Unimodular Approaches to the Cosmological Constant Problem
Abstract
:1. Introduction
2. Classical Formulations of Unimodular Gravity
2.1. The Unimodular Constraint
2.2. Henneaux and Teitelboim UG
2.3. Diffeomorphism Covariant, Weyl Invariant UG
2.4. Degrees of Freedom of UG
3. Quantum Aspects of UG
3.1. Path Integral
3.2. Quantum Fluctuations
4. Vacuum Energy Sequestering
Local Formulation
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CC  cosmological constant 
GR  general relativity 
UG  unimodular gravity 
HT  Henneaux and Teitelboim 
EH  Einstein–Hilbert 
Notes
1  We use the reduced Planck units $8\pi {G}_{N}=\hslash =1$ and signature convention $\left(+,,,\right)$ 
2  A similar equation was written down originally by Einstein himself [34], however, only for a priori traceless energymomentum tensor (of radiation). Only later was it realized that these equations describe UG. 
3  This theory can be very easily rewritten in several other forms that are immediately equivalent. The only difference is that the fields ${V}^{\mu}$ and $\lambda $ can be redefined in such a way that the constraint part of the action becomes
$$\sqrt{g}\lambda ({\nabla}_{\mu}{W}^{\mu}1)\phantom{\rule{4pt}{0ex}},$$
$$\lambda (\frac{1}{4!}{\u03f5}^{\mu \nu \sigma \rho}{F}_{\mu \nu \sigma \rho}\sqrt{g})\phantom{\rule{4pt}{0ex}},$$

4  A possible way to circumvent this limitation is to introduce additional terms dependent on the vector density ${V}^{\mu}$, which modify Equation (42). Such terms provide the necessary couplings to the ‘nonconserved’ matter sector, which allow for spacetime dependence of $\lambda $. However, it is not clear whether such couplings can reproduce the diffusion processes considered in [35,38,39,40]. 
5  Interestingly, the corresponding Hamiltonian is linear in the momentum $\lambda $ and thus it is unbounded from below. Nevertheless, since $\lambda $ becomes a constant onshell, the system is perfectly stable [49]. 
6  In the Abelian case $\mathcal{P}$ represents the Pfaffian of the matrix ${F}_{\mu \nu}$. 
7  This preserves the original solutions while also adding a novel branch, where $\lambda $ becomes dynamical. This addition can be also applied to (40), where the constraint on constancy of $\lambda $ is stricter and no new branch appears. 
8  Note that the Lambert W function ${W}_{1}\left(x{e}^{x}\right)\ne x$ for $x>1$. 
9  Note that a more rigorous approach requires first going to the ADM formalism to work out the canonical structure of the theory and then calculating the associated path integral in the Hamiltonian formalism along with any necessary fixing of gauge symmetries and associated Faddeev–Popov determinants. Such procedure has been carried out in [31], while the ghost sector has been discussed in [28]. Furthermore, the structure of the ghost sector was analyzed in the BRST formalism in [47,59,60,61]. Nevertheless, such considerations do not meaningfully affect the result in comparison to a more naive approach we consider here. 
10 
References
 Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 1998, 116, 1009–1038. [Google Scholar] [CrossRef] [Green Version]
 Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua1, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Ω and Λ from 42 high redshift supernovae. Astrophys. J. 1999, 517, 565–586. [Google Scholar] [CrossRef]
 Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6, Erratum in Astron. Astrophys. 2021, 652, C4. [Google Scholar] [CrossRef] [Green Version]
 Zel’dovich, Y.B. The Cosmological constant and the theory of elementary particles. Sov. Phys. Usp. 1968, 11, 381–393. [Google Scholar] [CrossRef]
 Sakharov, A.D. Vacuum quantum fluctuations in curved space and the theory of gravitation. Dokl. Akad. Nauk Ser. Fiz. 1967, 177, 70–71. [Google Scholar] [CrossRef]
 Weinberg, S. The Cosmological Constant Problem. Rev. Mod. Phys. 1989, 61, 1–23. [Google Scholar] [CrossRef]
 Akhmedov, E.K. Vacuum energy and relativistic invariance. arXiv 2002, arXiv:hepth/0204048. [Google Scholar]
 Nobbenhuis, S. Categorizing different approaches to the cosmological constant problem. Found. Phys. 2006, 36, 613–680. [Google Scholar] [CrossRef] [Green Version]
 Nobbenhuis, S. The Cosmological Constant Problem, an Inspiration for New Physics. Ph.D. Thesis, Utrecht University, Utrecht, The Netherlands, 2006. [Google Scholar]
 Clifton, T.; Ferreira, P.G.; Padilla, A.; Skordis, C. Modified Gravity and Cosmology. Phys. Rept. 2012, 513, 1–189. [Google Scholar] [CrossRef] [Green Version]
 Martin, J. Everything You Always Wanted To Know About The Cosmological Constant Problem (But Were Afraid To Ask). C. R. Phys. 2012, 13, 566–665. [Google Scholar] [CrossRef] [Green Version]
 Burgess, C.P. The Cosmological Constant Problem: Why it’s hard to get Dark Energy from Microphysics. In Proceedings of the 100e Ecole d’Ete de Physique: PostPlanck Cosmology, Les Houches, France, 8 July–2 August 2015; pp. 149–197. [Google Scholar] [CrossRef] [Green Version]
 Kaloper, N.; Padilla, A. Sequestering the Standard Model Vacuum Energy. Phys. Rev. Lett. 2014, 112, 091304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
 Kaloper, N.; Padilla, A. Vacuum Energy Sequestering: The Framework and Its Cosmological Consequences. Phys. Rev. D 2014, 90, 084023, Addendum in Phys. Rev. D 2014, 90, 109901. [Google Scholar] [CrossRef] [Green Version]
 Buchmuller, W.; Dragon, N. Einstein Gravity From Restricted Coordinate Invariance. Phys. Lett. B 1988, 207, 292–294. [Google Scholar] [CrossRef] [Green Version]
 Buchmuller, W.; Dragon, N. Gauge Fixing and the Cosmological Constant. Phys. Lett. B 1989, 223, 313–317. [Google Scholar] [CrossRef]
 CarballoRubio, R.; Garay, L.J.; GarcíaMoreno, G. Unimodular gravity vs general relativity: A status report. Class. Quant. Grav. 2022, 39, 243001. [Google Scholar] [CrossRef]
 Einstein, A. The Foundation of the General Theory of Relativity. Annalen Phys. 1916, 49, 769–822. [Google Scholar] [CrossRef] [Green Version]
 van der Bij, J.J.; van Dam, H.; Ng, Y.J. The Exchange of Massless Spin Two Particles. Physica A 1982, 116, 307–320. [Google Scholar] [CrossRef] [Green Version]
 Zee, A. High Energy Physics. In Proceedings of the 20th Annual Orbis Scientiae, Miami, FL, USA, 17–21 January 1985. [Google Scholar]
 Ellis, G.F.R.; van Elst, H.; Murugan, J.; Uzan, J.P. On the TraceFree Einstein Equations as a Viable Alternative to General Relativity. Class. Quant. Grav. 2011, 28, 225007. [Google Scholar] [CrossRef] [Green Version]
 Padilla, A.; Saltas, I.D. A note on classical and quantum unimodular gravity. Eur. Phys. J. C 2015, 75, 561. [Google Scholar] [CrossRef] [Green Version]
 Padilla, A. Lectures on the Cosmological Constant Problem. arXiv 2015, arXiv:1502.05296. [Google Scholar]
 Henneaux, M.; Teitelboim, C. The Cosmological Constant and General Covariance. Phys. Lett. B 1989, 222, 195–199. [Google Scholar] [CrossRef]
 Jiroušek, P.; Vikman, A. New Weylinvariant vectortensor theory for the cosmological constant. JCAP 2019, 2019, 4. [Google Scholar] [CrossRef] [Green Version]
 Hammer, K.; Jirousek, P.; Vikman, A. Axionic cosmological constant. arXiv 2020, arXiv:2001.03169. [Google Scholar]
 Smolin, L. The Quantization of unimodular gravity and the cosmological constant problems. Phys. Rev. D 2009, 80, 084003. [Google Scholar] [CrossRef] [Green Version]
 Bufalo, R.; Oksanen, M.; Tureanu, A. How unimodular gravity theories differ from general relativity at quantum level. Eur. Phys. J. C 2015, 75, 477. [Google Scholar] [CrossRef] [Green Version]
 Saltas, I.D. UV structure of quantum unimodular gravity. Phys. Rev. D 2014, 90, 124052. [Google Scholar] [CrossRef] [Green Version]
 Percacci, R. Unimodular quantum gravity and the cosmological constant. Found. Phys. 2018, 48, 1364–1379. [Google Scholar] [CrossRef] [Green Version]
 Buchmuller, W.; Dragon, N. The cosmological constant as a boundary term. JHEP 2022, 2022, 167. [Google Scholar] [CrossRef]
 Jiroušek, P.; Shimada, K.; Vikman, A.; Yamaguchi, M. Losing the trace to find dynamical Newton or Planck constants. JCAP 2021, 2021, 28. [Google Scholar] [CrossRef]
 Kaloper, N.; Padilla, A.; Stefanyszyn, D.; Zahariade, G. Manifestly Local Theory of Vacuum Energy Sequestering. Phys. Rev. Lett. 2016, 116, 051302. [Google Scholar] [CrossRef] [Green Version]
 Einstein, A. Spielen Gravitationsfelder im Aufbau der materiellen Elementarteilchen eine wesentliche Rolle? Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1919, 1919, 349–356. [Google Scholar]
 Josset, T.; Perez, A.; Sudarsky, D. Dark Energy from Violation of Energy Conservation. Phys. Rev. Lett. 2017, 118, 021102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
 Maudlin, T.; Okon, E.; Sudarsky, D. On the Status of Conservation Laws in Physics: Implications for Semiclassical Gravity. Stud. Hist. Phil. Sci. B 2020, 69, 67–81. [Google Scholar] [CrossRef]
 Bonder, Y.; Herrera, J.E.; Rubiol, A.M. Energy nonconservation and relativistic trajectories: Unimodular gravity and beyond. arXiv 2022, arXiv:2211.06532. [Google Scholar]
 Perez, A.; Sudarsky, D.; WilsonEwing, E. Resolving the H_{0} tension with diffusion. Gen. Rel. Grav. 2021, 53, 7. [Google Scholar] [CrossRef]
 Corral, C.; Cruz, N.; González, E. Diffusion in unimodular gravity: Analytical solutions, latetime acceleration, and cosmological constraints. Phys. Rev. D 2020, 102, 023508. [Google Scholar] [CrossRef]
 Linares Cedeño, F.X.; Nucamendi, U. Revisiting cosmological diffusion models in Unimodular Gravity and the H_{0} tension. Phys. Dark Univ. 2021, 32, 100807. [Google Scholar] [CrossRef]
 GarcíaAspeitia, M.A.; MartínezRobles, C.A.; HernándezAlmada, J.M.; Motta, V. Cosmic acceleration in unimodular gravity. Phys. Rev. D 2019, 99, 123525. [Google Scholar] [CrossRef] [Green Version]
 GarcíaAspeitia, M.A.; MartínezRobles, C.A.; HernándezAlmada, J.M.; Motta, V. The Universe acceleration from the Unimodular gravity view point: Background and linear perturbations. Phys. Dark Univ. 2021, 32, 100840. [Google Scholar] [CrossRef]
 Hooft, G. Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking. NATO Sci. Ser. B 1980, 59, 135–157. [Google Scholar] [CrossRef] [Green Version]
 CarballoRubio, R. Longitudinal diffeomorphisms obstruct the protection of vacuum energy. Phys. Rev. D 2015, 91, 124071. [Google Scholar] [CrossRef] [Green Version]
 Alvarez, E.; HerreroValea, M. No Conformal Anomaly in Unimodular Gravity. Phys. Rev. D 2013, 87, 084054. [Google Scholar] [CrossRef] [Green Version]
 de Brito, G.P.; Melichev, O.; Percacci, R.; Pereira, A.D. Can quantum fluctuations differentiate between standard and unimodular gravity? JHEP 2021, 12, 090. [Google Scholar] [CrossRef]
 Kugo, T.; Nakayama, R.; Ohta, N. BRST quantization of general relativity in unimodular gauge and unimodular gravity. Phys. Rev. D 2021, 104, 126021. [Google Scholar] [CrossRef]
 Kimpton, I.; Padilla, A. Cleaning up the cosmological constant. JHEP 2012, 12, 31. [Google Scholar] [CrossRef] [Green Version]
 Kluson, J. Canonical Analysis of Unimodular Gravity. Phys. Rev. D 2015, 91, 064058. [Google Scholar] [CrossRef] [Green Version]
 Jiroušek, P. Modifikovaná Gravitace a Urychlené Rozpínání Kosmu: Nyní a v Raném Vesmíru. Ph.D. Thesis, Charles University, Prague, Czech Republic, 2022. [Google Scholar]
 Callan, C.; Dashen, R.; Gross, D. The structure of the gauge theory vacuum. Phys. Lett. B 1976, 63, 334–340. [Google Scholar] [CrossRef]
 Jackiw, R.; Rebbi, C. Vacuum Periodicity in a Yang–Mills Quantum Theory. Phys. Rev. Lett. 1976, 37, 172–175. [Google Scholar] [CrossRef]
 Mirzagholi, L. Chern–Simons Gravity and Fermionsin AxionSU(2) Gauge Field Modelsof Inflation. Ph.D. Thesis, Munich University, Munich, Germany, 2020. [Google Scholar] [CrossRef]
 Faddeev, L.; Jackiw, R. Hamiltonian reduction of unconstrained and constrained systems. Phys. Rev. Lett. 1988, 60, 1692–1694. [Google Scholar] [CrossRef]
 Jackiw, R. (Constrained) quantization without tears. In Proceedings of the 2nd Workshop on Constraint Theory and Quantization Methods, Montepulciano, Italy, 28 June–1 July 1993; pp. 367–381. [Google Scholar]
 Fiol, B.; Garriga, J. Semiclassical Unimodular Gravity. JCAP 2010, 8, 15. [Google Scholar] [CrossRef] [Green Version]
 Davidson, A.; Rubin, S. Zero Cosmological Constant from Normalized General Relativity. Class. Quant. Grav. 2009, 26, 235019. [Google Scholar] [CrossRef]
 Davidson, A.; Rubin, S. Normalized general relativity: Nonclosed universe and a zero cosmological constant. Phys. Rev. D 2014, 89, 024036. [Google Scholar] [CrossRef] [Green Version]
 Baulieu, L. Unimodular Gauge in Perturbative Gravity and Supergravity. Phys. Lett. B 2020, 808, 135591. [Google Scholar] [CrossRef]
 Kugo, T.; Nakayama, R.; Ohta, N. Covariant BRST quantization of unimodular gravity. II. Formulation with a vector antighost. Phys. Rev. D 2022, 105, 106006. [Google Scholar] [CrossRef]
 Kugo, T.; Nakayama, R.; Ohta, N. Covariant BRST quantization of unimodular gravity: Formulation with antisymmetric tensor ghosts. Phys. Rev. D 2022, 105, 086006. [Google Scholar] [CrossRef]
 Álvarez, E.; GonzálezMartín, S.; HerreroValea, M.; Martín, C.P. Unimodular Gravity Redux. Phys. Rev. D 2015, 92, 061502. [Google Scholar] [CrossRef] [Green Version]
 Álvarez, E.; GonzálezMartín, S.; HerreroValea, M.; Martín, C.P. Quantum Corrections to Unimodular Gravity. JHEP 2015, 8, 78. [Google Scholar] [CrossRef] [Green Version]
 de León Ardón, R.; Ohta, N.; Percacci, R. Path integral of unimodular gravity. Phys. Rev. D 2018, 97, 026007. [Google Scholar] [CrossRef] [Green Version]
 HerreroValea, M.; SantosGarcia, R. Nonminimal Tinges of Unimodular Gravity. JHEP 2020, 9, 41. [Google Scholar] [CrossRef]
 Vikman, A. Global Dynamics for Newton and Planck. In Proceedings of the 55th Rencontres de Moriond on Gravitation, Online, 9–11 March 2021. [Google Scholar]
 Magueijo, J. Connection between cosmological time and the constants of nature. Phys. Rev. D 2022, 106, 084021. [Google Scholar] [CrossRef]
 Magueijo, J. Cosmological time and the constants of nature. Phys. Lett. B 2021, 820, 136487. [Google Scholar] [CrossRef]
 Gielen, S.; Magueijo, J.A. Quantum resolution of the cosmological singularity. arXiv 2022, arXiv:2204.01771. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. 
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiroušek, P. Unimodular Approaches to the Cosmological Constant Problem. Universe 2023, 9, 131. https://doi.org/10.3390/universe9030131
Jiroušek P. Unimodular Approaches to the Cosmological Constant Problem. Universe. 2023; 9(3):131. https://doi.org/10.3390/universe9030131
Chicago/Turabian StyleJiroušek, Pavel. 2023. "Unimodular Approaches to the Cosmological Constant Problem" Universe 9, no. 3: 131. https://doi.org/10.3390/universe9030131