Explaining the Muon g − 2 Anomaly in Deflected AMSB for NMSSM
Abstract
:1. Introduction
2. Soft SUSY Breaking Parameters of NMSSM from Deflected AMSB
3. Joint Explanation of Muon and Electron Anomaly
- (i)
- The CP-even component in the Goldstone-‘’ combination of and doublets corresponds to the SM Higgs. Such an dominated CP-even scalar should lie in the combined mass range for the Higgs boson, [1,2]. Note that the uncertainty is 3 GeV instead of default 2 GeV because large may induce additional GeV correction to at the two-loop level [77].
- (ii)
- Direct search bounds for low mass and high mass resonances at LEP, Tevatron, and LHC by using the package HiggsBounds-5.5.0 [78].
- (iii)
- (iv)
- (v)
- Vacuum stability constraints on the soft SUSY breaking parameters adopted in [12], including the semi-analytic bounds for non-existence of a deeper charge/color breaking (CCB) minimum [88] and/or a meta-stable EW vacuum with a tunneling lifetime longer than the age of the universe [89].A sufficient condition to ensure vacuum stability at the EW scale is the requirement that EW vacuum is the global minimum (true vacuum) of the scalar potential. If the EW vacuum is a local minimum (false vacuum), the relevant parameter regions can still be allowed if the false EW vacuum is meta-stable with a lifetime longer than the age of the universe.
- (vi)
- Although it is fairly non-trivial to realize successful EWSB in NMSSM from predictive UV-completion models, for example in ordinary GMSB, numerical scan indicates that some parameter points can still survive the EWSB conditions in our case. In fact, additional couplings in the superpotential involving the singlet S and messengers can change the AMSB predictions of and so as that the necessary condition for and other EWSB conditions can be satisfied. The values of at the EW scale can be obtained iteratively after we minimize the scalar potential to obtain . The allowed values of and the corresponding are shown in the left panel of Figure 2. We can see that the allowed values of and are always not large. The dependence of versus the low scale are also shown in the right panel of Figure 2. An interesting observation is that successful EWSB can still be allowed with , which is just the -invariant NMSSM case.
- From our numerical results, we can see in the right panel of Figure 3 that the muon anomaly can be explained to range. As noted previously, small flavor violation in the lepton sector will predict that and satisfy the scaling relationThe NMSSM specific contributions to are dominantly given by the Barr–Zee type two-loop contributions involving the lightest CP-odd scalar . However, our numerical results indicate that the relevant NMSSM specific contributions to are always small and subdominant.The plot of the SUSY contributions to muon anomalous magnetic momentum versus the parameter are shown in the right panel of Figure 2. It can also be seen from the panel that the -invariant NMSSM case, which corresponds to , can also explain the muon anomaly to range (and the electron anomaly to range by scaling relations).
- The left panel of Figure 4 shows the plot of the SUSY contributions to muon anomalous magnetic momentum versus the gluino mass . In AMSB-type scenarios, the parameter determines the mass scales of all the soft SUSY breaking parameters. The larger the value of , the heavier the sfermion and the gaugino masses. We know that light sleptons and electroweakinoes with masses below 0.5∼1 TeV are preferred to explain the muon/electron anomaly via chargino–sneutrino and the neutralino–smuon loops. So, the SUSY explanations of muon/electron anomalies prefer smaller , consequently imposing an upper bounds on the low-energy sparticle masses. Our numerical results show that the gluino masses are bounded to lie if the muon anomaly is explained upon range. Gluino masses upon 3.5 TeV can possibly be discovered in the future 100 TeV FCC-hh collider.In mSUGRA type models with universal gaugino masses at the GUT scale or GMSB type models, the gaugino ratios at the EW scale are always given by ::≈ 1:2:6. Given the LHC exclusion bound 2.2 TeV for by LHC, such gaugino ratios are not consistent with very light electroweakinoes, making the explanations of the muon anomaly rather hard. In our case, the gaugino mass ratios change approximately to ::≈:: at the EW scale. Therefore, with a proper range of deflection parameter d, the gluino mass can be heavy without contradicting the requirements of light electroweakinoes by the explanation of the muon anomaly. We should note that a positive deflection parameter d is always favored to solve the tachyonic slepton problem for few messenger species in deflected AMSB. To tune the slepton squared masses to small positive values, the range of d are constrained to lie in a small range. In fact, our numerical results indicate that the deflection parameters, which parameterizes the relative size between the anomaly mediation contributions and the gauge/Yukawa mediation contributions, are constrained to lie (see the right panel of Figure 4), allowing the gluino to be heavier than 4 TeV for GeV wino.
- It can be seen from the previous figures that the observed SM-like 125 GeV Higgs can be accommodated easily in our model. Additional tree-level contributions to SM-like Higgs mass from NMSSM in general allow much lighter stop masses in comparison to MSSM. In addition, the trilinear coupling are always predicted to be large in deflected AMSB-type models, which are welcome to give sizeable contributions to the SM-like Higgs mass. Light stops and large can also improve the naturalness measurements of the theory. On the other hand, the positive value of tends to decrease to zero and further to large negative values when it RGE evolves down from high input scale to EW scale [92]. So, the values of at the EW scale may not be large for a mildly large messenger scale , making the contribution to the SM-like Higgs mass not important for some range of . Therefore, the stop masses are always not light because the allowed values of are small, leading to small tree-level contributions to the SM-like Higgs mass. It can be seen from Figure 4 that the Higgs mass can be as high as GeV ( GeV) and the messenger scale is constrained to be larger than GeV ( GeV) if the muon anomaly is explained upon () level, respectively.As a comparison, the Higgs mass is upper bounded to be 118 GeV (120 GeV) when the muon anomaly is explained at ( level in the CMSSM/mSUGRA, because light sleptons also indicate light stops (with an universal input at GUT scale), leading to small loop contributions to Higgs masses. So, our deflected AMSB realization of NMSSM is much better in solving the muon anomaly than that of minimal gravity mediation realization of MSSM.
- Our numerical results indicate that the lightest neutralino DM is always wino-like, which can annihilate very efficiently and lead to the under abundance of DM unless the DM particle mass is heavier than 3 TeV. The NMSSM-specific singlino component is negligibly small, which, therefore, will not play an important role in DM annihilation processes. Our numerical results indicate that the DM particle is constrained to be lighter than 500 GeV. Therefore, additional DM components, such as the axino, are always needed to provide enough cosmic DM. We also check (see the figures in Figure 5) that the Spin-Independent (SI) and Spin-Dependent (SD) DM direct detection constraints, for example, the LUX [93], XENON1T [94,95], and PandaX-4T [96,97], can be satisfied for a large portion of survived points.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aad, G. et al. [ATLAS] Combined search for the Standard Model Higgs boson using up to 4.9 fb−1 of pp collision data at = 7 TeV with the ATLAS detector at the LHC. Phys. Lett. B 2012, 710, 49–66. [Google Scholar] [CrossRef]
- Chatrchyan, S. et al. [CMS] Combined results of searches for the standard model Higgs boson in pp collisions at = 7 TeV. Phys. Lett. B 2012, 710, 26–48. [Google Scholar] [CrossRef]
- Bennett, G.W. et al. [Muon g-2] Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL. Phys. Rev. D 2006, 73, 072003. [Google Scholar] [CrossRef]
- Zyla, P.A. et al. [Particle Data Group] Review of Particle Physics. Prog. Theor. Exp. Phys. 2020, 2020, 083C01. [Google Scholar] [CrossRef]
- Abi, B. et al. [Muon g-2]. Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm. Phys. Rev. Lett. 2021, 126, 141801. [Google Scholar] [CrossRef] [PubMed]
- Aoyama, T.; Asmussen, N.; Benayoun, M.; Bijnens, J.; Blum, T.; Bruno, M.; Caprini, I.; Calame, C.M.C.; Cè, M.; Colangelo, G.; et al. The anomalous magnetic moment of the muon in the Standard Model. Phys. Rep. 2020, 887, 1–166. [Google Scholar] [CrossRef]
- Parker, R.H.; Yu, C.; Zhong, W.; Estey, B.; Müller, H. Measurement of the fine-structure constant as a test of the Standard Model. Science 2018, 360, 191–195. [Google Scholar] [CrossRef]
- Hanneke, D.; Fogwell, S.; Gabrielse, G. New Measurement of the Electron Magnetic Moment and the Fine Structure Constant. Phys. Rev. Lett. 2008, 100, 120801. [Google Scholar] [CrossRef]
- Aoyama, T.; Kinoshita, T.; Nio, M. Theory of the anomalous magnetic moment of the electron. Atoms 2019, 7, 28. [Google Scholar] [CrossRef]
- Morel, L.; Yao, Z.; Cladé, P.; Guellati-Khélifa, S. Determination of the fine-structure constant with an accuracy of 81 parts per trillion. Nature 2020, 588, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Athron, P.; Balázs, C.; Jacob, D.H.J.; Kotlarski, W.; Stöckinger, D.; Stöckinger-Kim, H. New physics explanations of aμ in light of the FNAL muon g − 2 measurement. J. High Energy Phys. 2021, 9, 80. [Google Scholar] [CrossRef]
- Du, X.K.; Li, Z.; Wang, F.; Zhang, Y.K. The muon g − 2 anomaly in EOGM with adjoint messengers. Nucl. Phys. B 2023, 989, 116151. [Google Scholar] [CrossRef]
- Li, Z.; Liu, G.L.; Wang, F.; Yang, J.M.; Zhang, Y. Gluino-SUGRA scenarios in light of FNAL muon g – 2 anomaly. J. High Energy Phys. 2021, 2021, 219. [Google Scholar] [CrossRef]
- Crivellin, A.; Hoferichter, M. Consequences of chirally enhanced explanations of (g − 2)μ for h → μμ and Z → μμ. J. High Energy Phys. 2022, 2021, 135, Erratum in J. High Energy Phys. 2022, 10, 30. [Google Scholar] [CrossRef]
- Endo, M.; Hamaguchi, K.; Iwamoto, S.; Kitahara, T. Supersymmetric interpretation of the muon g – 2 anomaly. J. High Energy Phys. 2021, 2021, 75. [Google Scholar] [CrossRef]
- Gu, Y.; Liu, N.; Su, L.; Wang, D. Heavy bino and slepton for muon g − 2 anomaly. Nucl. Phys. B 2021, 969, 115481. [Google Scholar] [CrossRef]
- Van Beekveld, M.; Beenakker, W.; Schutten, M.; De Wit, J. Dark matter, fine-tuning and (g − 2)μ in the pMSSM. SciPost Phys. 2021, 11, 049. [Google Scholar] [CrossRef]
- Yin, W. Muon g − 2 anomaly in anomaly mediation. J. High Energy Phys. 2021, 2021, 29. [Google Scholar] [CrossRef]
- Abdughani, M.; Fan, Y.Z.; Feng, L.; Tsai, Y.L.S.; Wu, L.; Yuan, Q. A common origin of muon g − 2 anomaly, Galaxy Center GeV excess and AMS-02 anti-proton excess in the NMSSM. Sci. Bull. 2021, 66, 2170–2174. [Google Scholar] [CrossRef]
- Cao, J.; Lian, J.; Pan, Y.; Zhang, D.; Zhu, P. Improved (g − 2)μ measurement and singlino dark matter in μ-term extended Z3-NMSSM. J. High Energy Phys. 2021, 2021, 175. [Google Scholar] [CrossRef]
- Wang, F.; Wang, W.; Yang, J.M.; Zhang, Y. Heavy colored SUSY partners from deflected anomaly mediation. J. High Energy Phys. 2015, 2015, 138. [Google Scholar] [CrossRef]
- Wang, F.; Wu, L.; Xiao, Y.; Yang, J.M.; Zhang, Y. GUT-scale constrained SUSY in light of new muon g − 2 measurement. Nucl. Phys. B 2021, 970, 115486. [Google Scholar] [CrossRef]
- Cox, P.; Han, C.; Yanagida, T.T. Muon g − 2 and dark matter in the minimal supersymmetric standard model. Phys. Rev. D 2018, 98, 055015. [Google Scholar] [CrossRef]
- Yang, J.M.; Zhang, Y. Low energy SUSY confronted with new measurements of W-boson mass and muon g-2. Sci. Bull. 2022, 67, 1430–1436. [Google Scholar] [CrossRef]
- Cox, P.; Han, C.; Yanagida, T.T. Muon g − 2 and coannihilating dark matter in the minimal supersymmetric standard model. Phys. Rev. D 2021, 104, 075035. [Google Scholar] [CrossRef]
- Han, C. Muon g −2 and CP violation in MSSM. arXiv 2021, arXiv:2104.03292. [Google Scholar]
- Baum, S.; Carena, M.; Shah, N.R.; Wagner, C.E.M. The tiny (g-2) muon wobble from small-μ supersymmetry. J. High Energy Phys. 2022, 2022, 25. [Google Scholar] [CrossRef]
- Zhang, H.B.; Liu, C.X.; Yang, J.L.; Feng, T.F. Muon anomalous magnetic dipole moment in the μ νSSM *. Chin. Phys. C 2022, 46, 093107. [Google Scholar] [CrossRef]
- Ahmed, W.; Khan, I.; Li, J.; Li, T.; Raza, S.; Zhang, W. The natural explanation of the muon anomalous magnetic moment via the electroweak supersymmetry from the GmSUGRA in the MSSM. Phys. Lett. B 2022, 827, 136879. [Google Scholar] [CrossRef]
- Yang, J.L.; Zhang, H.B.; Liu, C.X.; Dong, X.X.; Feng, T.F. Muon (g − 2) in the B-LSSM. J. High Energy Phys. 2021, 2021, 86. [Google Scholar] [CrossRef]
- Aboubrahim, A.; Klasen, M.; Nath, P. What the Fermilab muon g − 2 experiment tells us about discovering supersymmetry at high luminosity and high energy upgrades to the LHC. Phys. Rev. D 2021, 104, 035039. [Google Scholar] [CrossRef]
- Chakraborti, M.; Roszkowski, L.; Trojanowski, S. GUT-constrained supersymmetry and dark matter in light of the new (g − 2)μ determination. J. High Energy Phys. 2021, 2021, 252. [Google Scholar] [CrossRef]
- Baer, H.; Barger, V.; Serce, H. Anomalous muon magnetic moment, supersymmetry, naturalness, LHC search limits and the landscape. Phys. Lett. B 2021, 820, 136480. [Google Scholar] [CrossRef]
- Altmannshofer, W.; Gadam, S.A.; Gori, S.; Hamer, N. Explaining (g − 2)μ with multi-TeV sleptons. J. High Energy Phys. 2021, 2021, 118. [Google Scholar] [CrossRef]
- Aboubrahim, A.; Nath, P.; Syed, R.M. Yukawa coupling unification in an SO(10) model consistent with Fermilab (g − 2)μ result. J. High Energy Phys. 2021, 2021, 2. [Google Scholar] [CrossRef]
- Zhang, Z.N.; Zhang, H.B.; Yang, J.L.; Zhao, S.M.; Feng, T.F. Higgs boson decays with lepton flavor violation in the B − L symmetric SSM. Phys. Rev. D 2021, 103, 115015. [Google Scholar] [CrossRef]
- Jeong, K.S.; Kawamura, J.; Park, C.B. Mixed modulus and anomaly mediation in light of the muon g − 2 anomaly. J. High Energy Phys. 2021, 2021, 64. [Google Scholar] [CrossRef]
- Abdughani, M.; Hikasa, K.I.; Wu, L.; Yang, J.M.; Zhao, J. Testing electroweak SUSY for muon g − 2 and dark matter at the LHC and beyond. J. High Energy Phys. 2019, 2019, 95. [Google Scholar] [CrossRef]
- Li, S.; Xiao, Y.; Yang, J.M. Can electron and muon g − 2 anomalies be jointly explained in SUSY? Eur. Phys. J. C 2022, 82, 276. [Google Scholar] [CrossRef]
- Dutta, B.; Mimura, Y. Electron g − 2 with flavor violation in MSSM. Phys. Lett. B 2019, 790, 563–567. [Google Scholar] [CrossRef]
- Baldini, A.M. et al. [MEG] Search for the lepton flavour violating decay μ+→e+γ with the full dataset of the MEG experiment. Eur. Phys. J. C 2016, 76, 434. [Google Scholar] [CrossRef]
- Badziak, M.; Sakurai, K. Explanation of electron and muon g − 2 anomalies in the MSSM. J. High Energy Phys. 2019, 2019, 24. [Google Scholar] [CrossRef]
- Endo, M.; Yin, W. Explaining electron and muon g − 2 anomaly in SUSY without lepton-flavor mixings. J. High Energy Phys. 2019, 2019, 122. [Google Scholar] [CrossRef]
- Ali, M.I.; Chakraborti, M.; Chattopadhyay, U.; Mukherjee, S. Muon and electron (g − 2) anomalies with non-holomorphic interactions in MSSM. Eur. Phys. J. C 2023, 83, 60. [Google Scholar] [CrossRef]
- Yang, J.L.; Feng, T.F.; Zhang, H.B. Electron and muon (g − 2) in the B-LSSM. J. Phys. G 2020, 47, 055004. [Google Scholar] [CrossRef]
- Cao, J.; He, Y.; Lian, J.; Zhang, D.; Zhu, P. Electron and muon anomalous magnetic moments in the inverse seesaw extended NMSSM. Phys. Rev. D 2021, 104, 055009. [Google Scholar] [CrossRef]
- Li, S.; Li, Z.; Wang, F.; Yang, J.M. Explanation of electron and muon g − 2 anomalies in AMSB. Nucl. Phys. B 2022, 983, 115927. [Google Scholar] [CrossRef]
- Randall, L.; Sundrum, R. Out of this world supersymmetry breaking. Nucl. Phys. B 1999, 557, 79–118. [Google Scholar] [CrossRef]
- Giudice, G.F.; Luty, M.A.; Murayama, H.; Rattazzi, R. Gaugino mass without singlets. J. High Energy Phys. 1998, 12, 027. [Google Scholar] [CrossRef]
- Jack, I.; Jones, D.R.T. RG invariant solutions for the soft supersymmetry breaking parameters. Phys. Lett. B 1999, 465, 148–154. [Google Scholar] [CrossRef]
- Pomarol, A.; Rattazzi, R. Sparticle masses from the superconformal anomaly. J. High Energy Phys. 1999, 1999, 013. [Google Scholar] [CrossRef]
- Rattazzi, R.; Strumia, A.; Wells, J.D. Phenomenology of deflected anomaly mediation. Nucl. Phys. B 2000, 576, 3–28. [Google Scholar] [CrossRef]
- Okada, N. Positively deflected anomaly mediation. Phys. Rev. D 2002, 65, 115009. [Google Scholar] [CrossRef]
- Okada, N.; Tran, H.M. Positively deflected anomaly mediation in the light of the Higgs boson discovery. Phys. Rev. D 2013, 87, 035024. [Google Scholar] [CrossRef]
- Wang, F. Deflected anomaly mediated SUSY breaking scenario with general messenger–matter interactions. Phys. Lett. B 2015, 751, 402–407. [Google Scholar] [CrossRef]
- Ellwanger, U.; Hugonie, C.; Teixeira, A.M. The Next-to-Minimal Supersymmetric Standard Model. Phys. Rep. 2010, 496, 1–77. [Google Scholar] [CrossRef]
- Maniatis, M. The Next-to-Minimal Supersymmetric extension of the Standard Model reviewed. Int. J. Mod. Phys. A 2010, 25, 3505–3602. [Google Scholar] [CrossRef]
- Giudice, G.F.; Rattazzi, R. Theories with gauge-mediated supersymmetry breaking. Phys. Rep. 1999, 322, 419–499. [Google Scholar] [CrossRef]
- Dine, M.; Fischler, W.; Srednicki, M. Supersymmetric Technicolor. Nucl. Phys. B 1981, 189, 575. [Google Scholar] [CrossRef]
- de Gouvea, A.; Friedland, A.; Murayama, H. Next-to-minimal supersymmetric standard model with the gauge mediation of supersymmetry breaking. Phys. Rev. D 1998, 57, 5676–5696. [Google Scholar] [CrossRef]
- Ellwanger, U.; Jean-Louis, C.C.; Teixeira, A.M. Phenomenology of the General NMSSM with Gauge Mediated Supersymmetry Breaking. J. High Energy Phys. 2008, 2008, 044. [Google Scholar] [CrossRef]
- Han, T.; Marfatia, D.; Zhang, R.J. A Gauge mediated supersymmetry breaking model with an extra singlet Higgs field. Phys. Rev. D 2000, 61, 013007. [Google Scholar] [CrossRef]
- Nilles, H.P. Supersymmetry, Supergravity and Particle Physics. Phys. Rep. 1984, 110, 1–162. [Google Scholar] [CrossRef]
- Canepa, A. Searches for Supersymmetry at the Large Hadron Collider. Rev. Phys. 2019, 4, 100033. [Google Scholar] [CrossRef]
- Delgado, A.; Giudice, G.F.; Slavich, P. Dynamical μ term in gauge mediation. Phys. Lett. B 2007, 653, 424–433. [Google Scholar] [CrossRef]
- Giudice, G.F.; Rattazzi, R. Extracting supersymmetry breaking effects from wave function renormalization. Nucl. Phys. B 1998, 511, 25–44. [Google Scholar] [CrossRef]
- Chacko, Z.; Ponton, E. Yukawa deflected gauge mediation. Phys. Rev. D 2002, 66, 095004. [Google Scholar] [CrossRef]
- Wang, F.; Yang, J.M.; Zhang, Y. Radiative natural SUSY spectrum from deflected AMSB scenario with messenger-matter interactions. J. High Energy Phys. 2016, 2016, 177. [Google Scholar] [CrossRef]
- Wang, F.; Wang, W.; Yang, J.M. Solving the muon g − 2 anomaly in deflected anomaly mediated SUSY breaking with messenger-matter interactions. Phys. Rev. D 2017, 96, 075025. [Google Scholar] [CrossRef]
- Evans, J.A.; Shih, D. Surveying Extended GMSB Models with mh = 125 GeV. J. High Energy Phys. 2013, 2013, 93. [Google Scholar] [CrossRef]
- Martin, S.P. A Supersymmetry primer. Adv. Ser. Direct. High Energy Phys. 1998, 18, 1–98. [Google Scholar] [CrossRef]
- Moroi, T. The Muon anomalous magnetic dipole moment in the minimal supersymmetric standard model. Phys. Rev. D 1997, 53, 6565–6575, Erratum in Phys. Rev. D 1997, 56, 4424. [Google Scholar] [CrossRef]
- Endo, M.; Hamaguchi, K.; Iwamoto, S.; Yoshinaga, T. Muon g-2 vs LHC in Supersymmetric Models. J. High Energy Phys. 2014, 2014, 123. [Google Scholar] [CrossRef]
- Domingo, F.; Ellwanger, U. Constraints from the Muon g − 2 on the Parameter Space of the NMSSM. J. High Energy Phys. 2008, 2008, 79. [Google Scholar] [CrossRef]
- Crivellin, A.; Girrbach, J.; Nierste, U. Yukawa coupling and anomalous magnetic moment of the muon: An update for the LHC era. Phys. Rev. D 2011, 83, 055009. [Google Scholar] [CrossRef]
- Allanach, B.C.; Balazs, C.; Belanger, G.; Bernhardt, M.; Boudjema, F.; Choudhury, D.; Desch, K.; Ellwanger, U.; Gambino, P.; Godbole, R.; et al. SUSY Les Houches Accord 2. Comput. Phys. Commun. 2009, 180, 8–25. [Google Scholar] [CrossRef]
- Goodsell, M.D.; Nickel, K.; Staub, F. Two-loop corrections to the Higgs masses in the NMSSM. Phys. Rev. D 2015, 91, 035021. [Google Scholar] [CrossRef]
- Bechtle, P.; Brein, O.; Heinemeyer, S.; Stal, O.; Stefaniak, T.; Weiglein, G.; Williams, K.E. HiggsBounds-4: Improved Tests of Extended Higgs Sectors against Exclusion Bounds from LEP, the Tevatron and the LHC. Eur. Phys. J. C 2014, 74, 2693. [Google Scholar] [CrossRef]
- Heisterkamp, S.J.F. R-Hadron Search at ATLAS. Ph.D. Thesis, University of Copenhagen, Copenhagen, Denmark, 2012. [Google Scholar]
- [ATLAS]. Measurement of nuclear modification factor for muons from charm and bottom hadrons in Pb+Pb collisions at 5.02 TeV with the ATLAS detector. Phys. Lett. B 2022, 829, 137077. [Google Scholar] [CrossRef]
- [CMS]. Search for top squark pair production in the single lepton final state in pp collisions at = 13TeV. Eur. Phys. J. C 2013, 73, 2677. [Google Scholar] [CrossRef]
- [ATLAS]. Search for production of supersymmetric particles in final states with missing transverse momentum and multiple b-jets at = 13 TeV proton-proton collisions with the ATLAS detector. J. High Energ. Phys. 2014, 2014, 24. [Google Scholar] [CrossRef]
- Schael, S. et al. [ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group and SLD Heavy Flavour Group] Precision electroweak measurements on the Z resonance. Phys. Rep. 2006, 427, 257–454. [Google Scholar] [CrossRef]
- Lees, J.P. et al. [BaBar] Precision Measurement of the B→Xsγ Photon Energy Spectrum, Branching Fraction, and Direct CP Asymmetry ACP(B→Xs+dγ). Phys. Rev. Lett. 2012, 109, 191801. [Google Scholar] [CrossRef] [PubMed]
- Lees, J.P. et al. [BaBar] Evidence for an excess of B¯→D(*)τ-ν¯τ decays. Phys. Rev. Lett. 2012, 109, 101802. [Google Scholar] [CrossRef]
- Aaij, R. et al. [LHCb] First Evidence for the Decay →μ+μ-. Phys. Rev. Lett. 2013, 110, 021801. [Google Scholar] [CrossRef] [PubMed]
- Akeroyd, A.G.; Recksiegel, S. The Effect of H+- on B+- —> tau+- nu(tau) and B+- —> mu+- muon neutrino. J. Phys. G 2003, 29, 2311–2317. [Google Scholar] [CrossRef]
- Kitahara, T.; Yoshinaga, T. Stau with Large Mass Difference and Enhancement of the Higgs to Diphoton Decay Rate in the MSSM. J. High Energy Phys. 2013, 2013, 35. [Google Scholar] [CrossRef]
- Casas, J.A.; Lleyda, A.; Munoz, C. Strong constraints on the parameter space of the MSSM from charge and color breaking minima. Nucl. Phys. B 1996, 471, 3–58. [Google Scholar] [CrossRef]
- Ade, P.A.R. et al. [Planck] Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 2016, 594, A13. [Google Scholar] [CrossRef]
- Dunkley, J. et al. [WMAP] Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Likelihoods and Parameters from the WMAP data. Astrophys. J. Suppl. 2009, 180, 306–329. [Google Scholar] [CrossRef]
- Draper, P.; Meade, P.; Reece, M.; Shih, D. Implications of a 125 GeV Higgs for the MSSM and Low-Scale SUSY Breaking. Phys. Rev. D 2012, 85, 095007. [Google Scholar] [CrossRef]
- Akerib, D.S. et al. [LUX] Results from a search for dark matter in the complete LUX exposure. Phys. Rev. Lett. 2017, 118, 021303. [Google Scholar] [CrossRef] [PubMed]
- Aprile, E. et al. [XENON] Dark Matter Search Results from a One Ton-Year Exposure of XENON1T. Phys. Rev. Lett. 2018, 121, 111302. [Google Scholar] [CrossRef] [PubMed]
- Aprile, E. et al. [XENON] Constraining the spin-dependent WIMP-nucleon cross sections with XENON1T. Phys. Rev. Lett. 2019, 122, 141301. [Google Scholar] [CrossRef]
- Meng, Y. et al. [PandaX-4T] Dark Matter Search Results from the PandaX-4T Commissioning Run. Phys. Rev. Lett. 2021, 127, 261802. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z. et al. [PandaX] Constraints on the axial-vector and pseudo-scalar mediated WIMP-nucleus interactions from PandaX-4T experiment. Phys. Lett. B 2022, 834, 137487. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, L.; Li, Z.; Wang, F. Explaining the Muon g − 2 Anomaly in Deflected AMSB for NMSSM. Universe 2023, 9, 214. https://doi.org/10.3390/universe9050214
Jia L, Li Z, Wang F. Explaining the Muon g − 2 Anomaly in Deflected AMSB for NMSSM. Universe. 2023; 9(5):214. https://doi.org/10.3390/universe9050214
Chicago/Turabian StyleJia, Lijun, Zhuang Li, and Fei Wang. 2023. "Explaining the Muon g − 2 Anomaly in Deflected AMSB for NMSSM" Universe 9, no. 5: 214. https://doi.org/10.3390/universe9050214
APA StyleJia, L., Li, Z., & Wang, F. (2023). Explaining the Muon g − 2 Anomaly in Deflected AMSB for NMSSM. Universe, 9(5), 214. https://doi.org/10.3390/universe9050214