Octonion Internal Space Algebra for the Standard Model †
Abstract
:1. Introduction
1.1. (Split) Octonions as Composition Algebras
1.2. Jordan Algebras; Guts; Clifford Algebras
1.3. Main Message and Organization of the Paper
2. Triality Realization of :
2.1. The Action of Octonions on Themselves
2.2. as a Generating Algebra of and
2.3. Complex Structure and Symmetry Breaking in
3. The Internal Space Subalgebra of
3.1. Equivalence Class of Lorentz-like Clifford Algebras
3.2. as Annihilator of Sterile Neutrino
3.3. Superselection Rules: Restricted Particle Subspace
3.4. Complex Structure Associated with : A Comment
4. Particle Subspace and the Higgs Field
4.1. The Higgs as a Scalar Part of a Superconnection
4.2. Higgs Potential and Mass Formulae
5. Outlook
5.1. Coming to
5.2. Two Ways to Avoid Fermion Doubling
5.3. Summary and Discussion; a Challenge
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Notation for Clifford Algebras
Appendix A.2. Interrelations between the L, E, and R Bases of so(8)
1 | For a pleasant-to-read review of octonions, their history, and applications, see [13]. |
2 | I had the good fortune to know him personally. See Witten’s eloquent characterization of his personality and work in the Wikipedia entry on Feza Gürsey (1921–1991). |
3 | |
4 | For an enlightening review of the algebra of GUTs and some 40 references, see [38]. |
5 | Aptly called geometric algebra by its inventor—see [39]. |
6 | For any associative ring , particularly for the division rings , we denote the algebra of matrices with entries in by . |
7 | See [50] for a reader-friendly review of Moufang loops and for a glimpse of the personality of Ruth Moufang (1905–1971). |
8 | The 10-fold classification of graded Clifford algebras also involves signs coming from squaring two antiunitary charge conjugation operators—see [51] Chapter 13, pp. 87–125. |
9 | |
10 | The Dublin Professor of Astronomy William Rowan Hamilton (1805–1865) and the Stettin Gymnasium teacher Hermann Günter Grassmann (1809–1877) published their papers on quaternions and on “extensive algebras”, respectively, in the same year of 1844. William Kingdom Clifford (1845–1879) combined the two in a “geometric algebra” in 1878, a year before his death, aged 33, referring to both of them. |
References
- Baez, J.C. Can we understand the Standard Model? talk at the Workshop. In Octonions and the Standard Model; Perimeter Institute: Waterloo, ON, Canada, 2021. [Google Scholar]
- Todorov, I. Superselection of the weak hypercharge and the algebra of the Standard Model. JHEP 2021, 4, 164. [Google Scholar] [CrossRef]
- Jordan, P. Über Verallgemeinerungsmöglichkeiten des Formalismus der Quantenmechanik. Nachr. Akad. Wiss. Göttingen Math. Phys. 1933, 41, 209217. [Google Scholar]
- Jordan, P.; von Neumann, J.; Wigner, E. On an algebraic generalization of the quantum mechanical formalism. Ann. Math. 1934, 36, 29–64. [Google Scholar] [CrossRef]
- Connes, A. Essay on physics and noncommutative geometry. In The Interface of Mathematics and Particle Physics; Clarendon Press: Oxford, UK, 1988; Volume 24, pp. 9–48. [Google Scholar]
- Connes, A.; Lott, J. Particle models and noncommutative geometry. Nucl. Phys. Proc. Suppl. 1990, 18, 29–47. [Google Scholar] [CrossRef]
- Dubois-Violette, M.; Kerner, R.; Madore, J. Non-commutative differential geometry and new models of gauge theory. J. Math. Phys. 1990, 31, 323–329. [Google Scholar]
- Boyle, L.; Farnsworth, S. The standard model, the Pati-Salam model, and “Jordan geometry”. New J. Phys. 2020, 22, 073023. [Google Scholar] [CrossRef]
- Chamseddine, A.H.; Connes, A. Noncommutative geometry as a framework for unification of all fundamental interactions including gravity. Fortschr. Phys. 2010, 58, 553–600. [Google Scholar] [CrossRef]
- Chamseddine, A.H.; Connes, A.; van Suijlekom, W.D. Grand unification in the spectral Pati-Salam model. JHEP 2015, 1511, 011. [Google Scholar] [CrossRef]
- Chamseddine, A.H.; Iliopoulos, J.; van Suijlekom, W.D. Spectral action in matrix form. Eur. Phys. J. 2020, 80, 1045. [Google Scholar] [CrossRef]
- van Nuland, J.D.H.; van Suijlekom, W.D. One loop corrections to the spectral action. arXiv 2021, arXiv:2107.08485. [Google Scholar] [CrossRef]
- Baez, J.C. The octonions. Bull. Am. Math. Soc. 2002, 39, 145–205, Erratum in ibid 2005, 42, 213. [Google Scholar] [CrossRef]
- Günaydin, M.; Gürsey, F. Quark structure and octonions. J. Math. Phys. 1973, 14, 1651–1667. [Google Scholar] [CrossRef]
- Gürsey, F. Color quarks and octonions, The Johns Hopkins Workshop on Current Problems in High Energy Theory, 1974 Octonionic structures in particle physics. In Group Theoretical Methods in Physics; LNP 94; Springer: Berlin/Heidelberg, Germany, 1979; pp. 508–521. [Google Scholar]
- Dixon, G.M. Division algebras; spinors; idempotents; the algebraic structure of reality. arXiv 2010, arXiv:1012.1304. [Google Scholar]
- Dixon, G.M. Seeable matter; unseeable antimatter, Comment. Math. Univ. Carolin. 2014, 55, 381–386. [Google Scholar]
- Furey, C. Generations: Three prints, in colour. JHEP 2014, 10, 46. [Google Scholar] [CrossRef]
- Furey, C. Charge quantization from a number operator. Phys. Lett. 2015, 742, 195–199. [Google Scholar] [CrossRef]
- Furey, C. Standard model physics from an algebra? arXiv 2016, arXiv:1611.09182. [Google Scholar]
- Furey, C. SU(3)c×SU(2)L×U(1)Y(×U(1)X) as a symmetry of the division algebra ladder operators. Eur. Phys. J. 2018, 78, 375. [Google Scholar] [CrossRef]
- Furey, C. Three generations, two unbroken gauge symmetries, and one eight-dimensional algebra. Phys. Lett. 2018, 85, 84–89. [Google Scholar] [CrossRef]
- Furey, N.; Hughes, M.J. One generation of standard model Weyl spinors as a single copy of ℝ⊗ℂ⊗ℍ⊗. Phys. Lett. 2022, 827, 136259. [Google Scholar] [CrossRef]
- Furey, N.; Hughes, M.J. Division algebraic symmetry breaking. Phys. Lett. 2022, 831, 137186. [Google Scholar] [CrossRef]
- Dubois-Violette, M. Exceptional quantum geometry and particle physics. Nucl. Phys. 2016, 912, 426–444. [Google Scholar] [CrossRef]
- Dubois-Violette, M. Finite quantum geometry, octonions and the theory of fundamental particles, extended notes on talk at the Workshop. In Proceedings of the Octonions and the Standard Model, Paris, France, 8 February 2021. [Google Scholar]
- Todorov, I.; Drenska, S. Composition algebras, exceptional Jordan algebra and related groups. JGSP 2017, 46, 59–93. [Google Scholar] [CrossRef]
- Todorov, I.; Drenska, S. Octonions, exceptional Jordan algebra, and the role of the group F4 in particle physics. Adv. in Appl. Clifford Alg. 2018, 28, 82. [Google Scholar] [CrossRef]
- Meng, G. Euclidean Jordan algebras, hidden actions, and J-Kepler problems. J. Math. Phys. 2011, 52, 112104. [Google Scholar] [CrossRef]
- Todorov, I. Exceptional quantum algebra for the standard model of particle physics. In Lie Theory and Its Applications in Physics; Dobrev, V.K., Ed.; Chapter 3; Springer: Singapore, 2020. [Google Scholar]
- Dahn, R.W. The Forgotten Founder of Quantum Mechanics: The Science and Politics of Physicist Pascual Jordan 1902–1980. Ph.D. Thesis, University of Chicago, Chicago, IL, USA, 2019. [Google Scholar]
- Albert, A.A. On a certain algebra of quantum mechanics. Ann. Math. 1934, 35, 65–73. [Google Scholar] [CrossRef]
- Dubois-Violette, M.; Todorov, I. Exceptional quantum geometry and particle physics II. Nucl. Phys. 2019, 938, 751–761. [Google Scholar] [CrossRef]
- Dubois-Violette, M.; Todorov, I. Superconnection in the spinfactor approach to particle physics. Nucl. Phys. 2020, 957, 115065. [Google Scholar] [CrossRef]
- Todorov, I.; Dubois-Violette, M. Deducing the symmetry of the standard model from the automorphism and structure groups of the exceptional Jordan algebra. Int. J. Mod. Phys. 2018, 33, 1850118. [Google Scholar] [CrossRef]
- Haag, R. Local Quantum Physics, Fields, Particles, Algebras; Springer: Berlin/Heidelberg, Germany, 1993. [Google Scholar]
- Pati, J. Abdus Salam, Unified Lepton-Hadron Symmetry and a Gauge Theory of the Basic Interactions. Phys. Rev. 1973, 8, 1240–1251. [Google Scholar]
- Baez, J.C.; Huerta, J. The algebra of grand unified theory. Bull. Am. Math. Soc. 2010, 47, 483–552. [Google Scholar] [CrossRef]
- Doran, C.; Lasenby, A. Geometric Algebra for Physicists; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Casalbuoni, R.; Gato, R. Unified theory of quarks and leptons based on Clifford algebras. Phys. Lett. 1979, 90, 81–86. [Google Scholar] [CrossRef]
- Borel, A.; de Siebenthal, J. Les sous-groupe fermés de rang maximum des groupes de Lie clos. Comment. Math. Helv. 1949, 23, 200–221. [Google Scholar] [CrossRef]
- Nielsen, H.B.; Bennett, D. Seaking a game in which the standard model group shall win. arXiv 2013, arXiv:1306.2668. [Google Scholar]
- Maladacena, J. The symmetry and simplicity of the laws of physics and the Higgs boson. Eur. J. Phys. 2015, 37, 015802. [Google Scholar] [CrossRef]
- Fairlie, D. Higgs field and the determination of the Weinberg angle. Phys. Lett. 1979, 82, 97–100. [Google Scholar] [CrossRef]
- Neeman, Y. Internal subgroup prediction of the Goldstone-Higgs particle mass. Phys. Lett. 1979, 81, 309–310. [Google Scholar]
- Krasnov, K. SO(9) characterization of the standard model gauge group. J. Math. Phys. 2021, 62, 021703. [Google Scholar] [CrossRef]
- Boyle, L. The standard model, the exceptional Jordan algebra and triality. arXiv 2020, arXiv:2006.16265. [Google Scholar]
- Bryant, R.L. Notes on spinors in low dimensions. arXiv 2020, arXiv:2011.05568. [Google Scholar]
- Yokota, I. Exceptional Lie groups. arXiv 2009, arXiv:0902.0431. [Google Scholar]
- Stener, M. Moufang Loops General Theory and Visualization of Non-Associative Moufang Loops of Order 16. Ph.D. Thesis, Uppsala University, Uppsala, Sweden, 2016. [Google Scholar]
- Moore, G.W. Quantum symmetries and compatible Hamiltonians. Notes Phys. 2013, 695, 267. [Google Scholar]
- Tanimura, S. Superselection rules from measurement theory. arXiv 2011, arXiv:1112.5701. [Google Scholar]
- Barducci, A.; Buccella, F.; Casalbuoni, R.; Lusanna, L.; Sorace, E. Quantized Grassmann variables and unified theories. Phys. Lett. B 1977, 67, 344–346. [Google Scholar] [CrossRef]
- Budinich, P.; Trautman, A. The Spinorial Chessboard; Trieste Notes in Physics; Springer: Berlin/Heidelberg, Germany, 1988; 128p. [Google Scholar]
- Dubois-Violette, M. Complex structures and the Elie Cartan approach to the theory of spinors. In Spinors, Twistors, Clifford Algebras and Quantum Deformations; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1993; pp. 17–23. [Google Scholar]
- Penrose, R. Basic twistor theory, bi-twistors and split octonions, talk at the online lecture series. In Proceedings of the Octonions, Standard Model and Unification, (OSMU23), Online, 24 February–15 December 2023. [Google Scholar]
- Wick, G.C.; Wightman, A.S.; Wigner, E.P. The intrinsic parity of elementary particles. Phys. Rev. 1952, 88, 101–105. [Google Scholar] [CrossRef]
- Wick, G.C.; Wightman, A.S.; Wigner, E.P. Superselection rule for charge. Phys. Rev. 1970, 12, 3267–3269. [Google Scholar] [CrossRef]
- Giulini, D. Superselection rules. arXiv 2007, arXiv:0710.1516v2. [Google Scholar]
- Earman, J. Superselection rules for philosophers. Erkenntnis 2008, 69, 377–414. [Google Scholar] [CrossRef]
- Gracia-Bondia, J.M.; Iochum, B.; Schucker, T. The Standard Model in noncommutative geometry and fermion doubling. Phys. Lett. 1998, 416, 123. [Google Scholar] [CrossRef]
- Bochniak, A.; Sitarz, A.; Zalecki, P. Spectral action of the electroweak θ-terms for the Standard Model without fermion doubling. JHEP 2021, 12, 142. [Google Scholar] [CrossRef]
- Krasnov, K. Spin(11, 3), particles, and octonions. J. Math. Phys. 2022, 63, 031701. [Google Scholar] [CrossRef]
- Strursberg, R.C.; De Traubenberg, M.R. Group Theory in Physics, A Practitioner’s Guide; World Scientific: Singapore, 2019. [Google Scholar]
- Mahapatra, R.N.; Pati, J.C. “Natural” left-right symmetry. Phys. Rev. 1975, 11, 2558–2561. [Google Scholar] [CrossRef]
- Senjanović, G. Is left-right symmetry the key? Mod. Phys. Lett. 2017, 32, 173004. [Google Scholar] [CrossRef]
- Dunsky, D.; Hall, L.J.; Harigaya, K. Sterile neutrino dark matter and leptogenesis in left-right Higgs parity. JHEP 2021, 1, 125. [Google Scholar] [CrossRef]
- Hall, L.J.; Harigaya, K. Implications of Higgs discovery to the strong CP problem and unification. JHEP 2018, 10, 130. [Google Scholar] [CrossRef]
- Matthai, V.; Quillen, D. Superconnections, Thom classes, and covariant differential forms. Topology 1986, 25, 85–110. [Google Scholar] [CrossRef]
- Quillen, D. Superconnections and the Chern character. Topology 1985, 24, 85–95. [Google Scholar] [CrossRef]
- Thierry-Mieg, J. Chirality, the missing key to the definition of the connection and curvature of a Lie-Kac superalgebra. JHEP 2021, 1, 111. [Google Scholar] [CrossRef]
- Roepstorff, G. Superconnections and the Higgs field. J. Math. Phys. 1999, 40, 2698–2715. [Google Scholar] [CrossRef]
- Thierry-Mieg, J. Scalar anomaly cancellation reveals the hidden algebraic structure of the quantum chiral SU(2|1) model of leptons and quarks. JHEP 2020, 10, 167. [Google Scholar] [CrossRef] [PubMed]
- Manogue, C.A.; Dray, T.; Wilson, R.A. Octions: An E8 description of the Standard Model. J. Math. Phys. 2022, 63, 081703. [Google Scholar] [CrossRef]
- Thierry-Mieg, J.; Jarvis, P.; Germini, J.; Gorelik, M. Construction of matryoshka nested indecomposable N-replications of Kac modules of quasi-reductive Lie superalgebras, including the sl(m/n), sop(2/n) series. arXiv 2022, arXiv:2207.06538v3. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Todorov, I. Octonion Internal Space Algebra for the Standard Model. Universe 2023, 9, 222. https://doi.org/10.3390/universe9050222
Todorov I. Octonion Internal Space Algebra for the Standard Model. Universe. 2023; 9(5):222. https://doi.org/10.3390/universe9050222
Chicago/Turabian StyleTodorov, Ivan. 2023. "Octonion Internal Space Algebra for the Standard Model" Universe 9, no. 5: 222. https://doi.org/10.3390/universe9050222
APA StyleTodorov, I. (2023). Octonion Internal Space Algebra for the Standard Model. Universe, 9(5), 222. https://doi.org/10.3390/universe9050222