Novel Exact Solution for the Bidirectional Sixth-Order Sawada–Kotera Equation
Abstract
:1. Introduction
2. -Soliton Solution
3. Multiple-Pole Solutions
3.1. Double-Pole Solution
3.2. Triple-Pole Solution
3.3. Quadruple-Pole Solution
4. Interaction between Multiple-Pole Solutions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Saaty, T.L. Modern Nonlinear Equations; Courier Corporation: North Chelmsford, MA, USA, 2012. [Google Scholar]
- He, J.-H. Some asymptotic methods for strongly nonlinear equations. Int. J. Mod. Phys. B 2006, 20, 1141–1199. [Google Scholar] [CrossRef] [Green Version]
- Schiebold, C. Asymptotics for the multiple pole solutions of the nonlinear schrödinger equation. Nonlinearity 2017, 30, 2930. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Z.; Li, K.; Zhu, J. Multiple-pole solutions to a semidiscrete modified korteweg-de vries equation. Adv. Math. Phys. 2019, 2019, 5468142. [Google Scholar] [CrossRef]
- Wadati, M.; Ohkuma, K. Multiple-pole solutions of the modified korteweg-de vries equation. J. Phys. Soc. Jpn. 1982, 51, 2029–2035. [Google Scholar] [CrossRef]
- Wen, L.-L.; Fan, E.-G.; Chen, Y. Inverse scattering transform and high-order pole solutions for the nls equation with quartic terms under vanishing/non-vanishing boundary conditions. arXiv 2021, arXiv:2108.07404. [Google Scholar]
- Wang, Y.; Xiong, Z.-J.; Ling, L. Fokas–lenells equation: Three types of darboux transformation and multi-soliton solutions. Appl. Math. Lett. 2020, 107, 106441. [Google Scholar] [CrossRef]
- Guo, B.; Ling, L.; Liu, Q.P. High-order solutions and generalized darboux transformations of derivative nonlinear schrödinger equations. Stud. Appl. Math. 2013, 130, 317–344. [Google Scholar] [CrossRef] [Green Version]
- Bilman, D.; Buckingham, R.; Wang, D.-S. Far-field asymptotics for multiple-pole solitons in the large-order limit. J. Differ. Equ. 2021, 297, 320–369. [Google Scholar] [CrossRef]
- Salas, A.H. An algebraic condition for finding exact solutions to general kdv6. Int. J. Nonlinear Sci. 2010, 10, 401–409. [Google Scholar]
- Wazwaz, A.-M. N-soliton solutions for the integrable bidirectional sixth-order sawada–kotera equation. Appl. Math. Comput. 2010, 216, 2317–2320. [Google Scholar] [CrossRef]
- Tahir, M.; Awan, A.U.; Osman, M.S.; Baleanu, D.; Alqurashi, M.M. Abundant periodic wave solutions for fifth-order sawada-kotera equations. Res. Phys. 2020, 17, 103105. [Google Scholar] [CrossRef]
- Zou, L.; Tian, S.-F.; Wang, X.-B.; Zhang, T.-T. Lie symmetry analysis and different types of solutions to a generalized bidirectional sixth-order sawada–kotera equation. Chin. J. Phys. 2017, 55, 2236–2248. [Google Scholar] [CrossRef]
- Kupershmidt, B.A. Kdv6: An integrable system. Phys. Lett. A 2008, 372, 2634–2639. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.-B.; Wang, Da.; Tam, H.-W. Lax pairs and bäcklund transformations for a coupled ramani equation and its related system. Appl. Math. Lett. 2000, 13, 45–48. [Google Scholar] [CrossRef] [Green Version]
- Huber, A. Solitary solutions of some nonlinear evolution equations. Appl. Math. Comput. 2005, 166, 464–474. [Google Scholar] [CrossRef]
- Yin, K.-H.; Cheng, X.-P.; Lin, J. Soliton molecule and breather-soliton molecule structures for a general sixth-order nonlinear equation. Chin. Phys. Lett. 2021, 38, 080201. [Google Scholar] [CrossRef]
- Ma, W.-X. Soliton solutions by means of hirota bilinear forms. Partial Differ. Equ. Appl. Math. 2022, 5, 100220. [Google Scholar] [CrossRef]
- Ma, H.; Chen, X.; Deng, A. Resonance y-type soliton and new hybrid solutions generated by velocity resonance for a (2+1)-dimensional generalized bogoyavlensky–konopelchenko equation in a fluid. Nonlinear Dyn. 2022, 1–19. [Google Scholar] [CrossRef]
- Triki, H.; Wazwaz, A.-M. Bright and dark soliton solutions for a k (m, n) equation with t-dependent coefficients. Phys. Lett. A 2009, 373, 2162–2165. [Google Scholar] [CrossRef]
- Radhakrishnan, R.; Lakshmanan, M. Bright and dark soliton solutions to coupled nonlinear schrodinger equations. J. Phys. A Math. Gen. 1995, 28, 2683. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, X.; Li, W.; Li, B. Trajectory equation of a lump before and after collision with line, lump, and breather waves for (2+1)-dimensional kadomtsev–petviashvili equation. Chin. Phys. B 2019, 28, 110201. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, B.; Wazwaz, A.-M.; Guo, Q. The generation mechanism of multiple-pole solutions for the fifth-order mkdv equation. Eur. Phys. J. Plus 2022, 137, 193. [Google Scholar] [CrossRef]
- Zhu, S.; Yin, S.; Li, X. Degenerate soliton and breather solutions of the modified korteweg–de vries–sine gordon equation. Appl. Math. Lett. 2022, 131, 108070. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, H.; Chen, X.; Deng, A. Novel Exact Solution for the Bidirectional Sixth-Order Sawada–Kotera Equation. Universe 2023, 9, 55. https://doi.org/10.3390/universe9010055
Ma H, Chen X, Deng A. Novel Exact Solution for the Bidirectional Sixth-Order Sawada–Kotera Equation. Universe. 2023; 9(1):55. https://doi.org/10.3390/universe9010055
Chicago/Turabian StyleMa, Hongcai, Xiaoyu Chen, and Aiping Deng. 2023. "Novel Exact Solution for the Bidirectional Sixth-Order Sawada–Kotera Equation" Universe 9, no. 1: 55. https://doi.org/10.3390/universe9010055
APA StyleMa, H., Chen, X., & Deng, A. (2023). Novel Exact Solution for the Bidirectional Sixth-Order Sawada–Kotera Equation. Universe, 9(1), 55. https://doi.org/10.3390/universe9010055