Self-Enrichment in Globular Clusters: The Crucial Role Played by Oxygen
Abstract
:1. Introduction
2. The ATON Code for Stellar Evolution
3. The Evolution of Massive AGB Stars
3.1. The Second Dredge-Up
3.2. Hot Bottom Burning
3.3. The Role of the Stellar Mass
3.4. The Effects of Metallicity
4. The Self-Enrichment Scenario by AGBs
4.1. The Interpretation of the Chemical Patterns of GC Stars Based on the Chemistry of the AGB Ejecta
4.2. The Reconstruction of the Star Formation History in NGC 2808
4.3. The Self-Enrichment Scenario Applied to the Clusters Observed by APOGEE
4.4. The Information Deduced from the Analysis of the HB Morphology
5. Understanding Star Formation in NGC 6402
5.1. Yields from Massive AGB Stars with the Same Chemistry of NGC 6402
5.2. Lower Mass-Loss Rates from Metal-Poor, Massive AGB Stars?
6. The Role of Oxygen
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
1 | This is the final chemistry of the star. The average chemical composition of the ejecta will show a milder variation with respect to the initial chemistry, as the average over the whole AGB lifetime should be considered. |
2 | We use the standard notation, where [Fe/HFeH |
3 | In the work by [16] it is assumed that the mass of the 2G stars is in the range. This is in agreement with previous studies by [15,43], who showed that the IMF of 2G stars must be much flatter than that of 1G, independently of the nature of the pollutants. However, even in case that massive 2G stars form, the number would be so small that their explosion would not be able to halt the further formation of the SG in the cluster. |
4 | We show the chemistry of the yields of the model star in this plot, as this is the star from which we obtain the largest deviation from the chemistry of 1G stars. |
References
- Renzini, A.; Buzzoni, A. Global properties of stellar populations and the spectral evolution of galaxies. In Proceedings of the Fourth Workshop, Erice, Italy, 12–22 March 1986; pp. 195–231. [Google Scholar]
- Kraft, R.P. Abundance differences among globular cluster giants: Primordial vs. evolutionary scenarios. Publ. Astron. Soc. Pac. 1994, 106, 553. [Google Scholar] [CrossRef]
- Gratton, R.; Sneden, C.; Carretta, E. Abundance Variations Within Globular Clusters. Annu. Rev. Astron. Astrophys. 2004, 42, 385. [Google Scholar] [CrossRef]
- Gratton, R.; Carretta, E.; Bragaglia, A. Multiple populations in globular clusters. Lessons learned from the Milky Way globular clusters. Annu. Rev. Astron. Astrophys. 2012, 20, 50. [Google Scholar] [CrossRef]
- Gratton, R.; Bragaglia, A.; Carretta, E. What is a globular cluster? An observational perspective. Annu. Rev. Astron. Astrophys. 2019, 27, 8. [Google Scholar]
- Lee, Y.W.; Joo, J.M.; Sohn, Y.J.; Rey, S.-C.; Lee, H.-C.; Walker, A.R. Multiple stellar populations in the globular cluster ω Centauri as tracers of a merger event. Nature 1999, 402, 55L. [Google Scholar] [CrossRef] [PubMed]
- Pancino, E.; Seleznev, A.; Ferraro, F.R.; Bellazzini, M.; Piotto, G. The multiple stellar population in ω Centauri: Spatial distribution and structural properties. Mon. Not. R. Astron. Soc. 2003, 345, 683. [Google Scholar] [CrossRef]
- Bedin, L.R.; Piotto, G.; Anderson, J.; Cassisi, S.; King, I.R.; Momany, Y.; Carraro, G. ω Centauri: The population puzzle goes deeper. Astrophys. J. 2004, 605, L125. [Google Scholar] [CrossRef]
- D’Antona, F.; Bellazzini, M.; Caloi, V.; Pecci, F.F.; Galleti, S.; Rood, R.T. A Helium Spread among the Main-Sequence Stars in NGC 2808. Astrophys. J. 2005, 631, 868. [Google Scholar] [CrossRef]
- Piotto, G.; Bedin, L.R.; Anderson, J.; King, I.R.; Cassisi, S.; Milone, A.P.; Villanova, S.; Pietrinferni, A.; Renzini, A. A Triple Main Sequence in the Globular Cluster NGC 2808. Astrophys. J. 2007, 661, L53–L56. [Google Scholar] [CrossRef]
- Milone, A.P.; Piotto, G.; Renzini, A.; Marino, A.F.; Bedin, L.R.; Vesperini, E.; D’Antona, F.; Nardiello, D.; Anderson, J.; King, I.R.; et al. The Hubble Space Telescope UV Legacy Survey of Galactic globular clusters–IX. The Atlas of multiple stellar populations. Mon. Not. R. Astron. Soc. 2017, 464, 3636. [Google Scholar] [CrossRef]
- D’Antona, F.; Caloi, V.; Montalban, J.; Ventura, P.; Gratton, R. Helium variation due to self-pollution among Globular Cluster stars. Consequences on the horizontal branch morphology. Astron. Astrophys. 2002, 395, 69. [Google Scholar] [CrossRef]
- D’Antona, F.; Caloi, V. The Early Evolution of Globular Clusters: The Case of NGC 2808. Astrophys. J. 2004, 611, 871. [Google Scholar] [CrossRef]
- Caloi, V.; D’Antona, F. NGC 6441: Another indication of very high helium content in globular cluster stars. Astron. Astrophys. 2007, 463, 949. [Google Scholar] [CrossRef]
- Decressin, T.; Meynet, G.; Charbonnell, C.; Prantzos, N.; Ekströmm, S. Fast rotating massive stars and the origin of the abundance patterns in galactic globular clusters. Astron. Astrophys. 2007, 464, 1029. [Google Scholar] [CrossRef]
- D’Ercole, A.; Vesperini, E.; D’Antona, F.; McMillan, S.L.W.; Recchi, S. Formation and dynamical evolution of multiple stellar generations in globular clusters. Mon. Not. R. Astron. Soc. 2008, 391, 825. [Google Scholar] [CrossRef]
- de Mink, S.E.; Pols, O.R.; Langer, N.; Izzard, R. Massive binaries as the source of abundance anomalies in globular clusters. Astron. Astrophys. 2009, 507, L1. [Google Scholar]
- Denissenkov, P.A.; VandenBerg, D.A.; Hartwick, F.D.A.; Herwig, F.; Weiss, A.; Paxton, B. The primordial and evolutionary abundance variations in globular-cluster stars: A problem with two unknowns. Mon. Not. R. Astron. Soc. 2015, 448, 3314. [Google Scholar] [CrossRef]
- Renzini, A.; D’Antona, F.; Cassisi, S.; King, I.R.; Milone, A.P.; Ventura, P.; Anderson, J.; Bedin, L.R.; Bellini, A.; Brown, T.M.; et al. The Hubble Space Telescope UV Legacy Survey of Galactic Globular Clusters–V. Constraints on formation scenarios. Mon. Not. R. Astron. Soc. 2015, 454, 4197. [Google Scholar] [CrossRef]
- Milone, A.P.; Marino, A.F.; Renzini, A.; D’Antona, F.; Anderson, J.; Barbuy, B.; Bedin, L.R.; Bellini, A.; Brown, T.M.; Cassisi, S.; et al. The Hubble Space Telescope UV legacy survey of galactic globular clusters–XVI. The helium abundance of multiple populations. Mon. Not. R. Astron. Soc. 2018, 481, 5098. [Google Scholar] [CrossRef]
- Ventura, P.; Zeppieri, A.; Mazzitelli, I.; D’Antona, F. Full spectrum of turbulence convective mixing: I. theoretical main sequences and turn-off for 0.6–15 Msun. Astron. Astrophys. 1998, 334, 953–968. [Google Scholar]
- Cloutman, L.D.; Eoll, J.G. Comments on the diffusion model of turbulent mixing. Astrophys. J. 1976, 206, 584. [Google Scholar] [CrossRef]
- Canuto, V.M.C.; Mazzitelli, I. Stellar Turbulent Convection: A New Model and Applications. Astrophys. J. 1991, 370, 295. [Google Scholar] [CrossRef]
- Bloecker, T. Stellar evolution of low and intermediate-mass stars. I. Mass loss on the AGB and its consequences for stellar evolution. Astron. Astrophys. 1995, 297, 727. [Google Scholar]
- Ventura, P.; D’Antona, F.; Mazzitelli, I. Lithium and mass loss in massive AGB stars in the Large Magellanic Cloud. Astron. Astrophys. 2000, 363, 605. [Google Scholar]
- Wachter, A.; Schröder, K.-P.; Winters, J.M.; Arndt, T.U.; Sedlmayr, E. An improved mass loss description for dust-driven superwinds and tip-AGB evolution models. Astron. Astrophys. 2002, 384, 452. [Google Scholar] [CrossRef] [Green Version]
- Wachter, A.; Winters, J.M.; Schröder, K.-P.; Sedlmayr, E. Dust-driven winds and mass loss of C-rich AGB stars with subsolar metallicities. Astron. Astrophys. 2008, 486, 497. [Google Scholar] [CrossRef]
- Marigo, P.; Aringer, B. Low-temperature gas opacity. ÆSOPUS: A versatile and quick computational tool. Astron. Astrophys. 2009, 508, 1539. [Google Scholar] [CrossRef]
- Busso, M.; Gallino, R.; Wasserburg, G.J. Nucleosynthesis in Asymptotic Giant Branch Stars: Relevance for Galactic Enrichment and Solar System Formation. Ann. Rev. Astron. Astrophys. 1999, 37, 239. [Google Scholar] [CrossRef]
- Herwig, F. Evolution of Asymptotic Giant Branch Stars. Ann. Rev. Astron. Astrophys. 2005, 43, 435. [Google Scholar] [CrossRef]
- Karakas, A.I.; Lattanzio, J.C. The Dawes Review 2: Nucleosynthesis and Stellar Yields of Low- and Intermediate-Mass Single Stars. Publ. Astron. Soc. Aust. 2014, 31, e030. [Google Scholar] [CrossRef]
- Schwarzschild, M.; Härm, R. Thermal instability in non-degenerate stars. Astrophys. J. 1965, 142, 855. [Google Scholar] [CrossRef]
- Ventura, P. The Helium contribution from massive AGBs. Proc. Int. Astron. Union 2010, 268, 147–152. [Google Scholar] [CrossRef]
- Dell’Agli, F.; García-Hernández, D.A.; Ventura, P.; Mészáros, S.; Masseron, T.; Fernández-Trincado, J.G.; Tang, B.; Shetrone, M.; Zamora, O.; Lucatello, S. A view of the H-band light-element chemical patterns in globular clusters under the AGB self-enrichment scenario. Mon. Not. R. Astron. Soc. 2018, 475, 3098–3116. [Google Scholar] [CrossRef]
- Bloecker, T.; Schöenberner, D. A 7M⊙ AGB model sequence not complying with the core mass-luminosity relation. Astron. Astrophys. 1991, 244, L43–L46. [Google Scholar]
- Boothroyd, A.I.; Sackmann, I.J. Breakdown of the Core Mass–Luminosity Relation at High Luminosities on the Asymptotic Giant Branch. Astrophys. J. Lett. 1995, 393, L21. [Google Scholar] [CrossRef]
- Ventura, P.; Di Criscienzo, M.; Carini, R.; D’Antona, F. Yields of AGB and SAGB models with chemistry of low- and high-metallicity globular clusters. Mon. Not. R. Astron. Soc. 2013, 431, 3642–3653. [Google Scholar] [CrossRef]
- Paczyński, B. Evolution of single stars III. Stationary shell sources. Acta Astron. 1970, 20, 287–309. [Google Scholar]
- Ventura, P.; D’Antona, F. Full computation of massive AGB evolution. I. The large impact of convection on nucleosynthesis. Astron. Astrophys. 2005, 431, 279. [Google Scholar] [CrossRef]
- Ventura, P.; D’Antona, F.; Mazzitelli, I.; Gratton, R. Predictions for self-pollution in Globular Cluster stars. Astrophys. J. 2001, 550, L65. [Google Scholar] [CrossRef]
- Iben, I., Jr. Post main sequence evolution of single stars. Annu. Rev. Astron. Astrophys. 1974, 12, 215. [Google Scholar] [CrossRef]
- D’Ercole, A.; D’Antona, F.; Vesperini, E.; D’Antona, F. Accretion of pristine gas and dilution during the formation of multiple-population globular clusters. Mon. Not. R. Astron. Soc. 2016, 461, 4088. [Google Scholar] [CrossRef]
- Prantzos, N.; Charbonnel, C. On the self-enrichment scenario of galactic globular clusters: Constraints on the IMF. Astron. Astrophys. 2006, 458, 135. [Google Scholar] [CrossRef]
- Majewski, S.R.; Schiavon, R.P.; Frinchaboy, P.M. The Apache Point Observatory Galactic Evolution Experiment (APOGEE). Astron. J. 2017, 154, 94. [Google Scholar] [CrossRef]
- Milone, A.P.; Marino, A.F.; Piotto, G.; Renzini, A.; Bedin, L.R.; Anderson, J.; Cassisi, S.; D’Antona, F.; Bellini, A.; Jerjen, H.; et al. The Hubble Space Telescope UV Legacy Survey of Galactic Globular Clusters. III. A Quintuple Stellar Population in NGC 2808. Astrophys. J. 2015, 808, 51. [Google Scholar] [CrossRef]
- D’Antona, F.; Milone, A.P.; Johnson, C.I.; Tailo, M.; Vesperini, E.; Caloi, V.; Ventura, P.; Marino, A.F.; Dell’Agli, F. HST Observations of the Globular Cluster NGC 6402 (M14) and its peculiar Multiple Populations. Astrophys. J. 2022, 925, 192. [Google Scholar] [CrossRef]
- Johnson, C.I.; Caldwell, N.; Rich, M.; Mateo, M.; Bailey, J.I. Light element discontinuities suggest an early termination of star formation in the globular cluster NGC 6402 (M14). Mon. Not. R. Astron. Soc. 2019, 485, 4311–4329. [Google Scholar] [CrossRef]
- Ferrarotti, A.S.; Gail, H.P. Composition and quantities of dust produced by AGB-stars and returned to the interstellar medium. Astron. Astrophys. 2015, 477, 553. [Google Scholar] [CrossRef]
- Bowen, G.H. Dynamical modeling of long-period variable star atmospheres. Astrophys. J. 1978, 329, 299. [Google Scholar] [CrossRef]
- Ventura, P.; Carini, R.; D’Antona, F. A deep insight into the Mg-Al-Si nucleosynthesis in massive asymptotic giant branch and super-asymptotic giant branch stars. Mon. Not. R. Astron. Soc. 2011, 415, 3865. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huerta-Martinez, E.; Gavetti, C.; Ventura, P. Self-Enrichment in Globular Clusters: The Crucial Role Played by Oxygen. Universe 2023, 9, 84. https://doi.org/10.3390/universe9020084
Huerta-Martinez E, Gavetti C, Ventura P. Self-Enrichment in Globular Clusters: The Crucial Role Played by Oxygen. Universe. 2023; 9(2):84. https://doi.org/10.3390/universe9020084
Chicago/Turabian StyleHuerta-Martinez, Erendira, Claudio Gavetti, and Paolo Ventura. 2023. "Self-Enrichment in Globular Clusters: The Crucial Role Played by Oxygen" Universe 9, no. 2: 84. https://doi.org/10.3390/universe9020084
APA StyleHuerta-Martinez, E., Gavetti, C., & Ventura, P. (2023). Self-Enrichment in Globular Clusters: The Crucial Role Played by Oxygen. Universe, 9(2), 84. https://doi.org/10.3390/universe9020084