The C/M Ratio of AGB Stars in the Local Group Galaxies
Abstract
:1. Introduction
2. Data: The Sample of AGB Stars
2.1. The Magellanic Clouds
2.2. Ten Dwarf Galaxies
2.3. M31 and M33
3. Classification of Evolved Stars
3.1. Selection of the Benchmark Galaxies: The LMC and M33
3.2. Definition of the Borderlines for the LMC
3.3. The Borderlines of the SMC and Ten Dwarf Galaxies
3.4. The Borderlines of M31 and M33
4. Result and Discussion
4.1. The Number of O-AGB and C-AGB Stars
4.2. The Relation between C/M Ratio and
4.3. Comparison with Previous Works
4.4. The Uncertainties Analysis
4.4.1. The Photometric Error
4.4.2. The TP-AGB Tail
4.4.3. The Location of the C-AGB Stars
4.4.4. x-AGB Stars
4.4.5. The Tip of RGB
4.5. The Radial Distribution of the C-AGB, O-AGB Stars and C/M Ratio in M31 and M33
5. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | The N_flag is added in Paper II to indicate the number of bands in which the source is identified as a point source. |
2 | https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html (accessed on 23 March 2022). |
3 |
References
- Herwig, F. Evolution of asymptotic giant branch stars. Annu. Rev. Astron. Astrophys. 2005, 43, 435–479. [Google Scholar] [CrossRef]
- Pinte, C.; Harries, T.; Min, M.; Watson, A.; Dullemond, C.; Woitke, P.; Ménard, F.; Durán-Rojas, M. Benchmark problems for continuum radiative transfer-High optical depths, anisotropic scattering, and polarisation. Astron. Astrophys. 2009, 498, 967–980. [Google Scholar] [CrossRef]
- Höfner, S.; Olofsson, H. Mass loss of stars on the asymptotic giant branch. Astron. Astrophys. Rev. 2018, 26, 1. [Google Scholar] [CrossRef]
- Vassiliadis, E.; Wood, P. Evolution of low-and intermediate-mass stars to the end of the asymptotic giant branch with mass loss. Astrophys. J. 1993, 413, 641–657. [Google Scholar] [CrossRef]
- Iben, I.; Renzini, A. Asymptotic giant branch evolution and beyond. Annu. Rev. Astron. Astrophys. 1983, 21, 271–342. [Google Scholar] [CrossRef]
- Busso, M.; Gallino, R.; Wasserburg, G. Nucleosynthesis in asymptotic giant branch stars: Relevance for galactic enrichment and solar system formation. Annu. Rev. Astron. Astrophys. 1999, 37, 239–309. [Google Scholar] [CrossRef]
- Fishlock, C.K.; Karakas, A.I.; Lugaro, M.; Yong, D. Evolution and nucleosynthesis of asymptotic giant branch stellar models of low metallicity. Astrophys. J. 2014, 797, 44. [Google Scholar] [CrossRef]
- Karakas, A.I.; Lattanzio, J.C. The Dawes review 2: Nucleosynthesis and stellar yields of low-and intermediate-mass single stars. Publ. Astron. Soc. Aust. 2014, 31, E030. [Google Scholar] [CrossRef]
- Cristallo, S.; Straniero, O.; Piersanti, L.; Gobrecht, D. Evolution, nucleosynthesis, and yields of AGB stars at different metallicities. III. Intermediate-mass models, revised low-mass models, and the ph-FRUITY interface. Astrophys. J. Suppl. Ser. 2015, 219, 40. [Google Scholar] [CrossRef]
- Weiss, A.; Ferguson, J.W. New asymptotic giant branch models for a range of metallicities. Astron. Astrophys. 2009, 508, 1343–1358. [Google Scholar] [CrossRef] [Green Version]
- Trippella, O.; Busso, M.; Maiorca, E.; Käppeler, F.; Palmerini, S. s-Processing in AGB Stars Revisited. I. Does the Main Component Constrain the Neutron Source in the 13C Pocket? Astrophys. J. 2014, 787, 41. [Google Scholar] [CrossRef]
- Trippella, O.; Busso, M.; Palmerini, S.; Maiorca, E.; Nucci, M. s-processing in AGB stars revisited. II. Enhanced 13C production through MHD-induced mixing. Astrophys. J. 2016, 818, 125. [Google Scholar] [CrossRef]
- Busso, M.; Vescovi, D.; Palmerini, S.; Cristallo, S.; Antonuccio-Delogu, V. s-Processing in AGB Stars Revisited. III. Neutron captures from MHD mixing at different metallicities and observational constraints. Astrophys. J. 2021, 908, 55. [Google Scholar] [CrossRef]
- Smolders, K.; Neyskens, P.; Blommaert, J.; Hony, S.; Van Winckel, H.; Decin, L.; Van Eck, S.; Sloan, G.; Cami, J.; Uttenthaler, S.; et al. The Spitzer spectroscopic survey of S-type stars. Astron. Astrophys. 2012, 540, A72. [Google Scholar] [CrossRef]
- Cioni, M.R.; Habing, H. AGB stars in the Magellanic Clouds-I. The C/M ratio. Astron. Astrophys. 2003, 402, 133–140. [Google Scholar] [CrossRef]
- Secchi, A. A Catalogue of Spectra of Red Stars. Mon. Not. R. Astron. Soc. 1868, 28, 196. [Google Scholar]
- Battinelli, P.; Demers, S. The calibration of the metallicity versus C/M relation. Astron. Astrophys. 2005, 434, 657–663. [Google Scholar] [CrossRef]
- Cioni, M.R.; Habing, H. Near-IR observations of NGC 6822: AGB stars, distance, metallicity and structure. Astron. Astrophys. 2005, 429, 837–850. [Google Scholar] [CrossRef]
- Frogel, J.A.; Mould, J.; Blanco, V. The asymptotic giant branch of Magellanic Cloud clusters. Astrophys. J. 1990, 352, 96–122. [Google Scholar] [CrossRef]
- Marigo, P.; Girardi, L.; Bressan, A.; Rosenfield, P.; Aringer, B.; Chen, Y.; Dussin, M.; Nanni, A.; Pastorelli, G.; Rodrigues, T.S.; et al. A new generation of PARSEC-COLIBRI stellar isochrones including the TP-AGB phase. Astrophys. J. 2017, 835, 77. [Google Scholar] [CrossRef]
- Palmer, L.; Wing, R. A new search technique for M and C stars. Astron. J. 1982, 87, 1739–1750. [Google Scholar] [CrossRef]
- Cook, K.; Aaronson, M.; Norris, J. Carbon and M stars in nearby galaxies-A preliminary survey using a photometric technique. Astrophys. J. 1986, 305, 634–644. [Google Scholar] [CrossRef]
- Brewer, J.P.; Richer, H.B.; Crabtree, D.R. Late-Type Stars in M31. I. Photometric Study of AGB Stars and Metallicity Gradients. Astron. J. 1995, 109, 2480. [Google Scholar] [CrossRef]
- Brewer, J.P.; Richer, H.B.; Crabtree, D.R. Late-type stars in M31. II. C-, S-, and M-star spectra. Astron. J. 1996, 112, 491. [Google Scholar] [CrossRef]
- Letarte, B.; Demers, S.; Battinelli, P.; Kunkel, W. The Extent of NGC 6822 Revealed by Its C Star Population. Astron. J. 2002, 123, 832. [Google Scholar] [CrossRef]
- Groenewegen, M. AGB stars in the Local Group, and beyond. In Planetary Nebulae Beyond the Milky Way; Springer: Berlin/Heidelberg, Germany, 2006; pp. 108–120. [Google Scholar]
- Demers, S.; Battinelli, P.; Artigau, E. Carbon stars in the outer spheroid of NGC 6822. Astron. Astrophys. 2006, 456, 905–910. [Google Scholar] [CrossRef]
- Davidge, T. The evolved red stellar contents of the Sculptor group galaxies NGC 55, NGC 300, and NGC 7793. Astrophys. J. 1998, 497, 650. [Google Scholar] [CrossRef]
- Davidge, T. The evolved red stellar content of M32. Publ. Astron. Soc. Pac. 2000, 112, 1177. [Google Scholar] [CrossRef]
- Davidge, T.J. The Asymptotic Giant Branch of NGC 205: The Characteristics of Carbon Stars and M Giants Identified from JHK’Images. Astrophys. J. 2003, 597, 289. [Google Scholar] [CrossRef]
- Davidge, T.; Rigaut, F. Photometric variability among the brightest asymptotic giant branch stars near the center of M32. Astrophys. J. 2004, 607, L25. [Google Scholar] [CrossRef]
- Davidge, T. The disk and extraplanar regions of NGC 55. Astrophys. J. 2005, 622, 279. [Google Scholar] [CrossRef]
- Cioni, M.R.; Irwin, M.; Ferguson, A.; McConnachie, A.; Conn, B.; Huxor, A.; Ibata, R.; Lewis, G.; Tanvir, N. AGB stars as tracers of metallicity and mean age across M 33. Astron. Astrophys. 2008, 487, 131–146. [Google Scholar] [CrossRef]
- Sibbons, L.; Ryan, S.G.; Cioni, M.R.; Irwin, M.; Napiwotzki, R. The AGB population of NGC 6822: Distribution and the C/M ratio from JHK photometry. Astron. Astrophys. 2012, 540, A135. [Google Scholar] [CrossRef]
- Sibbons, L.; Ryan, S.G.; Irwin, M.; Napiwotzki, R. The AGB population in IC 1613 using JHK photometry. Astron. Astrophys. 2015, 573, A84. [Google Scholar] [CrossRef]
- Battinelli, P.; Demers, S.; Mannucci, F. The assessment of the near infrared identification of carbon stars-I. The Local Group galaxies WLM, IC 10 and NGC 6822. Astron. Astrophys. 2007, 474, 35–41. [Google Scholar] [CrossRef]
- Pastorelli, G.; Marigo, P.; Girardi, L.; Chen, Y.; Rubele, S.; Trabucchi, M.; Aringer, B.; Bladh, S.; Bressan, A.; Montalbán, J.; et al. Constraining the thermally pulsing asymptotic giant branch phase with resolved stellar populations in the Small Magellanic Cloud. Mon. Not. R. Astron. Soc. 2019, 485, 5666–5692. [Google Scholar] [CrossRef]
- Pastorelli, G.; Marigo, P.; Girardi, L.; Aringer, B.; Chen, Y.; Rubele, S.; Trabucchi, M.; Bladh, S.; Boyer, M.L.; Bressan, A.; et al. Constraining the thermally pulsing asymptotic giant branch phase with resolved stellar populations in the Large Magellanic Cloud. Mon. Not. R. Astron. Soc. 2020, 498, 3283–3301. [Google Scholar] [CrossRef]
- Ren, Y.; Jiang, B.; Yang, M.; Wang, T.; Jian, M.; Ren, T. Red Supergiants in M31 and M33. I. The Complete Sample. Astrophys. J. 2021, 907, 18. [Google Scholar] [CrossRef]
- Ren, Y.; Jiang, B.; Yang, M.; Wang, T.; Ren, T. The Sample of Red Supergiants in 12 Low-mass Galaxies of the Local Group. Astrophys. J. 2021, 923, 232. [Google Scholar] [CrossRef]
- Allard, F.; Hauschildt, P.H. Model Atmospheres for M (Sub) Dwarfs: I. The base model grid. Astrophys. J. 1995, 445, 433. [Google Scholar] [CrossRef]
- Bessell, M.; Brett, J. JHKLM photometry: Standard systems, passbands, and intrinsic colors. Publ. Astron. Soc. Pac. 1988, 100, 1134. [Google Scholar] [CrossRef]
- Schlegel, D.J.; Finkbeiner, D.P.; Davis, M. Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds. Astrophys. J. 1998, 500, 525. [Google Scholar] [CrossRef]
- Green, G.M.; Schlafly, E.; Zucker, C.; Speagle, J.S.; Finkbeiner, D. A 3D Dust Map Based on Gaia, Pan-STARRS 1, and 2MASS. Astrophys. J. 2019, 887, 93. [Google Scholar] [CrossRef]
- Skowron, D.; Skowron, J.; Udalski, A.; Szymański, M.; Soszyński, I.; Ulaczyk, K.; Poleski, R.; Kozłowski, S.; Pietrukowicz, P.; Mróz, P.; et al. OGLE-ing the Magellanic System: Optical Reddening Maps of the Large and Small Magellanic Clouds from Red Clump Stars. Astrophys. J. Suppl. Ser. 2021, 252, 23. [Google Scholar] [CrossRef]
- Bellazzini, M.; Ferraro, F.; Sollima, A.; Pancino, E.; Origlia, L. The calibration of the RGB Tip as a Standard Candle-Extension to Near Infrared colors and higher metallicity. Astron. Astrophys. 2004, 424, 199–211. [Google Scholar] [CrossRef]
- Pietrzyński, G.; Graczyk, D.; Gallenne, A.; Gieren, W.; Thompson, I.; Pilecki, B.; Karczmarek, P.; Górski, M.; Suchomska, K.; Taormina, M.; et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 2019, 567, 200–203. [Google Scholar] [CrossRef]
- Graczyk, D.; Pietrzyński, G.; Thompson, I.B.; Gieren, W.; Zgirski, B.; Villanova, S.; Górski, M.; Wielgórski, P.; Karczmarek, P.; Narloch, W.; et al. A Distance Determination to the Small Magellanic Cloud with an Accuracy of Better than Two Percent Based on Late-type Eclipsing Binary Stars. Astrophys. J. 2020, 904, 13. [Google Scholar] [CrossRef]
- Skrutskie, M.; Cutri, R.; Stiening, R.; Weinberg, M.; Schneider, S.; Carpenter, J.; Beichman, C.; Capps, R.; Chester, T.; Elias, J.; et al. The two micron all sky survey (2MASS). Astron. J. 2006, 131, 1163. [Google Scholar] [CrossRef]
- Hodgkin, S.; Irwin, M.; Hewett, P.; Warren, S. The UKIRT wide field camera ZYJHK photometric system: Calibration from 2MASS. Mon. Not. R. Astron. Soc. 2009, 394, 675–692. [Google Scholar] [CrossRef]
- Wang, T.; Jiang, B.; Ren, Y.; Yang, M.; Li, J. Red Supergiants in M31 and M33. II. The Mass-loss Rate. Astrophys. J. 2021, 912, 112. [Google Scholar] [CrossRef]
- Hirschauer, A.S.; Gray, L.; Meixner, M.; Jones, O.C.; Srinivasan, S.; Boyer, M.L.; Sargent, B. Dusty Stellar Birth and Death in the Metal-poor Galaxy NGC 6822. Astrophys. J. 2020, 892, 91. [Google Scholar] [CrossRef] [Green Version]
- Rosenfield, P.; Marigo, P.; Girardi, L.; Dalcanton, J.J.; Bressan, A.; Williams, B.F.; Dolphin, A. Evolution of thermally pulsing asymptotic giant branch stars. V. Constraining the mass loss and lifetimes of intermediate-mass, low-metallicity AGB stars. Astrophys. J. 2016, 822, 73. [Google Scholar] [CrossRef]
- Fraley, C.; Raftery, A.E. Model-based clustering, discriminant analysis, and density estimation. J. Am. Stat. Assoc. 2002, 97, 611–631. [Google Scholar] [CrossRef]
- Marigo, P.; Girardi, L.; Chiosi, C. The red tail of carbon stars in the LMC: Models meet 2MASS and DENIS observations. Astron. Astrophys. 2003, 403, 225–237. [Google Scholar] [CrossRef]
- Da Costa, G.; Armandroff, T. Standard globular cluster giant branches in the (MI,/VI/sub O) plane. Astron. J. 1990, 100, 162–181. [Google Scholar] [CrossRef]
- Lee, M.G.; Freedman, W.L.; Madore, B.F. The tip of the red giant branch as a distance indicator for resolved galaxies. Astrophys. J. 1993, 417, 553. [Google Scholar] [CrossRef]
- Ivanov, V.D.; Borissova, J.; Alonso-Herrero, A.; Russeva, T. Extending the Red Giant Branch versus Metallicity Calibration toward Metal-poor Systems: Near-Infrared Photometry of the Galactic Globular Clusters M56 and M15. Astron. J. 2000, 119, 2274. [Google Scholar] [CrossRef]
- Cioni, M.R. The metallicity gradient as a tracer of history and structure: The Magellanic Clouds and M33 galaxies. Astron. Astrophys. 2009, 506, 1137–1146. [Google Scholar] [CrossRef]
- Kang, A.; Sohn, Y.J.; Kim, H.I.; Rhee, J.; Kim, J.W.; Hwang, N.; Lee, M.; Kim, Y.C.; Chun, M.S. The evolved asymptotic giant branch stars in the central bar of the dwarf irregular galaxy NGC 6822. Astron. Astrophys. 2006, 454, 717–727. [Google Scholar] [CrossRef]
- Kang, A.; Sohn, Y.J.; Rhee, J.; Shin, M.; Chun, M.S.; Kim, H.I. Near-IR photometry of asymptotic giant branch stars in the dwarf elliptical galaxy NGC 185. Astron. Astrophys. 2005, 437, 61–68. [Google Scholar] [CrossRef]
- Boyer, M.; McQuinn, K.; Groenewegen, M.; Zijlstra, A.; Whitelock, P.; Van Loon, J.T.; Sonneborn, G.; Sloan, G.; Skillman, E.; Meixner, M.; et al. An Infrared Census of DUST in Nearby Galaxies with Spitzer (DUSTiNGS). IV. Discovery of High-redshift AGB Analogs. Astrophys. J. 2017, 851, 152. [Google Scholar] [CrossRef] [Green Version]
- Battinelli, P.; Demers, S.; Letarte, B. Carbon star survey in the Local Group. V. The outer disk of M31. Astron. J. 2003, 125, 1298. [Google Scholar] [CrossRef]
- Jones, O.C.; Maclay, M.T.; Boyer, M.L.; Meixner, M.; McDonald, I.; Meskhidze, H. Near-Infrared Stellar Populations in the metal-poor, Dwarf irregular Galaxies Sextans A and Leo A. Astrophys. J. 2018, 854, 117. [Google Scholar] [CrossRef]
- Valcheva, A.; Ivanov, V.; Ovcharov, E.; Nedialkov, P. Carbon stars and C/M ratio in the WLM dwarf irregular galaxy. Astron. Astrophys. 2007, 466, 501–507. [Google Scholar] [CrossRef]
- Freedman, W.L.; Madore, B.F.; Hoyt, T.; Jang, I.S.; Beaton, R.; Lee, M.G.; Monson, A.; Neeley, J.; Rich, J. Calibration of the Tip of the red giant branch. Astrophys. J. 2020, 891, 57. [Google Scholar] [CrossRef]
- Cioni, M.R.; Girardi, L.; Marigo, P.; Habing, H. AGB stars in the Magellanic Clouds-II. The rate of star formation across the LMC. Astron. Astrophys. 2006, 448, 77–91. [Google Scholar] [CrossRef]
- Wang, S.; Chen, X. The optical to mid-infrared extinction law based on the APOGEE, Gaia DR2, Pan-STARRS1, SDSS, APASS, 2MASS, and WISE surveys. Astrophys. J. 2019, 877, 116. [Google Scholar] [CrossRef]
- Bressan, A.; Marigo, P.; Girardi, L.; Salasnich, B.; Dal Cero, C.; Rubele, S.; Nanni, A. PARSEC: Stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code. Mon. Not. R. Astron. Soc. 2012, 427, 127–145. [Google Scholar] [CrossRef]
- Marigo, P.; Bressan, A.; Nanni, A.; Girardi, L.; Pumo, M.L. Evolution of thermally pulsing asymptotic giant branch stars–I. The colibri code. Mon. Not. R. Astron. Soc. 2013, 434, 488–526. [Google Scholar] [CrossRef]
- Tang, J.; Bressan, A.; Rosenfield, P.; Slemer, A.; Marigo, P.; Girardi, L.; Bianchi, L. New PARSEC evolutionary tracks of massive stars at low metallicity: Testing canonical stellar evolution in nearby star-forming dwarf galaxies. Mon. Not. R. Astron. Soc. 2014, 445, 4287–4305. [Google Scholar] [CrossRef]
- Chen, Y.; Girardi, L.; Bressan, A.; Marigo, P.; Barbieri, M.; Kong, X. Improving PARSEC models for very low mass stars. Mon. Not. R. Astron. Soc. 2014, 444, 2525–2543. [Google Scholar] [CrossRef]
- Chen, Y.; Bressan, A.; Girardi, L.; Marigo, P.; Kong, X.; Lanza, A. PARSEC evolutionary tracks of massive stars up to 350 M⊙ at metallicities 0.0001 ≤ Z ≤ 0.04. Mon. Not. R. Astron. Soc. 2015, 452, 1068–1080. [Google Scholar] [CrossRef]
- Kroupa, P. On the variation of the initial mass function. Mon. Not. R. Astron. Soc. 2001, 322, 231–246. [Google Scholar] [CrossRef]
- Kroupa, P. The initial mass function of stars: Evidence for uniformity in variable systems. Science 2002, 295, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Groenewegen, M. The mid-and far-infrared colours of AGB and post-AGB stars. Astron. Astrophys. 2006, 448, 181–187. [Google Scholar] [CrossRef]
- Blanco, V.; McCarthy, M.; Blanco, B. Carbon and late M-type stars in the Magellanic Clouds. Astrophys. J. 1980, 242, 938–964. [Google Scholar] [CrossRef]
- Kacharov, N.; Rejkuba, M.; Cioni, M.R. Spectra probing the number ratio of C-to M-type AGB stars in the NGC 6822 galaxy. Astron. Astrophys. 2012, 537, A108. [Google Scholar] [CrossRef]
- Blum, R.; Mould, J.; Olsen, K.; Frogel, J.; Werner, M.; Meixner, M.; Markwick-Kemper, F.; Indebetouw, R.; Whitney, B.; Meade, M.; et al. Spitzer SAGE Survey of the Large Magellanic Cloud. II. Evolved Stars and Infrared Color-Magnitude Diagrams. Astron. J. 2006, 132, 2034. [Google Scholar] [CrossRef]
- Boyer, M.L.; Srinivasan, S.; Van Loon, J.T.; McDonald, I.; Meixner, M.; Zaritsky, D.; Gordon, K.D.; Kemper, F.; Babler, B.; Block, M.; et al. Surveying the agents of galaxy evolution in the tidally stripped, low metallicity Small Magellanic Cloud (SAGE-SMC). II. Cool evolved stars. Astron. J. 2011, 142, 103. [Google Scholar] [CrossRef]
- Dell’Agli, F.; García-Hernández, D.; Ventura, P.; Schneider, R.; Di Criscienzo, M.; Rossi, C. AGB stars in the SMC: Evolution and dust properties based on Spitzer observations. Mon. Not. R. Astron. Soc. 2015, 454, 4235–4249. [Google Scholar] [CrossRef]
- Serenelli, A.; Weiss, A.; Cassisi, S.; Salaris, M.; Pietrinferni, A. The brightness of the red giant branch tip-Theoretical framework, a set of reference models, and predicted observables. Astron. Astrophys. 2017, 606, A33. [Google Scholar] [CrossRef]
- Hoyt, T.J.; Freedman, W.L.; Madore, B.F.; Seibert, M.; Beaton, R.L.; Hatt, D.; Jang, I.S.; Lee, M.G.; Monson, A.J.; Rich, J.A. The near-infrared tip of the red giant branch. II. An absolute calibration in the Large Magellanic Cloud. Astrophys. J. 2018, 858, 12. [Google Scholar] [CrossRef]
- Marigo, P.; Girardi, L.; Bressan, A.; Groenewegen, M.A.; Silva, L.; Granato, G.L. Evolution of asymptotic giant branch stars-II. Optical to far-infrared isochrones with improved tp-agb models. Astron. Astrophys. 2008, 482, 883–905. [Google Scholar] [CrossRef]
- Boyer, M.L.; McDonald, I.; Srinivasan, S.; Zijlstra, A.; van Loon, J.T.; Olsen, K.A.; Sonneborn, G. Identification of a class of low-mass asymptotic giant branch stars struggling to become carbon stars in the magellanic clouds. Astrophys. J. 2015, 810, 116. [Google Scholar] [CrossRef]
- Hamren, K.M.; Rockosi, C.M.; Guhathakurta, P.; Boyer, M.L.; Smith, G.H.; Dalcanton, J.J.; Gregersen, D.; Seth, A.C.; Lewis, A.R.; Williams, B.F.; et al. a Spectroscopic and Photometric Exploration of the C/M Ratio in the Disk of M31. Astrophys. J. 2015, 810, 60. [Google Scholar] [CrossRef]
- Pena, M.; Flores-Durán, S.N. Metallicity gradients in M31, M 33, NGC 300 and the milky way using abundances of different elements. Rev. Mex. Astron. Astrofís. 2019, 55, 255–271. [Google Scholar]
- Feast, M.W.; Abedigamba, O.P.; Whitelock, P.A. Is there a metallicity gradient in the Large Magellanic Cloud? Mon. Not. R. Astron. Soc. Lett. 2010, 408, L76–L79. [Google Scholar] [CrossRef] [Green Version]
Galaxy | [M/H] 1 | Number of Sources (Initial Sample) | Number of Sources (Final Sample) | µ | |||
---|---|---|---|---|---|---|---|
LMC | 12.00 | 1.00 | −1.00 | 402,300 | 0.05 | 198,548 | 18.26 |
SMC | 12.71 | 0.91 | −1.24 | 66,573 | 0.05 | 29,413 | 18.72 |
NGC 6822 | 17.38 | 0.98 | −1.05 | 4084 | 0.20 | 3745 | 23.58 |
NGC 185 | 17.62 | 1.02 | −0.95 | 8015 | 0.20 | 6267 | 23.94 |
IC10 | 18.14 | 0.86 | −1.37 | 15,336 | 0.20 | 12,368 | 24.01 |
NGC 147 | 17.87 | 1.03 | −0.92 | 10,567 | 0.20 | 8393 | 24.21 |
IC 1613 | 18.10 | 0.96 | −1.11 | 2363 | 0.20 | 1970 | 24.25 |
M31 | 17.66 | 1.12 | −0.68 | 1,245,930 | 0.20 | 513,957 | 24.25 |
Leo A | 18.56 | 0.90 | −1.26 | 86 | 0.20 | 72 | 24.54 |
M33 | 18.17 | 1.07 | −0.82 | 203,486 | 0.20 | 95,812 | 24.62 |
WLM | 18.68 | 0.94 | −1.16 | 890 | 0.20 | 685 | 24.77 |
Pegasus DIG | 18.65 | 1.02 | −0.95 | 398 | 0.20 | 297 | 24.97 |
Sextans A | 20.01 | 0.80 | −1.53 | 194 | 0.20 | 173 | 25.95 |
Sextans B | 20.21 | 0.80 | −1.53 | 141 | 0.20 | 97 | 26.15 |
Line 1 | Line 2 | Line 3 | Line 4 | Line 5 | |
---|---|---|---|---|---|
LMC | |||||
M33 | |||||
Host Galaxy | C/M Ratio | C-AGBs | O-AGBs | TP-AGBs | x-AGBs | Others | RSGs | RSGs (Paper I and Paper II) |
---|---|---|---|---|---|---|---|---|
LMC | 8160 | 20,283 | 2041 | 1359 | 193 | 4578 | 4823 | |
SMC | 1769 | 3396 | 526 | 302 | 96 | 2032 | 2138 | |
NGC 6822 | 587 | 871 | 146 | 109 | 2 | 406 | 465 | |
NGC 185 | 132 | 456 | 12 | 46 | 0 | 24 | 36 | |
IC 10 | 1840 | 3083 | 309 | 286 | 9 | 1103 | 1340 | |
NGC 147 | 264 | 910 | 20 | 106 | 3 | 48 | 82 | |
IC 1613 | 198 | 339 | 39 | 35 | 1 | 100 | 115 | |
M31 | 37,003 | 223,805 | 4183 | 997 | 84 | 6619 | 5498 | |
Leo A | 13 | 7 | 2 | 7 | 0 | 10 | 10 | |
M33 | 11,957 | 35,091 | 1628 | 1025 | 8 | 2222 | 3055 | |
WLM | 161 | 139 | 31 | 48 | 1 | 54 | 63 | |
Pegasus Dwarf | 68 | 79 | 4 | 14 | 0 | 18 | 31 | |
Sextans A | 84 | 11 | 43 | 5 | 0 | 30 | 33 | |
Sextans B | None | 49 | 0 | 34 | 2 | 0 | 12 | 14 |
Host Galaxy | C/M Ratio | C-AGBs | O-AGBs | Data Resource | Method | References |
---|---|---|---|---|---|---|
LMC | 0.3 | 7572 | 25,229 | DENIS | CMD | Cioni and Habing [15] |
SMC | 0.27 | 1643 | 6009 | DENIS | CMD | Cioni and Habing [15] |
NGC 6822 | 0.53 | 560 | 1050 | UKIRT | CMD | Hirschauer et al. [52] |
NGC 185 | 0.11 | 73 | ∼660 1 | CFHTIR | CMD and CCD | Kang et al. [61] |
IC10 | 0.30 | 531 | 1766 | HST WFC3/IR | (F127M-F139M)/(F139M-F153M) CCD | Boyer et al. [62] |
NGC 147 | 0.25 | 65 | 265 | HST WFC3/IR | (F127M-F139M)/(F139M-F153M) CCD | Boyer et al. [62] |
IC 1613 | 0.52 | 291 | 552 | UKIRT | CMD | Sibbons et al. [35] |
M31 | 0.084 | 945 | 11,228 | CFH12K | [TiO]-[CN] method | Battinelli et al. [63] |
Leo A | 1.80 | 18 | 10 | WHIRC | J - [3.6]/[3.6] CMD | Jones et al. [64] |
M33 | 0.35 | 7404 | ∼21,150 1 | UKIRT | CMD | Cioni et al. [33] |
WLM | 0.56 | 146 | 259 | NTT SofI | CMD | Valcheva et al. [65] |
Pegasus Dwarf | 1.38 | 44 | 32 | HST WFC3/IR | (F127M-F139M)/(F139M-F153M) CCD | Boyer et al. [62] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, T.; Jiang, B.; Ren, Y.; Yang, M. The C/M Ratio of AGB Stars in the Local Group Galaxies. Universe 2022, 8, 465. https://doi.org/10.3390/universe8090465
Ren T, Jiang B, Ren Y, Yang M. The C/M Ratio of AGB Stars in the Local Group Galaxies. Universe. 2022; 8(9):465. https://doi.org/10.3390/universe8090465
Chicago/Turabian StyleRen, Tongtian, Biwei Jiang, Yi Ren, and Ming Yang. 2022. "The C/M Ratio of AGB Stars in the Local Group Galaxies" Universe 8, no. 9: 465. https://doi.org/10.3390/universe8090465
APA StyleRen, T., Jiang, B., Ren, Y., & Yang, M. (2022). The C/M Ratio of AGB Stars in the Local Group Galaxies. Universe, 8(9), 465. https://doi.org/10.3390/universe8090465