Do Multi-Structural One-Off FRBs Trace Similar Cosmology History with Repeaters?
Abstract
:1. Introduction
2. Data Selection
2.1. Selection Function
2.2. Samples
- bonsai_snr > 10;
- ;
- Not detected in far side-lobes;
- (ms);
- excluded_flag = 0;
- The first detected burst if the FRB source is a repeater;
- (Jy ms).
2.3. Classification
- One-offs without multi-structures (167 cases);
- Repeaters (20 cases);
- Multi-structural one-offs (18 cases);
- Repeaters + multi-structural one-offs (38 cases).
3. Method
3.1. Redshift Calculation
3.2. Calculation of Energy Functions
3.3. Statistical Tests
4. Results and Discussion
4.1. Energy Functions
4.2. History of Redshift Evolution
4.3. Statistical Analysis
5. Conclusions
- The trend of the event rate of non-repeating FRBs is consistent with what was found by Hashimoto et al. [22]. The redshift evolution of the event rate of repeaters, however, shows no similarity with that of the star formation rate, which was suggested by Hashimoto et al. [22] and James et al. [24]. We calculated the energy functions for 167 one-offs, 20 repeaters, 18 multi-structural one-offs, and 38 repeaters and multi-structural one-offs combined. The redshift evolution of all four subsamples was found to be distinct from that of the star formation rate.
- We carried out statistical testing to quantify the similarities between multi-structural one-offs and repeaters. We found that, based on the current sample size, the difference between repeaters and multi-structural one-offs can be distinguished from statistical analysis and the differences between multi-structural one-offs and usual one-offs are not significant. Through K–S and M–W–W test, we can conclude that multi-structural one-offs may have differences to repeaters. Whether morphological multi-structural one-offs are candidates of repeaters still needs to be determined when a larger sample size is available.
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Chatterjee, S.; Law, C.J.; Wharton, R.S.; Burke-Spolaor, S.; Hessels, J.W.T.; Bower, G.C.; Cordes, J.M.; Tendulkar, S.P.; Bassa, C.G.; Demorest, P.; et al. A Direct Localization of a Fast Radio Burst and Its Host. Nature 2017, 541, 58–61. [Google Scholar] [CrossRef] [PubMed]
- The CHIME/FRB Collaboration. A Second Source of Repeating Fast Radio Bursts. Nature 2019, 566, 235–238. [Google Scholar] [CrossRef] [PubMed]
- Caleb, M.; Keane, E. A Decade and a Half of Fast Radio Burst Observations. Universe 2021, 7, 453. [Google Scholar] [CrossRef]
- Petroff, E.; Hessels, J.W.T.; Lorimer, D.R. Fast Radio Bursts. Astron. Astrophys. Rev. 2019, 27, 4. [Google Scholar] [CrossRef]
- Zhang, B. The Physical Mechanisms of Fast Radio Bursts. Nature 2020, 587, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Lorimer, D.R.; Bailes, M.; McLaughlin, M.A.; Narkevic, D.J.; Crawford, F. A Bright Millisecond Radio Burst of Extragalactic Origin. Science 2007, 318, 777–780. [Google Scholar] [CrossRef]
- Petroff, E.; Barr, E.D.; Jameson, A.; Keane, E.F.; Bailes, M.; Kramer, M.; Morello, V.; Tabbara, D.; Van Straten, W. FRBCAT: The Fast Radio Burst Catalogue. Publ. Astron. Soc. Aust. 2016, 33, e045. [Google Scholar] [CrossRef]
- Amiri, M.; Andersen, B.C.; Bandura, K.; Berger, S.; Bhardwaj, M.; Boyce, M.M.; Boyle, P.J.; Brar, C.; Breitman, D.; Cassanelli, T.; et al. The First CHIME/FRB Fast Radio Burst Catalog. ApJS 2021, 257, 59. [Google Scholar] [CrossRef]
- Chen, B.H.; Hashimoto, T.; Goto, T.; Kim, S.J.; Santos, D.J.D.; On, A.Y.L.; Lu, T.-Y. Uncloaking Hidden Repeating Fast Radio Bursts with Unsupervised Machine Learning. Mon. Not. R. Astron. Soc. 2022, 509, 1227–1236. [Google Scholar] [CrossRef]
- Deng, W.; Zhang, B. Cosmological implications of fast radio burst/gamma-ray burst associations. ApJ 2014, 783, L35. [Google Scholar] [CrossRef]
- Gao, H.; Li, Z.; Zhang, B. Fast radio burst/gamma-ray burst cosmography. ApJ 2014, 788, 189. [Google Scholar] [CrossRef]
- Zhou, B.; Li, X.; Wang, T.; Fan, Y.-Z.; Wei, D.-M. Fast Radio Bursts as a Cosmic Probe? Phys. Rev. D 2014, 89, 107303. [Google Scholar] [CrossRef]
- Madhavacheril, M.S.; Battaglia, N.; Smith, K.M.; Sievers, J.L. Cosmology with KSZ: Breaking the Optical Depth Degeneracy with Fast Radio Bursts. Phys. Rev. D 2019, 100, 103532. [Google Scholar] [CrossRef]
- Cordes, J.M.; Chatterjee, S. Fast Radio Bursts: An Extragalactic Enigma. Annu. Rev. Astron. Astrophys. 2019, 57, 417–465. [Google Scholar] [CrossRef]
- Petroff, E.; Hessels, J.W.T.; Lorimer, D.R. Fast Radio Bursts at the Dawn of the 2020s. Astron. Astrophys. Rev. 2022, 30, 2. [Google Scholar] [CrossRef]
- Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 2021, 7, 56. [Google Scholar] [CrossRef]
- Platts, E.; Weltman, A.; Walters, A.; Tendulkar, S.P.; Gordin, J.E.B.; Kandhai, S. A Living Theory Catalogue for Fast Radio Bursts. Phys. Rep. 2019, 821, 1–27. [Google Scholar] [CrossRef]
- Li, C.K.; Lin, L.; Xiong, S.L.; Ge, M.Y.; Li, X.B.; Li, T.P.; Lu, F.J.; Zhang, S.N.; Tuo, Y.L.; Nang, Y.; et al. HXMT Identification of a Non-Thermal X-Ray Burst from SGR J1935+2154 and with FRB 200428. Nat. Astron. 2021, 5, 378–384. [Google Scholar] [CrossRef]
- Lin, L.; Zhang, C.F.; Wang, P.; Gao, H.; Guan, X.; Han, J.L.; Jiang, J.C.; Jiang, P.; Lee, K.J.; Li, D.; et al. No Pulsed Radio Emission during a Bursting Phase of a Galactic Magnetar. Nature 2020, 587, 63–65. [Google Scholar] [CrossRef]
- The CHIME/FRB Collaboration. A Bright Millisecond-Duration Radio Burst from a Galactic Magnetar. Nature 2020, 587, 54–58. [Google Scholar] [CrossRef]
- Bochenek, C.D.; Ravi, V.; Belov, K.V.; Hallinan, G.; Kocz, J.; Kulkarni, S.R.; McKenna, D.L. A Fast Radio Burst Associated with a Galactic Magnetar. Nature 2020, 587, 59–62. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, T.; Goto, T.; On, A.Y.L.; Lu, T.-Y.; Santos, D.J.D.; Ho, S.C.-C.; Kim, S.J.; Wang, T.-W.; Hsiao, T.Y.-Y. No Redshift Evolution of Non-Repeating Fast Radio Burst Rates. Mon. Not. R. Astron. Soc. 2020, 498, 3927–3945. [Google Scholar] [CrossRef]
- Locatelli, N.; Ronchi, M.; Ghirlanda, G.; Ghisellini, G. The Luminosity–Volume Test for Cosmological Fast Radio Bursts. A&A 2019, 625, A109. [Google Scholar]
- James, C.W.; Prochaska, J.X.; Macquart, J.-P.; North-Hickey, F.O.; Bannister, K.W.; Dunning, A. The Fast Radio Burst Population Evolves, Consistent with the Star Formation Rate. Mon. Not. R. Astron. Soc. Lett. 2021, 510, L18–L23. [Google Scholar] [CrossRef]
- Arcus, W.R.; Macquart, J.-P.; Sammons, M.W.; James, C.W.; Ekers, R.D. The Fast Radio Burst Dispersion Measure Distribution. Mon. Not. R. Astron. Soc. 2021, 501, 5319–5329. [Google Scholar] [CrossRef]
- Zhang, R.C.; Zhang, B.; Li, Y.; Lorimer, D.R. On the Energy and Redshift Distributions of Fast Radio Bursts. Mon. Not. R. Astron. Soc. 2020, 501, 157–167. [Google Scholar] [CrossRef]
- Pleunis, Z.; Good, D.C.; Kaspi, V.M.; Mckinven, R.; Ransom, S.M.; Scholz, P.; Bandura, K.; Bhardwaj, M.; Boyle, P.J.; Brar, C.; et al. Fast Radio Burst Morphology in the First CHIME/FRB Catalog. ApJ 2021, 923, 1. [Google Scholar] [CrossRef]
- Feng, Y.; Li, D.; Yang, Y.-P.; Zhang, Y.; Zhu, W.; Zhang, B.; Lu, W.; Wang, P.; Dai, S.; Lynch, R.S.; et al. Frequency-Dependent Polarization of Repeating Fast Radio Bursts—Implications for Their Origin. Science 2022, 375, 1266–1270. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, Y.-K.; Li, D.; Yang, Y.-P.; Wang, P.; Niu, C.-H.; Dai, S.; Yao, J.-M. Circular Polarization in Two Active Repeating Fast Radio Bursts. Sci. Bull. 2022, 67, 2398–2401. [Google Scholar] [CrossRef]
- Caleb, M.; Stappers, B.W.; Rajwade, K.; Flynn, C. Are All Fast Radio Bursts Repeating Sources? Mon. Not. R. Astron. Soc. 2019, 484, 5500–5508. [Google Scholar] [CrossRef]
- Cui, X.-H.; Zhang, C.-M.; Wang, S.-Q.; Zhang, J.-W.; Li, D.; Peng, B.; Zhu, W.-W.; Wang, N.; Strom, R.; Ye, C.-Q.; et al. Fast Radio Bursts: Do Repeaters and Non-Repeaters Originate in Statistically Similar Ensembles? Mon. Not. R. Astron. Soc. 2020, 500, 3275–3280. [Google Scholar] [CrossRef]
- Connor, L.; Petroff, E. On Detecting Repetition from Fast Radio Bursts. ApJL 2018, 861, L1. [Google Scholar] [CrossRef]
- Hessels, J.W.T.; Spitler, L.G.; Seymour, A.D.; Cordes, J.M.; Michilli, D.; Lynch, R.S.; Gourdji, K.; Archibald, A.M.; Bassa, C.G.; Bower, G.C.; et al. FRB 121102 Bursts Show Complex Time–Frequency Structure. ApJ 2019, 876, L23. [Google Scholar] [CrossRef]
- Hashimoto, T.; Goto, T.; Chen, B.H.; Ho, S.C.-C.; Hsiao, T.Y.-Y.; Wong, Y.H.V.; On, A.Y.L.; Kim, S.J.; Kilerci-Eser, E.; Huang, K.-C.; et al. Energy Functions of Fast Radio Bursts Derived from the First CHIME/FRB Catalogue. Mon. Not. R. Astron. Soc. 2022, 511, 1961–1976. [Google Scholar] [CrossRef]
- Collaboration, T.C.; Andersen, B.C.; Bandura, K.; Bhardwaj, M.; Boyle, P.J.; Brar, C.; Cassanelli, T.; Chatterjee, S.; Chawla, P.; Cook, A.M.; et al. CHIME/FRB Discovery of 25 Repeating Fast Radio Burst Sources 2023. ApJ 2023, 947, 83. [Google Scholar]
- Michilli, D.; Bhardwaj, M.; Brar, C.; Patel, C.; Gaensler, B.M.; Kaspi, V.M.; Kirichenko, A.; Masui, K.W.; Sand, K.R.; Scholz, P.; et al. Sub-Arcminute Localization of 13 Repeating Fast Radio Bursts Detected by CHIME/FRB 2022. arXiv 2022, arXiv:2212.11941. [Google Scholar]
- Macquart, J.-P.; Prochaska, J.X.; McQuinn, M.; Bannister, K.W.; Bhandari, S.; Day, C.K.; Deller, A.T.; Ekers, R.D.; James, C.W.; Marnoch, L.; et al. A Census of Baryons in the Universe from Localized Fast Radio Bursts. Nature 2020, 581, 391–395. [Google Scholar] [CrossRef]
- Schmidt, M. Space Distribution and Luminosity Functions of Quasi-Stellar Radio Sources. ApJ 1968, 151, 393. [Google Scholar] [CrossRef]
- Smirnov, N. Table for Estimating the Goodness of Fit of Empirical Distributions. Ann. Math. Stat. 1948, 19, 279–281. [Google Scholar] [CrossRef]
- Mann, H.B.; Whitney, D.R. On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other. Ann. Math. Stat. 1947, 18, 50–60. [Google Scholar] [CrossRef]
- Luo, R.; Lee, K.; Lorimer, D.R.; Zhang, B. On the Normalized FRB Luminosity Function. Mon. Not. R. Astron. Soc. 2018, 481, 2320–2337. [Google Scholar] [CrossRef]
- Shin, K.; Masui, K.W.; Bhardwaj, M.; Cassanelli, T.; Chawla, P.; Dobbs, M.; Dong, F.A.; Fonseca, E.; Gaensler, B.M.; Herrera-Martín, A.; et al. Inferring the Energy and Distance Distributions of Fast Radio Bursts Using the First CHIME/FRB Catalog. ApJ 2023, 944, 105. [Google Scholar] [CrossRef]
- Madau, P.; Fragos, T. Radiation Backgrounds at Cosmic Dawn: X-Rays from Compact Binaries. ApJ 2017, 840, 39. [Google Scholar] [CrossRef]
- López Fernández, R.; González Delgado, R.M.; Pérez, E.; García-Benito, R.; Cid Fernandes, R.; Schoenell, W.; Sánchez, S.F.; Gallazzi, A.; Sánchez-Blázquez, P.; Vale Asari, N.; et al. Cosmic Evolution of the Spatially Resolved Star Formation Rate and Stellar Mass of the CALIFA Survey. A&A 2018, 615, A27. [Google Scholar]
Width | Fluence | |||||
---|---|---|---|---|---|---|
() | (ms) | (ms) | (Jy ms) | (MHz) | (erg) | |
Test 1 | 0.087 | 0.011 | 0.099 | 0.606 | 0.618 | |
Test 2 | 0.104 | 0.970 | 0.365 | 0.242 | 0.229 | 0.656 |
Test 3 | 0.781 | 0.034 | 0.053 | 0.135 | 0.058 | 0.676 |
Width | Fluence | |||||
---|---|---|---|---|---|---|
() | (ms) | (ms) | (Jy ms) | (MHz) | (erg) | |
Test 1 | 0.028 | 0.002 | 0.109 | 0.901 | 0.177 | |
Test 2 | 0.078 | 0.711 | 0.518 | 0.150 | 0.130 | 0.638 |
Test 3 | 0.304 | 0.006 | 0.016 | 0.070 | 0.021 | 0.265 |
Width | Fluence | |||||
---|---|---|---|---|---|---|
() | (ms) | (ms) | (Jy ms) | (MHz) | (erg) | |
Test 1 | 0.028 | 0.002 | 0.108 | 0.899 | 0.177 | |
Test 2 | 0.078 | 0.709 | 0.517 | 0.149 | 0.152 | 0.637 |
Test 3 | 0.599 | 0.011 | 0.032 | 0.136 | 0.041 | 0.520 |
Redshift Bin | |||
---|---|---|---|
One-offs | |||
Repeaters | |||
Multi-structural one-offs | |||
Repeaters + multi-structural one-offs | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Niu, C.; Cui, X.; Li, D.; Feng, Y.; Tsai, C.; Wang, P.; Zhang, Y.; Meng, F.; Zheng, Z. Do Multi-Structural One-Off FRBs Trace Similar Cosmology History with Repeaters? Universe 2023, 9, 251. https://doi.org/10.3390/universe9060251
Zhu Y, Niu C, Cui X, Li D, Feng Y, Tsai C, Wang P, Zhang Y, Meng F, Zheng Z. Do Multi-Structural One-Off FRBs Trace Similar Cosmology History with Repeaters? Universe. 2023; 9(6):251. https://doi.org/10.3390/universe9060251
Chicago/Turabian StyleZhu, Yuhao, Chenhui Niu, Xianghan Cui, Di Li, Yi Feng, Chaowei Tsai, Pei Wang, Yongkun Zhang, Fanyi Meng, and Zheng Zheng. 2023. "Do Multi-Structural One-Off FRBs Trace Similar Cosmology History with Repeaters?" Universe 9, no. 6: 251. https://doi.org/10.3390/universe9060251
APA StyleZhu, Y., Niu, C., Cui, X., Li, D., Feng, Y., Tsai, C., Wang, P., Zhang, Y., Meng, F., & Zheng, Z. (2023). Do Multi-Structural One-Off FRBs Trace Similar Cosmology History with Repeaters? Universe, 9(6), 251. https://doi.org/10.3390/universe9060251