Main Results from the ISSI International Team “Characterization of 67P Cometary Activity”
Abstract
:1. Introduction
2. State of the Art
3. Project Goals
- WP1: Traceback. The objective of this WP was to trace the coma dust motion down to the nucleus surface. To this end, an algorithm was developed [32], based on assumptions given by dust dynamical models [33]. The application of this algorithm allowed for associating each dust particle detected in the coma with its source terrain and studying the relation between dust porosity/morphology and surface geomorphology, giving hints about comet formation mechanisms.
- WP2: Data Fusion. This WP related WP1 outcomes with geometric information and with data provided by different instruments onboard Rosetta. This allowed studying the following relationships: activity vs. illumination conditions, dust emission vs. surface composition, dust morphology vs. dynamics, and dust vs. ice ejection. Each of these studies provided a new piece of the puzzle to understand comet formation and activity. Taking inputs from these studies, a water ice activity model was developed.
4. Results
4.1. Traceback
GIADA Data Analysis
4.2. Data Fusion
4.2.1. GIADA vs. VIRTIS
4.2.2. MIDAS Data Analysis and MIDAS vs. GIADA
4.2.3. ROSINA Data Analysis and ROSINA vs. GIADA
4.2.4. Alice vs. VIRTIS
4.2.5. Cometary Activity Model
4.2.6. Modelling Dust Particles’ Rotational Motion
4.2.7. Experimental Work
5. Conclusions
- Fluffy and compact dust particles are ejected together from the mostly illuminated comet surface regions, then they are spread in the coma due to their different speeds.
- Dust ejection is higher in ice-rich terrains, as demonstrated by the correlation between dust ejection rate and spectral indicators of water ice exposure.
- Fluffy particles are more abundant in rough terrains, consistent with the theoretical model of incorporation within voids between pebbles when the comet formed.
- Compact dust’s physical properties (e.g., size, flatness) are similar everywhere on the surface.
- Small dust particles in the coma (i.e., micron- and nm-sized) are mainly produced from the fragmentation of larger particles, directly ejected by water ice sublimation. During outbursts, dust size distribution does not vary.
- Icy particles are released from the fragmentation of fluffy dust particles in the coma. Their low abundance indicates that the latter are dehydrated upon arrival at Rosetta.
- Two kinds of outburst were observed; one is «dusty» (and richer in water) and the other one is «gaseous» (richer in CO2).
- A new model of comet formation and activity was developed. The comet nucleus includes meter-sized blocks rich in water ice (WEBs), which are progressively exposed by CO2 activity while approaching the sun, leading to surface’s bluing and triggering water ice activity. These blocks are eventually eroded by water-driven dust ejection and covered by the infall of dehydrated dust, decreasing the contribution of water activity when the comet is far from perihelion.
- Parameters describing the translational and rotational motion of dust particles in the coma were defined.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Coradini, A.; Capaccioni, F.; Drossart, P.; Arnold, G.; Ammannito, E.; Angrilli, F.; Barucci, A.; Bellucci, G.; Benkhoff, J.; Bianchini, G.; et al. Virtis: An Imaging Spectrometer for the Rosetta Mission. Space Sci. Rev. 2007, 128, 529–559. [Google Scholar] [CrossRef]
- Longobardo, A.; Mannel, T.; Kim, M.; Fulle, M.; Rotundi, A.; Della Corte, V.; Rinaldi, G.; Lasue, J.; Merouane, S.; Cottin, H.; et al. Combining Rosetta’s GIADA and MIDAS data: Morphological versus dynamical properties of dust at 67P/Churyumov-Gerasimenko. Mon. Not. R. Astron. Soc. 2022, 516, 5611–5617. [Google Scholar] [CrossRef]
- Longobardo, A.; Palomba, E.; Capaccioni, F.; Ciarniello, M.; Tosi, F.; Mottola, S.; Moroz, L.V.; Filacchione, G.; Raponi, A.; Quirico, E.; et al. Photometric behaviour of 67P/Churyumov-Gerasimenko and analysis of its pre-perihelion diurnal variations. Mon. Not. R. Astron. Soc. 2017, 469, S346–S356. [Google Scholar] [CrossRef]
- Terada, H.; Tokunaga, A.T.; Kobayashi, N.; Takato, N.; Hayano, Y.; Takami, H. Detection of Water Ice in Edge-on Protoplanetary Disks: HK Tauri B and HV Tauri C. Astrophys. J. 2007, 667, 303–307. [Google Scholar] [CrossRef]
- Berrezueta, E.; Cuervas-Mons, J.; Rodruguez-Rey, A.; Ordonez-Casado, B. Representativity of 2D Shape Parameters for Mineral Particles in Quantitative Petrography. Minerals 2019, 9, 768. [Google Scholar] [CrossRef]
- Della Corte, V.; Rotundi, A.; Fulle, M.; Ivanovski, S.; Green, S.F.; Rietmejer, F.J.M.; Colangeli, L.; Palumbo, P.; Sordini, R.; Ferrari, M.; et al. 67P/C-G inner coma dust properties from 2.2 au inbound to 2.0 au outbound to the Sun. Mon. Not. R. Astron. Soc. 2016, 469, S210–S219. [Google Scholar] [CrossRef]
- Ciarniello, M.; Fulle, M.; Raponi, A.; Filacchione, G.; Capaccioni, F.; Rotundi, A.; Rinaldi, G.; Formisano, M.; Magni, G.; Tosi, F. er al. Macro and micro- structures of pebble-made cometary nuclei reconciled by seasonal evolution. Nat. Astron. 2022, 6, 546–553. [Google Scholar] [CrossRef]
- Colangeli, L.; Lopez-Moreno, J.J.; Palumbo, P.; Rodriguez, J.; Cosi, M.; Della Corte, V.; Esposito, F.; Fulle, M.; Herranz, M.; Jeronimo, J.M.; et al. The Grain Impact Analyser and Dust Accumulator (GIADA) Experiment for the Rosetta Mission: Design, Performances and First Results. Space Sci. Rev. 2007, 128, 803–821. [Google Scholar] [CrossRef]
- Riedler, W.; Torkar, K.; Jeszenszky, H.; Romstedt, J.; Alleyne, H.S.C.; Arends, H.; Barth, W.; Biezen, J.V.D.; Butler, B.; Ehrenfreud, P. MIDAS The Micro-Imaging Dust Analysis System for the Rosetta Mission. Space Sci. Rev. 2007, 128, 869–904. [Google Scholar] [CrossRef]
- De Sanctis, M.C.; Capaccioni, F.; Ciarniello, M.; Filacchione, G.; Formisano, M.; Mottola, S.; Raponi, A.; Tosi, F.; Bockelee-Morvan, D.; Erard, S.; et al. The diurnal cycle of water ice on comet 67P/Churyumov-Gerasimenko. Nature 2015, 525, 500–503. [Google Scholar] [CrossRef]
- Pestoni, B.; Altwegg, K.; Balsiger, H.; Hanni, N.; Rubin, M.; Schroeder, I.; Schuhmann, M.; Wampfler, S. Detection of volatiles undergoing sublimation from 67P/Churyumov-Gerasimenko coma particles using ROSINA/COPS. II. The nude gauge. Astron. Astrophys. 2021, 651, A26. [Google Scholar] [CrossRef]
- Noonan, J.W.; Rinaldi, G.; Feldman, P.D.; Stern, S.A.; Parker, J.W.; Keeney, B.A.; Bockelee-Morvan, D.; Vervack, R.J., Jr.; Steffl, A.J.; Knight, M.M.; et al. Analysis of hybrid gas-dust outbursts observed at 67P/Churyumov-Gerasimenko. Astron. J. 2021, 162, 4. [Google Scholar]
- Bentley, M.S.; Schmied, R.; Mannel, T.; Torkar, K.; Jeszenszky, H.; Romstedt, J.; Levasseur-Regourd, A.-C.; Weber, I.; Jessberger, E.K.; Ehrenfreud, P.; et al. Aggregate dust particles at comet 67P/Churyumov-Gerasimenko. Nature 2016, 537, 73–75. [Google Scholar] [CrossRef]
- Lasue, J.; Maroger, I.; Botet, R.; Garnier, P.; Merouane, S.; Mannel, T.; Levasseur-Regourd, A.-C.; Bentley, M.S. Flattened loose particles from numerical simulations compared to particles collected by Rosetta. Astron. Astrophys. 2019, 630, A28. [Google Scholar] [CrossRef]
- El-Maarry, M.R.; Thomas, N.; Giacomini, L.; Massironi, M.; Pajola, M.; Marschall, R.; Gracia-Bernà, A.; Sierks, H.; Barbieri, C.; Lamy, P.L.; et al. Regional surface morphology of comet 67P/Churyumov-Gerasimenko from Rosetta/OSIRIS images. Astron. Astrophys. 2015, 583, A26. [Google Scholar] [CrossRef]
- El-Maarry, M.R.; Thomas, N.; Gracia-Bernà, A.; Pajola, M.; Lee, J.-C.; Massironi, M.; Davidsson, B.; Marchi, S.; Keller, H.U.; Hviid, S.F.; et al. Regional surface morphology of comet 67P/Churyumov-Gerasimenko from Rosetta/OSIRIS images: The southern hemisphere. Astron. Astrophys. 2016, 593, A110. [Google Scholar] [CrossRef]
- Keller, H.U.; Barbieri, C.; Lamy, P.; Rickman, H.; Rodrigo, R.; Wenzel, K.-P.; Sierks, H.; A’Hearn, M.F.; Angrilli, F.; Angulo, M.; et al. OSIRIS The Scientific Camera System Onboard Rosetta. Space Sci. Rev. 2007, 128, 433–506. [Google Scholar] [CrossRef]
- Rinaldi, G.; Bockelee-Morvan, D.; Ciarniello, M.; Tozzi, G.P.; Capaccioni, F.; Ivanovski, S.L.; Filacchione, G.; Fink, U.; Doose, L.; Taylor, F.; et al. Summer outbursts in the coma of comet 67P/Churyumov-Gerasimenko as observed by Rosetta-VIRTIS. Mon. Not. R. Astron. Soc. 2018, 481, 1235–1250. [Google Scholar] [CrossRef]
- Hu, X.; Shi, X.; Sierks, H.; Fulle, M.; Blum, J.; Keller, H.U.; Kuhrt, E.; Davidsson, B.; Guttler, C.; Gundlach, B.; et al. Seasonal erosion and restoration of the dust cover on comet 67P/Churyumov-Gerasimenko as observed by OSIRIS onboard Rosetta. Astron. Astrophys. 2017, 604, A114. [Google Scholar] [CrossRef]
- Combi, M.; Shou, Y.; Fougere, N.; Tenishev, V.; Altwegg, K.; Rubin, M.; Bockelee-Morvan, D.; Capaccioni, F.; Cheng, Y.-C.; Fink, U.; et al. The surface distributions of the production of the major volatile species, H2O, CO2, CO and O2, from the nucleus of comet 67P/Churyumov-Gerasimenko throughout the Rosetta Mission as measured by the ROSINA double focusing mass spectrometer. Icarus 2019, 335, 113421. [Google Scholar] [CrossRef]
- Ellerbroek, L.E.; Gundlach, B.; Landeck, A.; Dominik, C.; Blum, J.; Merouane, S.; Hilchenbach, M.; Bentley, M.S.; Mannel, T.; John, H.; et al. The footprint of cometary dust analogues—I. Laboratory experiments of low-velocity impacts and comparison with Rosetta data. Mon. Not. R. Astron. Soc. 2017, 469, S204–S206. [Google Scholar] [CrossRef]
- Balsiger, H.; Altwegg, K.; Bochsler, P.; Eberhardt, P.; Fischer, J.; Graf, S.; Jackel, A.; Kopp, E.; Langer, U.; Mildner, M.; et al. Rosina Rosetta Orbiter Spectrometer for Ion and Neutral Analysis. Space Sci. Rev. 2007, 128, 745–801. [Google Scholar] [CrossRef]
- Stern, S.A.; Slater, D.C.; Scherrer, J.; Stone, J.; Versteeg, M.; A’Hearn, M.F.; Bertaux, J.L.; Feldman, P.D.; Festou, M.C.; Parker, J.W.; et al. Alice: The Rosetta Ultraviolet Imaging Spectrograph. Space Sci. Rev. 2007, 128, 507–527. [Google Scholar] [CrossRef]
- Longobardo, A.; Della Corte, V.; Ivanovski, S.; Rinaldi, G.; Zakharov, V.; Rotundi, A.; Capaccioni, F.; Fulle, M.; Filacchione, G.; Palomba, E.; et al. 67P/Churyumov-Gerasimenko active areas before perihelion identified by GIADA and VIRTIS data fusion. Mon. Not. R. Astron. Soc. 2019, 483, 2165–2176. [Google Scholar] [CrossRef]
- Longobardo, A.; Della Corte, V.; Rotundi, A.; Fulle, M.; Rinaldi, G.; Formisano, M.; Zakharov, V.; Ivanovski, S.; Mannel, T.; Ciarniello, M.; et al. 67P/Churyumov-Gerasimenko’s dust activity from pre- to post-perihelion as detected by Rosetta/GIADA. Mon. Not. R. Astron. Soc. 2020, 496, 125–137. [Google Scholar] [CrossRef]
- Capaccioni, F.; Coradini, A.; Filacchione, G.; Erard, S.; Arnold, G.; Drossart, P.; De Sanctis, M.C.; Bockelee-Morvan, D.; Capria, M.T.; Tosi, F.; et al. The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta. Science 2015, 347, aaa0628. [Google Scholar] [CrossRef] [PubMed]
- Schulz, R.; Hilchenbach, M.; Langevin, Y.; Kissel, J.; Silen, J.; Brois, C.; Engrand, C.; Hornung, K.; Baklouti, D.; Bardyn, A.; et al. Comet 67P/Churyumov-Gerasimenko sheds dust coat accumulated over the past four years. Nature 2015, 518, 216–218. [Google Scholar] [CrossRef]
- Zakharov, V.V.; Rotundi, A.; Della Corte, V.; Fulle, M.; Ivanovski, S.L.; Rodionov, A.V.; Bykov, N.Y. On the similarity of dust flows in the inner coma of comets. Icarus 2021, 364, 114476. [Google Scholar] [CrossRef]
- Mannel, T.; Bentley, M.S.; Schmied, R.; Jeszenszky, H.; Levasseur-Regourd, A.C.; Romstedt, J.; Torkar, K. Fractal cometary dust—A window into the early Solar system. Mon. Not. R. Astron. Soc. 2016, 462, S304–S311. [Google Scholar] [CrossRef]
- Paquette, J.A.; Engrand, C.; Stenzel, O.; Hilchenbach, M.; Kissel, J. Searching for calcium-aluminum-rich inclusions in cometary particles with Rosetta/COSIMA. Meteoritcs Planet. Sci. 2016, 51, 1340–1352. [Google Scholar] [CrossRef]
- Ciarletti, V.; Herique, A.; Lasue, J.; Levasseur-Regourd, A.-C.; Plettemeir, D.; Lemmonier, F.; Guiffaut, C.; Pasquero, P.; Kofman, W. CONSERT constrains the internal structure of 67P at a few metres size scale. Mon. Not. R. Astron. Soc. 2017, 469, S805–S817. [Google Scholar] [CrossRef]
- Kramer, T.; Lauter, M.; Rubin, M.; Altwegg, K. Seasonal changes of the volatile density in the coma and on the surface of comet 67P/Churyumov-Gerasimenko. Mon. Not. R. Astron. Soc. 2017, 469, S20–S28. [Google Scholar] [CrossRef]
- Ciarniello, M.; Raponi, A.; Capaccioni, F.; Filacchione, G.; Tosi, F.; De Sanctis, M.C.; Kappel, D.; Rousseau, B.; Arnold, G.; Capria, M.T.; et al. The global surface composition of 67P/Churyumov-Gerasimenko nucleus by Rosetta/VIRTIS. II) Diurnal and seasonal variability. Mon. Not. R. Astron. Soc. 2016, 462, S443–S458. [Google Scholar] [CrossRef]
- Läuter, M.; Kramer, T.; Rubin, M.; Altwegg, K. Gas production of comet 67P/Churyumov-Gerasimenko reconstructed from DFMS/COPS data. EPSC Abstr. 2018, 12, EPSC2018-515-1. [Google Scholar]
- Raponi, A.; Ciarniello, M.; Capaccioni, F.; Mennella, V.; Filacchione, G.; Vinogradoff, V.; Poch, O.; Beck, P.; Quirico, E.; De Sanctis, M.C.; et al. Infrared detection of aliphatic organics on a cometary nucleus. Nat. Astron. 2020, 4, 500–505. [Google Scholar] [CrossRef]
- Pestoni, B.; Altwegg, K.; Della Corte, V.; Hanni, N.; Longobardo, A.; Muller, D.R.; Rotundi, A.; Rubin, M.; Wampfler, S.F. Multi-instrument analysis of 67P/Churyumov-Gerasimenko coma particles: COPS-GIADA data fusion. Astron. Astrophys. 2023, 671, A168. [Google Scholar] [CrossRef]
- Pajola, M.; Lucchetti, A.; Fulle, M.; Mottola, S.; Hamm, M.; Da Deppo, V.; Penasa, L.; Kovacs, G.; Massironi, M.; Shi, X.; et al. The pebbles/boulders size distributions on Sais: Rosetta’s final landing site on comet 67P/Churyumov-Gerasimenko. Mon. Not. R. Astron. Soc. 2017, 469, S636–S645. [Google Scholar] [CrossRef]
- Bockelee-Morvan, D.; Rinaldi, G.; Erard, S.; Leyrat, C.; Capaccioni, F.; Drossart, P.; Filacchione, G.; Migliorini, A.; Quirico, E.; Mottola, S.; et al. Comet 67P outbursts and quiescent coma at 1.3 au from the Sun: Dust properties from Rosetta/VIRTIS-H observations. Mon. Not. R. Astron. Soc. 2017, 469, S443–S458. [Google Scholar] [CrossRef]
- Mannel, T.; Bentley, M.S.; Boakes, P.D.; Jeszenszky, H.; Ehrenfreund, P.; Engrand, C.; Koeberl, C.; Levasseur-Regourd, A.C.; Romstedt, J.; Schmied, R.; et al. Dust of comet 67P/Churyumov-Gerasimenko collected by Rosetta/MIDAS: Classification and extension to the nanometer scale. Astron. Astrophys. 2019, 630, A26. [Google Scholar] [CrossRef]
- Rinaldi, G.; Fink, U.; Doose, L.; Tozzi, G.P.; Capaccioni, F.; Filacchione, G.; Bockelee-Morvan, D.; Leyrat, C.; Piccioni, G.; Erard, S.; et al. Properties of the dust in the coma of 67P/Churyumov-Gerasimenko observed with VIRTIS-M. Mon. Not. R. Astron. Soc. 2016, 462, S547–S561. [Google Scholar] [CrossRef]
- Feldman, P.D.; A’Hearn, M.F.; Feaga, L.M.; Bertaux, J.-L.; Noonan, J.; Parker, J.W.; Schindhelm, R.; Steffl, A.J.; Stern, S.A.; Weaver, H.A. The nature and frequency of the gas outbursts in comet 67P/Chryumov-Gerasimenko observed by the Alice far-ultraviolet spectrograph on Rosetta. Astrophys. J. Lett. 2016, 825, L8. [Google Scholar] [CrossRef]
- Fray, N.; Bardyn, A.; Cottin, H.; Altwegg, K.; Baklouti, D.; Briois, C.; Colangeli, L.; Engrand, C.; Fischer, H.; Glasmachers, A.; et al. High-molecular-weight organic matter in the particles of comet 67P/Churyumov-Gerasimenko. Nature 2016, 538, 72–74. [Google Scholar] [CrossRef] [PubMed]
- Fornasier, S.; Hoang, H.V.; Fulle, M.; Quirico, E.; Ciarniello, M. Volatile exposures on the 67P/Churyumov-Gerasimenko nucleus. Astron. Astrophys. 2023, 672, A136. [Google Scholar] [CrossRef]
- Ivanovski, S.L.; Zakharov, V.V.; Moreno, F.; Bykov, N.Y.; Munoz, O.; Fulle, M.; Rotundi, A.; Della Corte, V.; Rodionov, A.V. On the similarity of rotational motion of dust grains in the inner atmosphere of comets. Mon. Not. R. Astron. Soc. 2023, in press. [Google Scholar] [CrossRef]
- Kissel, J.; Altwegg, K.; Clark, B.C.; Colangeli, L.; Cottin, H.; Czempiel, S.; Eibl, J.; Engrand, C.; Fehringer, H.M.; Feuerbacher, B.; et al. Cosima High Resolution Time-of-Flight Secondary Ion Mass Spectrometer for the Analysis of Cometary Dust Particles onboard Rosetta. Space Sci. Rev. 2007, 128, 823–867. [Google Scholar] [CrossRef]
- Merouane, S.; Zaprudin, B.; Stenzel, O.; Langevin, Y.; Altobelli, N.; Della Corte, V.; Fischer, H.; Fulle, M.; Hornung, K.; Silen, J.; et al. Dust particle flux and size distribution in the coma of 67P/Churyumov-Gerasimenko measured in situ by the COSIMA instrument on board Rosetta. Astron. Astrophys. 2016, 596, A87. [Google Scholar] [CrossRef]
- Poch, O.; Istiqomah, I.; Quirico, E.; Beck, P.; Schmitt, B.; Theulé, P.; Faure, A.; Hily-Blant, P.; Bonal, L.; Raponi, A.; et al. Ammonium salts are a reservoir of nitrogen on a cometary nucleus and possibly on some asteroids. Science 2020, 367, aaw7462. [Google Scholar] [CrossRef]
- Moreno, F.; Guirado, D.; Munoz, O.; Zakharov, V.; Ivanovski, S.L.; Fulle, M.; Rotundi, A.; Frattin, E.; Bertini, I. Dynamics of irregularly shaped cometary particles subjected to outflowing gas and solar radiative forces and torques. Mon. Not. R. Astron. Soc. 2022, 510, 5142–5253. [Google Scholar] [CrossRef]
- Altwegg, K.; Balsiger, H.; Berthelier, J.J.; Bieler, A.; Calmonte, U.; Fuselier, S.A.; Goesmann, F.; Gasc, S.; Gombosi, T.I.; Le Roy, L.; et al. Organics in comet 67P—A first comparative analysis of mass spectra from ROSINA-DFMS, COSAC and Ptolemy. Mon. Not. R. Astron. Soc. 2017, 469, S130–S141. [Google Scholar] [CrossRef]
- Kim, M. et al. [Midas Team] Cometary dust collected by MIDAS on board Rosetta. I. Dust particle catalog and statistics. Astron. Astrophys. 2023, 673, A129. [Google Scholar] [CrossRef]
- Kim, M. et al. [Rosina Team] Evolution of water production of 67P/Churyumov-Gerasimenko: An empirical model and a multi-instrument study. Mon. Not. R. Astron. Soc. 2016, 462, S491–S506. [Google Scholar]
- Kim, M. et al. [MIDAS Team] Cometary dust collected by MIDAS on board Rosetta. II. Particle shape descriptors and pristinity evaluation. Astron. Astrophys. 2023, in press.
- Filacchione, G.; De Sanctis, M.C.; Capaccioni, F.; Raponi, A.; Tosi, F.; Ciarniello, M.; Cerroni, P.; Piccioni, G.; Capria, M.T.; Palomba, E.; et al. Exposed water ice on the nucleus of comet 67P/Churyumov-Gerasimenko. Nature 2016, 529, 368–372. [Google Scholar] [CrossRef] [PubMed]
- Filacchione, G.; Capaccioni, F.; Ciarniello, M.; Raponi, A.; Tosi, F.; De Sanctis, M.C.; Erard, S.; Bockelee-Morvan, D.; Leyrat, C.; Arnold, G.; et al. The global surface composition of 67P/CG nucleus by Rosetta/VIRTIS. (I) Prelanding mission phase. Icarus 2016, 274, 334–349. [Google Scholar] [CrossRef]
- Ivanovski, S.L.; Della Corte, V.; Rotundi, A.; Fulle, M.; Fougere, N.; Bieler, A.; Rubin, M.; Ivanovska, S.; Liuzzi, V. Dynamics of non-spherical dust in the coma of 67P/Churyumov- Gerasimenko constrained by GIADA and ROSINA data. Mon. Not. R. Astron. Soc. 2017, 469, S774–S786. [Google Scholar] [CrossRef]
- Zakharov, V.V.; Ivanovski, S.L.; Crifo, J.-F.; Della Corte, V.; Rotundi, A.; Fulle, M. Asymptotics for spherical particle motion in a spherically expanding flow. Icarus 2018, 312, 121–127. [Google Scholar] [CrossRef]
- Fulle, M.; Blum, J.; Rotundi, A.; Gundlach, B.; Guttler, C.; Zakharov, V. How comets work: Nucleus erosion versus dehydration. Mon. Not. R. Astron. Soc. 2020, 469, 4039–4044. [Google Scholar] [CrossRef]
- Langevin, Y.; Hilchenbach, M.; Ligier, N.; Merouane, S.; Hornung, K.; Engrand, C.; Schulz, R.; Kissel, J.; Ryno, J.; Eng, P. Typology of dust particles collected by the COSIMA mass spectrometer in the inner coma of 67P/Churyumov Gerasimenko. Icarus 2016, 271, 76–97. [Google Scholar] [CrossRef]
- Rinaldi, G.; Noonan, J.W.; Bockelée-Morvan, D.; Longobardo, A.; Migliorini, A.; Ciarniello, M.; Raponi, A.; Filacchione, G.; Capaccioni, F. Analysis of gas-dust outbursts observed at 67P/Churyumov-Gerasimenko. In Proceedings of the 16th Europlanet Science Congress 2022, Granada, Spain, 18–23 September 2022. EPSC2022-509. [Google Scholar]
- Blum, J.; Gundlach, B.; Krause, M.; Fulle, M.; Johansen, A.; Agarwal, J.; van Bostel, I.; Shi, X.; Hu, X.; Bentley, M.S.; et al. Evidence for the formation of comet 67P/Churyumov-Gerasimenko through gravitational collapse of a bound clump of pebbles. Mon. Not. R. Astron. Soc. 2017, 469, S755–S773. [Google Scholar] [CrossRef]
- Patzold, M.; Andert, T.P.; Hahn, M.; Barriot, J.-P.; Asmar, S.W.; Hausler, B.; Bird, M.K.; Tellmann, S.; Oschlisniok, J.; Peter, K. The Nucleus of comet 67P/Churyumov-Gerasimenko—Part I: The global view—nucleus mass, mass-loss, porosity, and implications. Mon. Not. R. Astron. Soc. 2019, 483, 2337–2346. [Google Scholar] [CrossRef]
- Tubiana, C.; Snodgrass, C.; Bertini, I.; Mottola, S.; Vincent, J.-B.; Lara, L.; Fornasier, S.; Knollenberg, J.; Thomas, N.; Fulle, M.; et al. 67P/Churyumov-Gerasimenko: Activity between March and June 2014 as observed from Rosetta/OSIRIS. Astron. Astrophys. 2015, 573, A62. [Google Scholar] [CrossRef]
- Pestoni, B.; Altwegg, K.; Balsiger, H.; Hanni, N.; Rubin, M.; Schroeder, I.; Schuhmann, M.; Wampfler, S. Detection of volatiles undergoing sublimation from 67P/Churyumov-Gerasimenko coma particles using ROSINA/COPS. I. The ram gauge. Astron. Astrophys. 2021, 645, A38. [Google Scholar] [CrossRef]
- Filacchione, G.; Raponi, A.; Capaccioni, F.; Ciarniello, M.; Tosi, F.; Capria, M.T.; De Sanctis, M.C.; Migliorini, A.; Piccioni, G.; Cerroni, P.; et al. Seasonal exposure of carbon dioxide ice on the nucleus of comet 67P/Churyumov-Gerasimenko. Science 2016, 354, 1563–1566. [Google Scholar] [CrossRef] [PubMed]
- Fulle, M.; Blum, J. Fractal dust constrains the collisional history of comets. Mon. Not. R. Astron. Soc. 2017, 469, S39–S44. [Google Scholar] [CrossRef]
- Haser, L. Distribution d’intensité dans la tête d’une comète. Bull. Cl. Sci. L’académie R. Belg. 1957, 43, 740–750. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Longobardo, A.; Kim, M.; Pestoni, B.; Ciarniello, M.; Rinaldi, G.; Ivanovski, S.; Dirri, F.; Fulle, M.; Della Corte, V.; Rotundi, A.; et al. Main Results from the ISSI International Team “Characterization of 67P Cometary Activity”. Universe 2023, 9, 446. https://doi.org/10.3390/universe9100446
Longobardo A, Kim M, Pestoni B, Ciarniello M, Rinaldi G, Ivanovski S, Dirri F, Fulle M, Della Corte V, Rotundi A, et al. Main Results from the ISSI International Team “Characterization of 67P Cometary Activity”. Universe. 2023; 9(10):446. https://doi.org/10.3390/universe9100446
Chicago/Turabian StyleLongobardo, Andrea, Minjae Kim, Boris Pestoni, Mauro Ciarniello, Giovanna Rinaldi, Stavro Ivanovski, Fabrizio Dirri, Marco Fulle, Vincenzo Della Corte, Alessandra Rotundi, and et al. 2023. "Main Results from the ISSI International Team “Characterization of 67P Cometary Activity”" Universe 9, no. 10: 446. https://doi.org/10.3390/universe9100446
APA StyleLongobardo, A., Kim, M., Pestoni, B., Ciarniello, M., Rinaldi, G., Ivanovski, S., Dirri, F., Fulle, M., Della Corte, V., Rotundi, A., & Rubin, M. (2023). Main Results from the ISSI International Team “Characterization of 67P Cometary Activity”. Universe, 9(10), 446. https://doi.org/10.3390/universe9100446