Hotokezaka, K.; van der Horst, A.; Kouveliotou, C. Formation rates and evolution histories of magnetars. Mon. Not. R. Astron. Soc. 2019, 487, 1426–1438. [Google Scholar] [CrossRef]
- Ferrario, L.; Wickramasinghe, D. Modelling of isolated radio pulsars and magnetars on the fossil field hypothesis. Mon. Not. R. Astron. Soc. 2006, 367, 1323–1328. [Google Scholar] [CrossRef] [Green Version]
- Thompson, C.; Duncan, R.C. Neutron Star Dynamos and the Origins of Pulsar Magnetism. Astrophys. J. 1993, 408, 194. [Google Scholar] [CrossRef]
- Bonanno, A.; Urpin, V.; Belvedere, G. Protoneutron star dynamos: Pulsars, magnetars, and radio-silent X-ray emitting neutron stars. Astron. Astrophys. 2006, 451, 1049–1052. [Google Scholar] [CrossRef] [Green Version]
- Schneider, F.R.N.; Ohlmann, S.T.; Podsiadlowski, P.; Röpke, F.K.; Balbus, S.A.; Pakmor, R.; Springel, V. Stellar mergers as the origin of magnetic massive stars. Nature 2019, 574, 211–214. [Google Scholar] [CrossRef] [Green Version]
- Popov, S.B. Origins of magnetars in binary systems. Astron. Astrophys. Trans. 2016, 29, 183–192. [Google Scholar] [CrossRef]
- Raynaud, R.; Guilet, J.; Janka, H.T.; Gastine, T. Magnetar formation through a convective dynamo in protoneutron stars. Sci. Adv. 2020, 6, eaay2732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrère, P.; Guilet, J.; Reboul-Salze, A.; Raynaud, R.; Janka, H.T. A new scenario for magnetar formation: Tayler-Spruit dynamo in a proto-neutron star spun up by fallback. Astron. Astrophys. 2022, 668, A79. [Google Scholar] [CrossRef]
- Pons, J.A.; Viganò, D. Magnetic, thermal and rotational evolution of isolated neutron stars. Living Rev. Comput. Astrophys. 2019, 5, 3. [Google Scholar] [CrossRef] [Green Version]
- Igoshev, A.P.; Popov, S.B.; Hollerbach, R. Evolution of Neutron Star Magnetic Fields. Universe 2021, 7, 351. [Google Scholar] [CrossRef]
- Posselt, B.; Popov, S.B.; Haberl, F.; Trümper, J.; Turolla, R.; Neuhäuser, R. The Magnificent Seven in the dusty prairie. Astroph. Space Sci. 2007, 308, 171–179. [Google Scholar] [CrossRef] [Green Version]
- Turolla, R. Isolated Neutron Stars: The Challenge of Simplicity. Astrophys. Space Sci. Libr. 2009, 357, 141. [Google Scholar] [CrossRef]
- Potekhin, A.Y.; Zyuzin, D.A.; Yakovlev, D.G.; Beznogov, M.V.; Shibanov, Y.A. Thermal luminosities of cooling neutron stars. Mon. Not. R. Astron. Soc. 2020, 496, 5052–5071. [Google Scholar] [CrossRef]
- Walter, F.M.; Wolk, S.J.; Neuhäuser, R. Discovery of a nearby isolated neutron star. Nature 1996, 379, 233–235. [Google Scholar] [CrossRef]
- Treves, A.; Popov, S.B.; Colpi, M.; Prokhorov, M.E.; Turolla, R. The Magnificient Seven: Close-by Cooling Neutron Stars? Astron. Soc. Pac. Conf. Ser. 2001, 234, 225. [Google Scholar] [CrossRef]
- Konenkov, D.Y.; Popov, S.B. RX J0720.4-3125 as a possible example of magnetic field decay in neutron stars. Astron. Lett. 1997, 23, 498–503. [Google Scholar] [CrossRef] [Green Version]
- Kondratiev, V.I.; McLaughlin, M.A.; Lorimer, D.R.; Burgay, M.; Possenti, A.; Turolla, R.; Popov, S.B.; Zane, S. New Limits on Radio Emission from X-ray Dim Isolated Neutron Stars. Astrophys. J. 2009, 702, 692–706. [Google Scholar] [CrossRef] [Green Version]
- Pastor-Marazuela, I.; Straal, S.M.; van Leeuwen, J.; Kondratiev, V.I. New upper limits on low-frequency radio emission from isolated neutron stars with LOFAR. arXiv 2023, arXiv:2301.05509. [Google Scholar] [CrossRef]
- Pires, A.M.; Haberl, F.; Zavlin, V.E.; Motch, C.; Zane, S.; Hohle, M.M. XMM-Newton reveals a candidate period for the spin of the “Magnificent Seven” neutron star RX J1605.3+3249. Astron. Astrophys. 2014, 563, A50. [Google Scholar] [CrossRef] [Green Version]
- Popov, S.B.; Grigorian, H.; Blaschke, D. Neutron star cooling constraints for color superconductivity in hybrid stars. Phys. Rev. C 2006, 74, 025803. [Google Scholar] [CrossRef]
- Popov, S.B.; Turolla, R.; Prokhorov, M.E.; Colpi, M.; Treves, A. Young Close-By Neutron Stars: The Gould Belt Vs. The Galactic Disc. Astroph. Space Sci. 2005, 299, 117–127. [Google Scholar] [CrossRef]
- Agüeros, M.A.; Posselt, B.; Anderson, S.F.; Rosenfield, P.; Haberl, F.; Homer, L.; Margon, B.; Newsom, E.R.; Voges, W. No Confirmed New Isolated Neutron Stars in the SDSS Data Release 4. Astron. J. 2011, 141, 176. [Google Scholar] [CrossRef] [Green Version]
- Shevchuk, A.S.H.; Fox, D.B.; Rutledge, R.E. Chandra Observations of 1RXS J141256.0+792204 (Calvera). Astrophys. J. 2009, 705, 391–397. [Google Scholar] [CrossRef] [Green Version]
- Mereghetti, S.; Rigoselli, M.; Taverna, R.; Baldeschi, L.; Crestan, S.; Turolla, R.; Zane, S. NICER Study of Pulsed Thermal X-Rays from Calvera: A Neutron Star Born in the Galactic Halo? Astrophys. J. 2021, 922, 253. [Google Scholar] [CrossRef]
- Pires, A.M.; Motch, C.; Turolla, R.; Treves, A.; Popov, S.B. The isolated neutron star candidate 2XMM J104608.7-594306. Astron. Astrophys. 2009, 498, 233–240. [Google Scholar] [CrossRef]
- Pires, A.M.; Motch, C.; Turolla, R.; Popov, S.B.; Schwope, A.D.; Treves, A. New XMM-Newton observation of the thermally emitting isolated neutron star 2XMM J104608.7-594306. Astron. Astrophys. 2015, 583, A117. [Google Scholar] [CrossRef] [Green Version]
- Pires, A.M.; Motch, C.; Kurpas, J.; Schwope, A.D.; Valdes, F.; Haberl, F.; Traulsen, I.; Tubín, D.; Becker, W.; Comparat, J.; et al. XMM-Newton and SRG/eROSITA observations of the isolated neutron star candidate 4XMM J022141.5−735632. Astron. Astrophys. 2022, 666, A148. [Google Scholar] [CrossRef]
- Pires, A.M. What will eROSITA reveal among X-ray faint isolated neutron stars? In Pulsar Astrophysics the Next Fifty Years; Weltevrede, P., Perera, B.B.P., Preston, L.L., Sanidas, S., Eds.; Cambridge University Press: Cambridge, UK, 2018; Volume 337, pp. 112–115. [Google Scholar] [CrossRef] [Green Version]
- Khokhryakova, A.D.; Biryukov, A.V.; Popov, S.B. Observability of Single Neutron Stars at SRG/eROSITA. Astron. Rep. 2021, 65, 615–630. [Google Scholar] [CrossRef]
- Faucher-Giguère, C.A.; Kaspi, V.M. Birth and Evolution of Isolated Radio Pulsars. Astrophys. J. 2006, 643, 332–355. [Google Scholar] [CrossRef] [Green Version]
- Lipunov, V.M.; Postnov, K.A.; Prokhorov, M.E. The Scenario Machine: Binary Star Population Synthesis; Harwood Academic Publishers: Amsterdam, The Netherlands, 1996. [Google Scholar]
- Popov, S.B.; Turolla, R. Initial spin periods of neutron stars in supernova remnants. Astroph. Space Sci. 2012, 341, 457–464. [Google Scholar] [CrossRef] [Green Version]
- Keane, E.F.; Kramer, M. On the birthrates of Galactic neutron stars. Mon. Not. R. Astron. Soc. 2008, 391, 2009–2016. [Google Scholar] [CrossRef]
- Colpi, M.; Geppert, U.; Page, D. Period Clustering of the Anomalous X-Ray Pulsars and Magnetic Field Decay in Magnetars. Astrophys. J. Lett. 2000, 529, L29–L32. [Google Scholar] [CrossRef] [Green Version]
- Popov, S.B.; Turolla, R. Initial Parameters of Neutron Stars. Astron. Soc. Pac. Conf. Ser. 2012, 466, 191. [Google Scholar] [CrossRef]
- Ruderman, M.; Zhu, T.; Chen, K. Neutron Star Magnetic Field Evolution, Crust Movement, and Glitches. Astrophys. J. 1998, 492, 267–280. [Google Scholar] [CrossRef] [Green Version]
- Baym, G.; Pethick, C.; Pines, D. Superfluidity in Neutron Stars. Nature 1969, 224, 673–674. [Google Scholar] [CrossRef]
- Cumming, A.; Arras, P.; Zweibel, E. Magnetic Field Evolution in Neutron Star Crusts Due to the Hall Effect and Ohmic Decay. Astrophys. J. 2004, 609, 999–1017. [Google Scholar] [CrossRef] [Green Version]
- Igoshev, A.P.; Popov, S.B. Magnetic field decay in normal radio pulsars. Astron. Nachrichten 2015, 336, 831. [Google Scholar] [CrossRef] [Green Version]
- Goldreich, P.; Reisenegger, A. Magnetic Field Decay in Isolated Neutron Stars. Astrophys. J. 1992, 395, 250. [Google Scholar] [CrossRef] [Green Version]
- Gusakov, M.E.; Kantor, E.M.; Ofengeim, D.D. Evolution of the magnetic field in neutron stars. Phys. Rev. D 2017, 96, 103012. [Google Scholar] [CrossRef] [Green Version]
- Gusakov, M.E.; Kantor, E.M.; Ofengeim, D.D. Magnetic field evolution time-scales in superconducting neutron stars. Mon. Not. R. Astron. Soc. 2020, 499, 4561–4569. [Google Scholar] [CrossRef]
- Ofengeim, D.D.; Gusakov, M.E. Fast magnetic field evolution in neutron stars: The key role of magnetically induced fluid motions in the core. Phys. Rev. D 2018, 98, 043007. [Google Scholar] [CrossRef] [Green Version]
- Perna, R.; Pons, J.A. A Unified Model of the Magnetar and Radio Pulsar Bursting Phenomenology. Astrophys. J. Lett. 2011, 727, L51. [Google Scholar] [CrossRef] [Green Version]
- Pons, J.A.; Link, B.; Miralles, J.A.; Geppert, U. Evidence for heating of neutron stars by magnetic-field decay. Phys. Rev. Lett. 2007, 98, 071101. [Google Scholar] [CrossRef] [Green Version]
- Chashkina, A.; Popov, S.B. Magnetic field estimates for accreting neutron stars in massive binary systems and models of magnetic field decay. New Astron. 2012, 17, 594–602. [Google Scholar] [CrossRef] [Green Version]
- Gonthier, P.L.; Ouellette, M.S.; Berrier, J.; O’Brien, S.; Harding, A.K. Galactic Populations of Radio and Gamma-Ray Pulsars in the Polar Cap Model. Astrophys. J. 2002, 565, 482–499. [Google Scholar] [CrossRef] [Green Version]
- Igoshev, A.P.; Popov, S.B. Modified pulsar current analysis: Probing magnetic field evolution. Mon. Not. R. Astron. Soc. 2014, 444, 1066–1076. [Google Scholar] [CrossRef] [Green Version]
- Phinney, E.S.; Blandford, R.D. Analysis of the pulsar P-P-prime distribution. Mon. Not. R. Astron. Soc. 1981, 194, 137–148. [Google Scholar] [CrossRef] [Green Version]
- Vivekanand, M.; Narayan, R. A new look at pulsar statistics—Birthrate and evidence for injection. J. Astrophys. Astron. 1981, 2, 315–337. [Google Scholar] [CrossRef]
- Igoshev, A.P.; Popov, S.B. Braking indices of young radio pulsars: Theoretical perspective. Mon. Not. R. Astron. Soc. 2020, 499, 2826–2835. [Google Scholar] [CrossRef]
- Sanjeev Kumar, H.; Safi-Harb, S. Variability of the High-Magnetic Field X-ray Pulsar PSR J1846-0258 Associated with the Supernova Remnant Kes 75 as Revealed by the Chandra X-ray Observatory. arXiv 2008, arXiv:0802.1242. [Google Scholar] [CrossRef]
- Levin, L.; Bailes, M.; Bates, S.; Bhat, N.D.R.; Burgay, M.; Burke-Spolaor, S.; D’Amico, N.; Johnston, S.; Keith, M.; Kramer, M.; et al. A Radio-loud Magnetar in X-ray Quiescence. Astrophys. J. Lett. 2010, 721, L33–L37. [Google Scholar] [CrossRef] [Green Version]
- Camilo, F.; Scholz, P.; Serylak, M.; Buchner, S.; Merryfield, M.; Kaspi, V.M.; Archibald, R.F.; Bailes, M.; Jameson, A.; van Straten, W.; et al. Revival of the Magnetar PSR J1622-4950: Observations with MeerKAT, Parkes, XMM-Newton, Swift, Chandra, and NuSTAR. Astrophys. J. 2018, 856, 180. [Google Scholar] [CrossRef]
- Esposito, P.; De Luca, A.; Turolla, R.; Coti Zelati, F.; Hummel, W.; Tiengo, A.; Israel, G.L.; Rea, N.; Mignani, R.P.; Borghese, A. Long X-ray flares from the central source in RCW 103. XMM-Newton and VLT observations in the aftermath of the 2016 outburst. Astron. Astrophys. 2019, 626, A19. [Google Scholar] [CrossRef] [Green Version]
- Halpern, J.P.; Gotthelf, E.V. Spin-Down Measurement of PSR J1852+0040 in Kesteven 79: Central Compact Objects as Anti-Magnetars. Astrophys. J. 2010, 709, 436–446. [Google Scholar] [CrossRef]
- Popov, S.B. Origin of Magnetar-Scale Crustal Field in PSR J1852+0040 and ’Frozen’ Magnetars. Publ. Astron. Soc. Aust. 2013, 30, e045. [Google Scholar] [CrossRef] [Green Version]
- Morris, T.; Podsiadlowski, P. The Triple-Ring Nebula Around SN 1987A: Fingerprint of a Binary Merger. Science 2007, 315, 1103. [Google Scholar] [CrossRef] [Green Version]
- Ho, W.C.G. Evolution of a buried magnetic field in the central compact object neutron stars. Mon. Not. R. Astron. Soc. 2011, 414, 2567–2575. [Google Scholar] [CrossRef]
- Igoshev, A.P.; Elfritz, J.G.; Popov, S.B. Post-fall-back evolution of multipolar magnetic fields and radio pulsar activation. Mon. Not. R. Astron. Soc. 2016, 462, 3689–3702. [Google Scholar] [CrossRef] [Green Version]
- Espinoza, C.M.; Lyne, A.G.; Kramer, M.; Manchester, R.N.; Kaspi, V.M. The Braking Index of PSR J1734-3333 and the Magnetar Population. Astrophys. J. Lett. 2011, 741, L13. [Google Scholar] [CrossRef] [Green Version]
- Rea, N.; Viganò, D.; Israel, G.L.; Pons, J.A.; Torres, D.F. 3XMM J185246.6+003317: Another Low Magnetic Field Magnetar. Astrophys. J. Lett. 2014, 781, L17. [Google Scholar] [CrossRef] [Green Version]
- Chevalier, R.A. Neutron Star Accretion in a Supernova. Astrophys. J. 1989, 346, 847. [Google Scholar] [CrossRef]
- Muslimov, A.; Page, D. Delayed Switch-on of Pulsars. Astrophys. J. Lett. 1995, 440, L77. [Google Scholar] [CrossRef]
- Viganò, D.; Pons, J.A. Central compact objects and the hidden magnetic field scenario. Mon. Not. R. Astron. Soc. 2012, 425, 2487–2492. [Google Scholar] [CrossRef] [Green Version]
- Shigeyama, T.; Kashiyama, K. Repulsion of fallback matter due to central energy source in supernova. Publ. Astron. Soc. Jpn. 2018, 70, 107. [Google Scholar] [CrossRef]
- Zhong, Y.; Kashiyama, K.; Shigeyama, T.; Takasao, S. A Necessary Condition for Supernova Fallback Invading Newborn Neutron-star Magnetosphere. Astrophys. J. 2021, 917, 71. [Google Scholar] [CrossRef]
- Janka, H.T.; Wongwathanarat, A.; Kramer, M. Supernova Fallback as Origin of Neutron Star Spins and Spin-kick Alignment. Astrophys. J. 2022, 926, 9. [Google Scholar] [CrossRef]
- Gourgouliatos, K.N.; Cumming, A.; Reisenegger, A.; Armaza, C.; Lyutikov, M.; Valdivia, J.A. Hall equilibria with toroidal and poloidal fields: Application to neutron stars. Mon. Not. R. Astron. Soc. 2013, 434, 2480–2490. [Google Scholar] [CrossRef] [Green Version]
- Gourgouliatos, K.N.; Cumming, A. Hall attractor in axially symmetric magnetic fields in neutron star crusts. Phys. Rev. Lett. 2014, 112, 171101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, T.S.; Hollerbach, R. Three Dimensional Simulation of the Magnetic Stress in a Neutron Star Crust. Phys. Rev. Lett. 2015, 114, 191101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bransgrove, A.; Levin, Y.; Beloborodov, A. Magnetic field evolution of neutron stars - I. Basic formalism, numerical techniques and first results. Mon. Not. R. Astron. Soc. 2018, 473, 2771–2790. [Google Scholar] [CrossRef]
- Igoshev, A.P.; Popov, S.B. How to make a mature accreting magnetar. Mon. Not. R. Astron. Soc. 2018, 473, 3204–3210. [Google Scholar] [CrossRef]
- Caleb, M.; Heywood, I.; Rajwade, K.; Malenta, M.; Stappers, B.W.; Barr, E.; Chen, W.; Morello, V.; Sanidas, S.; van den Eijnden, J.; et al. Discovery of a radio-emitting neutron star with an ultra-long spin period of 76 s. Nat. Astron. 2022, 6, 828–836. [Google Scholar] [CrossRef]
- Hurley-Walker, N.; Zhang, X.; Bahramian, A.; McSweeney, S.J.; O’Doherty, T.N.; Hancock, P.J.; Morgan, J.S.; Anderson, G.E.; Heald, G.H.; Galvin, T.J. A radio transient with unusually slow periodic emission. Nature 2022, 601, 526–530. [Google Scholar] [CrossRef]
- Beniamini, P.; Wadiasingh, Z.; Hare, J.; Rajwade, K.M.; Younes, G.; van der Horst, A.J. Evidence for an abundant old population of Galactic ultra-long period magnetars and implications for fast radio bursts. Mon. Not. R. Astron. Soc. 2023, 520, 1872–1894. [Google Scholar] [CrossRef]
- Khokhriakova, A.D.; Popov, S.B. Origin of young accreting neutron stars in high-mass X-ray binaries in supernova remnants. Mon. Not. R. Astron. Soc. 2022, 511, 4447–4453. [Google Scholar] [CrossRef]
- Fortin, F.; García, F.; Simaz Bunzel, A.; Chaty, S. A catalogue of high-mass X-ray binaries in the Galaxy: From the INTEGRAL to the Gaia era. Astron. Astrophys. 2023, 671, A149. [Google Scholar] [CrossRef]
- Ostriker, J.P.; Rees, M.J.; Silk, J. Some Observable Consequences of Accretion by Defunct Pulsars. Astrophys. Lett. 1970, 6, 179. [Google Scholar]
- Shvartsman, V.G. Ionization Zones around Neutron Stars: Hα Emission, Heating of the Interstellar Medium, and the Influence on Accretion. Sov. Astron. 1971, 14, 662. [Google Scholar]
- Treves, A.; Colpi, M. The observability of old isolated neutron stars. Astron. Astrophys. 1991, 241, 107. [Google Scholar]
- Popov, S.B.; Colpi, M.; Treves, A.; Turolla, R.; Lipunov, V.M.; Prokhorov, M.E. The Neutron Star Census. Astrophys. J. 2000, 530, 896–903. [Google Scholar] [CrossRef] [Green Version]
- Toropina, O.D.; Romanova, M.M.; Toropin, Y.M.; Lovelace, R.V.E. Magnetic Inhibition of Accretion and Observability of Isolated Old Neutron Stars. Astrophys. J. 2003, 593, 472–480. [Google Scholar] [CrossRef] [Green Version]
- Sweeney, D.; Tuthill, P.; Sharma, S.; Hirai, R. The Galactic underworld: The spatial distribution of compact remnants. Mon. Not. R. Astron. Soc. 2022, 516, 4971–4979. [Google Scholar] [CrossRef]
- Shklovskii, I.S. Possible Causes of the Secular Increase in Pulsar Periods. Sov. Astron. 1970, 13, 562. [Google Scholar]
- Coleman, M.S.B.; Burrows, A. Kicks and induced spins of neutron stars at birth. Mon. Not. R. Astron. Soc. 2022, 517, 3938–3961. [Google Scholar] [CrossRef]
- Igoshev, A.P.; Chruslinska, M.; Dorozsmai, A.; Toonen, S. Combined analysis of neutron star natal kicks using proper motions and parallax measurements for radio pulsars and Be X-ray binaries. Mon. Not. R. Astron. Soc. 2021, 508, 3345–3364. [Google Scholar] [CrossRef]
- Boldin, P.A.; Popov, S.B. The evolution of isolated neutron stars until accretion: The role of the initial magnetic field. Mon. Not. R. Astron. Soc. 2010, 407, 1090–1097. [Google Scholar] [CrossRef] [Green Version]
- Shakura, N.; Postnov, K.; Kochetkova, A.; Hjalmarsdotter, L. Theory of quasi-spherical accretion in X-ray pulsars. Mon. Not. R. Astron. Soc. 2012, 420, 216–236. [Google Scholar] [CrossRef] [Green Version]
- Popov, S.B.; Postnov, K.A.; Shakura, N.I. Settling accretion on to isolated neutron stars from interstellar medium. Mon. Not. R. Astron. Soc. 2015, 447, 2817–2820. [Google Scholar] [CrossRef] [Green Version]
- Lorimer, D.R.; Bailes, M.; McLaughlin, M.A.; Narkevic, D.J.; Crawford, F. A Bright Millisecond Radio Burst of Extragalactic Origin. Science 2007, 318, 777. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B. The Physics of Fast Radio Bursts. arXiv 2022, arXiv:2212.03972. [Google Scholar] [CrossRef]
- Popov, S.B.; Postnov, K.A. Hyperflares of SGRs as an engine for millisecond extragalactic radio bursts. arXiv 2007, arXiv:0710.2006. [Google Scholar]
- CHIME/FRB Collaboration; Andersen, B.C.; Bandura, K.M.; Bhardwaj, M.; Bij, A.; Boyce, M.M.; Boyle, P.J.; Brar, C.; Cassanelli, T.; Chawla, P.; et al. A bright millisecond-duration radio burst from a Galactic magnetar. Nature 2020, 587, 54–58. [Google Scholar] [CrossRef]
- Bochenek, C.D.; Ravi, V.; Belov, K.V.; Hallinan, G.; Kocz, J.; Kulkarni, S.R.; McKenna, D.L. A fast radio burst associated with a Galactic magnetar. Nature 2020, 587, 59–62. [Google Scholar] [CrossRef]
- Li, C.K.; Lin, L.; Xiong, S.L.; Ge, M.Y.; Li, X.B.; Li, T.P.; Lu, F.J.; Zhang, S.N.; Tuo, Y.L.; Nang, Y.; et al. HXMT identification of a non-thermal X-ray burst from SGR J1935+2154 and with FRB 200428. Nat. Astron. 2021, 5, 378–384. [Google Scholar] [CrossRef]
- Mereghetti, S.; Savchenko, V.; Ferrigno, C.; Götz, D.; Rigoselli, M.; Tiengo, A.; Bazzano, A.; Bozzo, E.; Coleiro, A.; Courvoisier, T.J.L.; et al. INTEGRAL Discovery of a Burst with Associated Radio Emission from the Magnetar SGR 1935+2154. Astrophys. J. Lett. 2020, 898, L29. [Google Scholar] [CrossRef]
- Ridnaia, A.; Svinkin, D.; Frederiks, D.; Bykov, A.; Popov, S.; Aptekar, R.; Golenetskii, S.; Lysenko, A.; Tsvetkova, A.; Ulanov, M.; et al. A peculiar hard X-ray counterpart of a Galactic fast radio burst. Nat. Astron. 2021, 5, 372–377. [Google Scholar] [CrossRef]
- Tavani, M.; Casentini, C.; Ursi, A.; Verrecchia, F.; Addis, A.; Antonelli, L.A.; Argan, A.; Barbiellini, G.; Baroncelli, L.; Bernardi, G.; et al. An X-ray burst from a magnetar enlightening the mechanism of fast radio bursts. Nat. Astron. 2021, 5, 401–407. [Google Scholar] [CrossRef]
- The CHIME/FRB Collaboration; Andersen, B.C.; Bandura, K.; Bhardwaj, M.; Boyle, P.J.; Brar, C.; Cassanelli, T.; Chatterjee, S.; Chawla, P.; Cook, A.M.; et al. CHIME/FRB Discovery of 25 Repeating Fast Radio Burst Sources. arXiv 2023, arXiv:2301.08762. [Google Scholar] [CrossRef]
- Hu, C.R.; Huang, Y.F. A Comprehensive Analysis on Repeating Fast Radio Bursts. arXiv 2022, arXiv:2212.05242. [Google Scholar] [CrossRef]
- Popov, S.B.; Pshirkov, M.S. Future of Neutron Star Studies with Fast Radio Bursts. Particles 2023, 6, 451–469. [Google Scholar] [CrossRef]
- Zhang, Y.K.; Li, D.; Zhang, B.; Cao, S.; Feng, Y.; Wang, W.Y.; Qu, Y.H.; Niu, J.R.; Zhu, W.W.; Han, J.L.; et al. FAST Observations of FRB 20220912A: Burst Properties and Polarization Characteristics. arXiv 2023, arXiv:2304.14665. [Google Scholar] [CrossRef]
- Chime/Frb Collaboration; Amiri, M.; Andersen, B.C.; Bandura, K.M.; Bhardwaj, M.; Boyle, P.J.; Brar, C.; Chawla, P.; Chen, T.; Cliche, J.F.; et al. Periodic activity from a fast radio burst source. Nature 2020, 582, 351–355. [Google Scholar] [CrossRef]
- Rajwade, K.M.; Mickaliger, M.B.; Stappers, B.W.; Morello, V.; Agarwal, D.; Bassa, C.G.; Breton, R.P.; Caleb, M.; Karastergiou, A.; Keane, E.F.; et al. Possible periodic activity in the repeating FRB 121102. Mon. Not. R. Astron. Soc. 2020, 495, 3551–3558. [Google Scholar] [CrossRef]
- Lyutikov, M.; Barkov, M.V.; Giannios, D. FRB Periodicity: Mild Pulsars in Tight O/B-star Binaries. Astrophys. J. Lett. 2020, 893, L39. [Google Scholar] [CrossRef] [Green Version]
- Barkov, M.V.; Popov, S.B. Formation of periodic FRB in binary systems with eccentricity. Mon. Not. R. Astron. Soc. 2022, 515, 4217–4228. [Google Scholar] [CrossRef]
- Zanazzi, J.J.; Lai, D. Periodic Fast Radio Bursts with Neutron Star Free Precession. Astrophys. J. Lett. 2020, 892, L15. [Google Scholar] [CrossRef]
- Levin, Y.; Beloborodov, A.M.; Bransgrove, A. Precessing Flaring Magnetar as a Source of Repeating FRB 180916.J0158+65. Astrophys. J. Lett. 2020, 895, L30. [Google Scholar] [CrossRef]
- Beniamini, P.; Wadiasingh, Z.; Metzger, B.D. Periodicity in recurrent fast radio bursts and the origin of ultralong period magnetars. Mon. Not. R. Astron. Soc. 2020, 496, 3390–3401. [Google Scholar] [CrossRef]
- Popov, S.B. High magnetic field neutron stars and magnetars in binary systems. IAU Symp. 2023, 363, 61–71. [Google Scholar] [CrossRef]
- Makishima, K.; Enoto, T.; Yoneda, H.; Odaka, H. A NuSTAR confirmation of the 36 ks hard X-ray pulse-phase modulation in the magnetar 1E 1547.0-5408. Mon. Not. R. Astron. Soc. 2021, 502, 2266–2284. [Google Scholar] [CrossRef]
- Zhang, B. The physical mechanisms of fast radio bursts. Nature 2020, 587, 45–53. [Google Scholar] [CrossRef]
- Popov, S.B. FRB emission mechanisms vs. observations. arXiv 2022, arXiv:2210.14268. [Google Scholar] [CrossRef]
- Turolla, R.; Zane, S.; Watts, A.L. Magnetars: The physics behind observations. A review. Rep. Prog. Phys. 2015, 78, 116901. [Google Scholar] [CrossRef] [Green Version]
- Gordon, A.C.; Fong, W.F.; Kilpatrick, C.D.; Eftekhari, T.; Leja, J.; Prochaska, J.X.; Nugent, A.E.; Bhandari, S.; Blanchard, P.K.; Caleb, M.; et al. The Demographics, Stellar Populations, and Star Formation Histories of Fast Radio Burst Host Galaxies: Implications for the Progenitors. arXiv 2023, arXiv:2302.05465. [Google Scholar]
- Kirsten, F.; Marcote, B.; Nimmo, K.; Hessels, J.W.T.; Bhardwaj, M.; Tendulkar, S.P.; Keimpema, A.; Yang, J.; Snelders, M.P.; Scholz, P.; et al. A repeating fast radio burst source in a globular cluster. Nature 2022, 602, 585–589. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popov, S.B. The Zoo of Isolated Neutron Stars. Universe 2023, 9, 273. https://doi.org/10.3390/universe9060273
Popov SB. The Zoo of Isolated Neutron Stars. Universe. 2023; 9(6):273. https://doi.org/10.3390/universe9060273
Chicago/Turabian StylePopov, Sergei B. 2023. "The Zoo of Isolated Neutron Stars" Universe 9, no. 6: 273. https://doi.org/10.3390/universe9060273
APA StylePopov, S. B. (2023). The Zoo of Isolated Neutron Stars. Universe, 9(6), 273. https://doi.org/10.3390/universe9060273