Bandhead Energies of npp/pnn Three-Quasiparticle Quadruplets
Abstract
:1. Introduction
2. The Model
- The excitation energy of a particular 3qp quadruplet can be estimated by summing up the 1qp excitation energies of each valance nucleon observed in the neighboring odd-A nuclei. The unperturbed energy of 1qp state of each valance nucleon can be estimated as:
- 2.
- The effective moment of inertia used in the calculation of given 3qp bandhead energy can either be estimated using difference of the first two experimentally observed energy levels (i.e., ) of given 3qp rotational band or by using the experimental data of inertia parameters of valance nucleons of neighboring odd-A and even–even nuclei as:
- 3.
- The contribution from the residual interactions (Gallagher-Moszkowski (GM) splitting [3,4]) can be taken as a sum of the neutron–proton/proton–proton/neutron–neutron interaction energies and can be obtained from the two-quasiparticle (2qp) states observed in the neighboring even–even and odd–odd nuclei.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jain, A.K.; Sheline, R.K.; Sood, P.C.; Jain, K. Intrinsic states of deformed odd-A nuclei in the mass regions (151≤ A≤ 193) and (A≥ 221). Rev. Mod. Phys. 1990, 62, 393. [Google Scholar] [CrossRef]
- Jain, K.; Jain, A.K. Empirical model for three-quasiparticle states. Phys. Rev. C 1992, 45, 3013. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, C.J.; Moszkowski, S.A. Coupling of angular momenta in odd-odd nuclei. Phys. Rev. 1958, 111, 1282. [Google Scholar] [CrossRef]
- Gallagher, C.J. Coupling of Angular Momenta in Two-Particle States in Deformed Even-Even Nuclei. Phys. Rev. 1962, 126, 1525. [Google Scholar] [CrossRef]
- Newby, N.D., Jr. Selection Rules in the Odd-Even Shift of Certain Nuclear Rotational Bands. Phys. Rev. 1962, 125, 2063. [Google Scholar] [CrossRef]
- Singh, S. High Spin Features of Odd-A Nuclei Using Three-Quasiparticle Plus Rotor Model. Ph.D. Thesis, Guru Nanak Dev University, Amritsar, India, 2007. [Google Scholar]
- Singh, S.; Malik, S.S.; Kumar, S.; Jain, A.K. Three-quasiparticle plus rotor model for 3QP bands. Phys. Scr. 2006, 125, 186–187. [Google Scholar] [CrossRef]
- Madland, D.; Nix, J.R. New model of the average neutron and proton pairing gaps. Nucl. Phys. A 1988, 476, 1–38. [Google Scholar] [CrossRef]
- Wang, M.; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. The AME 2020 atomic mass evaluation (II). Tables, graphs and references. Chin. Phys. C 2021, 45, 030003. [Google Scholar] [CrossRef]
- Nilsson, S.G.; Tsang, C.F.; Sobiczewski, A.; Szymański, Z.; Wycech, S.; Gustafson, C.; Lamm, I.L.; Möller, P.; Nilsson, B. On the nuclear structure and stability of heavy and superheavy elements. Nucl. Phys. A 1969, 131, 1. [Google Scholar] [CrossRef]
- Möller, P.; Sierk, A.J.; Ichikawa, T., Sagawa. H. Nuclear ground-state masses and deformations. At. Data Nucl. Data Tables 2016, 109, 1. [Google Scholar] [CrossRef] [Green Version]
- Vylov, T.; Gorozhankin, V.M.; Gromov, K.Y.; Kuznetsov, V.V.; Kretsu, T.; Lebedev, N.A.; Yushkevich, Y.V. Radioactive decay of 163Tm.to 163Er. Experimental results. Izv. Akad. Nauk SSSR Ser. Fiz. USSR 1982, 46, 2250–2256. [Google Scholar]
- Bark, R.A.; Carlsson, H.; Freeman, S.J.; Hagemann, G.B.; Ingebretsen, F.; Jensen, H.J.; Lönnroth, T.; Mitarai, S.; Piiparinen, M.J.; Ryde, H.; et al. High-spin states in 171Lu. Nucl. Phys. A 1998, 644, 29–53. [Google Scholar] [CrossRef]
- Minor, M.M.; Sheline, R.K.; Jurney, E.T. Nuclear Levels in 177Lu and 175Lu; Florida State University: Tallahassee, FL, USA, 1971. [Google Scholar]
- Wheldon, C.; D’Alarcao, R.; Chowdhury, P.; Walker, P.M.; Seabury, E.; Ahmad, I.; Carpenter, M.P.; Cullen, D.M.; Hackman, G.; Janssens, R.V.; et al. Opening up the A≈ 180 K-isomer landscape: Inelastic excitation of new multi-quasiparticle yrast traps. Phys. Lett. B 1998, 425, 239–245. [Google Scholar] [CrossRef]
- Garrett, P.E.; Archer, D.E.; Becker, J.A.; Bernstein, L.A.; Hauschild, K.; Henry, E.A.; McNabb, D.P.; Stoyer, M.A.; Younes, W.; Johns, G.D.; et al. Rotational bands and isomeric states in 175Lu. Phys. Rev. C 2004, 69, 017302. [Google Scholar] [CrossRef]
- Manfrass, P.; Prade, H.; Beitins, M.R.; Bondarenko, W.A.; Kramer, N.D.; Prokofjew, P.T. Untersuchung des Niveauschemas von 177Lu in der (n, γ) Reaktion. Nucl. Phys. A 1971, 172, 298–322. [Google Scholar] [CrossRef]
- Geinoz, D.; Kern, J.; Piepenbring, R. Study of the 176Lu (n, γ) 177Lu reaction using a gamma band-filter spectrometer. Nucl. Phys. A 1975, 251, 305–316. [Google Scholar] [CrossRef]
- Begzhanov, R.B.; Azimov, K.S.; Mukhammadiev, A.; Narzikulov, M.; Radzhapov, P.S. Lifetimes of the Excited States of the 129Xe and 177Lu Nuclei, Izv. Akad. Nauk SSSR Ser. Fiz. 1979, 43, 145. [Google Scholar]
- Sheline, R.K.; Bergholt, L.; Guttormsen, M.; Rekstad, J.; Tveter, T.S. ΔK forbiddenness in neutron capture resonances in 177Lu. Phys. Rev. C 1995, 51, 3078. [Google Scholar] [CrossRef]
- Petkov, P.; Andrejtscheff, W.; Börner, H.G.; Robinson, S.J.; Klay, N.; Yamada, S. Level scheme and electromagnetic transition strengths in 177Lu. Nucl. Phys. A 1996, 599, 505–544. [Google Scholar] [CrossRef]
- Dracoulis, G.D.; Kondev, F.G.; Lane, G.J.; Byrne, A.P.; Kibedi, T.; Ahmad, I.; Carpenter, M.P.; Freeman, S.J.; Janssens, R.V.; Hammond, N.J.; et al. Identification of yrast high-K isomers in 177Lu and characterisation of 177mLu. Phys. Lett. B 2004, 584, 22–30. [Google Scholar] [CrossRef]
- Ader, B.L.; Perrin, N.N. Niveaux d’énergie du 177Ta. Nucl. Phys. A 1972, 197, 593–619. [Google Scholar] [CrossRef]
- Dasgupta, M.; Dracoulis, G.D.; Walker, P.M.; Byrne, A.P.; Kibedi, T.; Kondev, F.G.; Lane, G.J.; Regan, P.H. Competition between high-K states and rotational structures in 177Ta. Phys. Rev. C 2000, 61, 044321. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, N.; Saitoh, T.R.; Sletten, G.; Bark, R.A.; Bergström, M.; Furuno, K.; Komatsubara, T.; Shizuma, T.; Törmänen, S.; Varmette, P.G. T-band phenomena in 183Re. Eur. Phys. J. A Hadron. Nucl. 1998, 2, 327–330. [Google Scholar] [CrossRef]
- Purry, C.S.; Walker, P.M.; Dracoulis, G.D.; Bayer, S.; Byrne, A.P.; Kibedi, T.; Kondev, F.G.; Pearson, C.J.; Sheikh, J.A.; Xu, F.R. Rotational and multi-quasiparticle excitations in 183Re. Nucl. Phys. A 2000, 672, 54–88. [Google Scholar] [CrossRef]
- Evaluated Nuclear Structure and Decay Data File (ENDSF) Database. Available online: www.nndc.bnl.gov (accessed on 12 December 2022).
Nuclide | Configuration | Quasi-Particle Energies (keV) | (Δp/Δn) (keV) | |||
---|---|---|---|---|---|---|
EQ1 | EQ2 | EQ3 | ||||
163Er | 5/2[523]ν⊗1/2[411]π⊗7/2[523]π | 0.0 | 105.5 | 80.23 | 882.62 | 2.92 |
171Lu | 7/2[404]π⊗7/2[633]ν⊗1/2[521]ν | 0.0 | 222.99 | 199.45 | 730.02 | 3.17 |
175Lu | 7/2[404]π⊗7/2[514]ν⊗5/2[512]ν | 0.0 | 318.06 | 254.06 | 571.80 | 10.19 |
7/2[404]π⊗7/2[514]ν⊗1/2[521]ν | 0.0 | 318.06 | 479.15 | 10.77 | ||
177Lu | 7/2[404]π⊗7/2[514]ν⊗1/2[510]ν | 0.0 | 107.16 | 444.94 | 458.92 | 9.75 |
7/2[404]π⊗7/2[514]ν⊗1/2[521]ν | 0.0 | 107.16 | 767.11 | 10.70 | ||
1/2[411]π⊗7/2[514]ν⊗1/2[510]ν | 569.70 | 107.16 | 444.94 | 10.45 | ||
9/2[514]π⊗7/2[514]ν⊗9/2[624]ν | 150.39 | 107.16 | 133.77 | 7.33 | ||
7/2[404]π⊗7/2[514]ν⊗9/2[624]ν | 0.0 | 107.16 | 133.77 | 8.11 | ||
177Ta | 9/2[514]π⊗7/2[514]ν⊗1/2[521]ν | 73.36 | 174.09 | 173.90 | 704.07 | 8.98 |
183Re | 5/2[402]π⊗9/2[624]ν⊗11/2[615]ν | 0.0 | 201.20 | 292.50 | 851.82 | 5.62 |
5/2[402]π⊗9/2[624]ν⊗1/2[510]ν | 0.0 | 201.20 | 227.42 | 7.04 |
Nilsson Configuration Kπ [NnzΛ] | GM Splitting Energies (in keV) for Proton–Neutron Configurations | ||||
---|---|---|---|---|---|
1/2[411]π | 7/2[523]π | 9/2[514]π | 7/2[404]π | 5/2[402]π | |
5/2[523]ν | 53 | 146 | |||
9/2[624]ν | 207 | ||||
7/2[514]ν | 120 | 100 | 255 | ||
1/2[510]ν | 113 | 101 | 110 | ||
5/2[512]ν | 112 | ||||
1/2[521]ν | 171 | 77 | |||
7/2[633]ν | 126 | ||||
11/2[615]ν | 249 | ||||
GM splitting energies (in keV) for neutron–neutron configurations | |||||
Kπ [NnzΛ] | 7/2[514]ν | 7/2[633]ν | 1/2[521]ν | 9/2[624]ν | 11/2[615]ν |
9/2[624]ν | 186 | 400 | |||
5/2[512]ν | 256 | ||||
1/2[521]ν | 295 | 428 | |||
1/2[510]ν | 376 | 300 | |||
7/2[514]ν | 295 | ||||
GM splitting energies (in keV) for proton–proton configurations | |||||
Kπ [NnzΛ] | 7/2[523]π | 9/2[514]π | |||
1/2[411] π | 345.6 | 400 | |||
Newby shift energies (in keV) for neutron–neutron and proton–neutron configurations | |||||
Kπ [NnzΛ] | 7/2[514]ν | 9/2[624]ν | 1/2[510]ν | 7/2[633]ν | |
7/2[404] π | −69 | −40 | |||
9/2[514] π | −2 | ||||
1/2[411] π | 1 |
Nuclide | Configuration | Kπ | Irrotational Correction (keV) | Residual Interactions (keV) | RPC/ PPC | Bandhead Energies (keV) | ||
---|---|---|---|---|---|---|---|---|
(keV) | Expt. [27] | Present Model | Earlier Model | |||||
163Er | A⊗B⊗C | 11/2+ | 366.06 | 272.3 | 1722.8 | 1356.8 | ||
1/2+ | 73.3 | −2.49 | 1506.7 | 1143.2 | ||||
13/2+ | −126.3 | 1327.1 | 961.1 | |||||
3/2+ | −219.3 | 1538.80 | 1219.5 | 853.5 | ||||
171Lu | F⊗G⊗H | 13/2− | 431.12 | 275.5 | 1801.3 | 1448.6 | ||
1/2− | 72.5 | 2.75 | 1582.1 | 1226.6 | ||||
15/2− | −229.5 | 1241.55 | 1299.5 | 946.7 | ||||
1/2− | −278.5 | 2.75 | 1231.1 | 875.6 | ||||
175Lu | F⊗D⊗I | 5/2+ | 312.60 | 472.0 | 1954.00 | 1641.4 | ||
5/2+ | −79.0 | 1403.00 | 1090.4 | |||||
9/2+ | −39.0 | 1511.0 | 1563.38 | 1250.7 | ||||
19/2+ | −78.0 | 1392.2 | 1475.33 | 1162.7 | ||||
F⊗D⊗J | 1/2+ | 290.83 | 382.5 | 2077.7 | 1756.9 | |||
15/2+ | 50.0 | 1732.0 | 1791.1 | 1500.3 | ||||
1/2+ | 10.5 | 1705.7 | 1384.9 | |||||
13/2+ | −167.5 | 1590.0 | 1562.4 | 1271.5 | ||||
177Lu | F⊗D⊗K | 1/2+ | 261.46 | 435.0 | 1.78 | 1714.14 | 1450.1 | |
13/2+ | 79.0 | 1502.6 | 1414.9 | 1153.4 | ||||
1/2+ | −42.0 | 1.78 | 1237.14 | 973.9 | ||||
15/2+ | −196.0 | 1356.5 | 1149.6 | 888.2 | ||||
F⊗D⊗J | 1/2+ | 306.37 | 382.5 | −35.9 | 1991.5 | 1721.0 | ||
15/2+ | 10.5 | 1632.8 | 1770.3 | 1463.9 | ||||
1/2+ | 50.5 | −35.9 | 1619.5 | 1349.0 | ||||
13/2+ | −167.5 | 1453.9 | 1541.6 | 1235.2 | ||||
B⊗D⊗K | 5/2+ | 302.71 | 303.5 | 2213.1 | 1910.4 | |||
7/2+ | 70.5 | 1990.5 | 1687.8 | |||||
9/2+ | −192.5 | 1717.5 | 1737.9 | 1435.2 | ||||
7/2+ | −185.5 | 1617.0 | 1734.5 | 1431.2 | ||||
F⊗D⊗L | 9/2− | 431.71 | 477.5 | 1645.56 | 1213.8 | |||
9/2− | −84.5 | 1049.46 | 1083.56 | 651.8 | ||||
23/2− | −153.5 | 970.17 | 1071.33 | 639.6 | ||||
5/2− | 36.5 | 1188.34 | 756.6 | |||||
M⊗D⊗L | 7/2+ | 566.25 | 216.0 | 1336.5 | 1658.2 | 1091.9 | ||
11/2+ | −26.0 | 1230.4 | 1430.8 | 864.6 | ||||
25/2+ | −112.0 | 1325.0 | 1396.1 | 829.9 | ||||
7/2+ | −70.0 | 1241.5 | 1372.2 | 805.1 | ||||
183Re | N⊗L⊗O | 15/2+ | 671.10 | 428.0 | 2486.8 | 1815.7 | ||
25/2+ | −28.0 | 1906.7 | 2058.9 | 1387.8 | ||||
3/2+ | −179.0 | 1846.1 | 1174.9 | |||||
7/2+ | −221.0 | 1815.3 | 1144.2 | |||||
N⊗L⊗K | 5/2− | 583.09 | 308.5 | 2189.6 | 1606.5 | |||
15/2− | −8.50 | 1628.3 | 1907.8 | 1324.8 | ||||
3/2− | −101.50 | 1772.6 | 1189.5 | |||||
13/2− | −198.5 | 1710.8 | 1127.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, S.; Kaur, M.; Singh, S.; Singh, J.; Jain, A.K. Bandhead Energies of npp/pnn Three-Quasiparticle Quadruplets. Universe 2023, 9, 91. https://doi.org/10.3390/universe9020091
Kumar S, Kaur M, Singh S, Singh J, Jain AK. Bandhead Energies of npp/pnn Three-Quasiparticle Quadruplets. Universe. 2023; 9(2):91. https://doi.org/10.3390/universe9020091
Chicago/Turabian StyleKumar, Sushil, Manpreet Kaur, Sukhjeet Singh, Jagjit Singh, and A. K. Jain. 2023. "Bandhead Energies of npp/pnn Three-Quasiparticle Quadruplets" Universe 9, no. 2: 91. https://doi.org/10.3390/universe9020091
APA StyleKumar, S., Kaur, M., Singh, S., Singh, J., & Jain, A. K. (2023). Bandhead Energies of npp/pnn Three-Quasiparticle Quadruplets. Universe, 9(2), 91. https://doi.org/10.3390/universe9020091