Brans–Dicke Unimodular Gravity
Abstract
:1. Introduction
2. Unimodular Structure in GR
3. Unimodular Brans–Dicke
4. Cosmology
4.1. Unimodular RG
4.2. Brans–Dicke Solutions
- 1.
- Vacuum solutions with .
- (a)
- Power law solutions appear when .
- (b)
- Exponential solutions for .
- 2.
- Vacuum solutions with .
- (a)
- Power law solutions for any value such that
4.3. Unimodular Brans–Dicke Cosmology
5. Perturbations
- :
- :
- :The perturbation of the Klein–Gordon equation is
5.1. Gravitational Waves
5.2. Vacuum Scalar Perturbations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Einstein, A. English translation in The Principle of Relativity, (Dover, New York). Siz. Preuss. Acad. Scis. 1919. [Google Scholar]
- Lopez-Villarejo, J.J. TransverseDiff gravity is to scalar-tensor as unimodular gravity is to General Relativity. J. Cosmol. Astropart. Phys. 2011, 2011, 002. [Google Scholar] [CrossRef]
- Weinberg, S. The cosmological constant problem. Rev. Mod. Phys. 1989, 61, 1. [Google Scholar] [CrossRef]
- De Brito, G.P.; Melichev, O.; Percacci, R.; Pereira, A.D. Can quantum fluctuations differentiate between standard and unimodular gravity? J. High Energy Phys. 2021, 2021, 90. [Google Scholar] [CrossRef]
- Carballo-Rubio, R.; Garay, L.J.; García-Moreno, G. Unimodular Gravity vs General Relativity: A status report. arXiv 2022, arXiv:2207.08499. [Google Scholar]
- Bufalo, R.; Oksanen, M.; Tureanu, A. How unimodular gravity theories differ from general relativity at quantum level. Eur. Phys. J. C 2015, 75, 477. [Google Scholar] [CrossRef]
- Anderson, J.L.; Finkelstein, D. Cosmological Constant and Fundamental Length. Am. J. Phys. 1971, 39, 901. [Google Scholar] [CrossRef]
- Alvarez, E.; Anero, J. Unimodular Cosmological models. arXiv 2021, arXiv:2109.08077. [Google Scholar]
- Fabris, J.C.; Alvarenga, M.H.; Hamani-Daouda, M.; Velten, H. Nonconservative unimodular gravity: A viable cosmological scenario? Eur. Phys. J. C 2022, 82, 522. [Google Scholar] [CrossRef]
- Velten, H.; Caramês, T.R.P. To conserve, or not to conserve: A review of nonconservative theories of gravity. Universe 2021, 7, 38. [Google Scholar] [CrossRef]
- Gao, C.; Brandenberger, R.H.; Cai, Y.; Chen, P. Cosmological Perturbations in Unimodular Gravity. J. Cosmol. Astropart. Phys. 2014, 2014, 021. [Google Scholar] [CrossRef]
- Jordan, P. Zum gegenwärtigen stand der Diracschen kosmologischen hypothesen. Z. Für Phys. 1959, 157, 112–121. [Google Scholar] [CrossRef]
- Brans, C.; Dicke, R.H. Mach Principle and a Relativistic Theory of Gravitation. Phys. Rev. 1961, 124, 925. [Google Scholar] [CrossRef]
- Böhmer, C.G.; Carloni, S. Generalized matter couplings in general relativity. Phys. Rev. D 2018, 98, 024054. [Google Scholar] [CrossRef]
- Will, C. The Confrontation between General Relativity and Experiment. Living Rev. Relativ. 2014, 17, 4. [Google Scholar] [CrossRef] [PubMed]
- Thiry, Y. Les Equations de la Théorie Unitaire de Kaluza. Comptes Rendus l’Académie Sci. 1948, 266, 216. [Google Scholar]
- Thiry, Y. Etude mathématique des équations d’une théorie unitaire à quinze variables de champ. J. Math. Pures Appl. 1951, 30, 275. [Google Scholar]
- Bradfield, T.; Kantowski, R. Jordan–Kaluza–Klein type unified theories of gauge and gravity fields. J. Math. Phys. 1982, 23, 128. [Google Scholar] [CrossRef]
- Goenner, H. Some remarks on the genesis of scalar-tensor theories. Gen. Relativ. Gravit. 2012, 44, 2077–2097. [Google Scholar] [CrossRef]
- Felice, A.D.; Tsujikawa, S. f(R) theories. Living Rev. Rel. 2010, 13, 3. [Google Scholar] [CrossRef]
- Dicke, R.H. Mach’s Principle and Invariance under Transformation of Units. Phys. Rev. 1962, 125, 2163. [Google Scholar] [CrossRef]
- Gurevich, L.E.; Finkelstein, A.M.; Ruban, V.A. On the problem of the initial state in the isotropic scalar-tensor cosmology of Brans-Dicke. Astrophys. Spc. Sci. 1973, 22, 231. [Google Scholar] [CrossRef]
- Weinberg, S. Gravitation and Cosmology; Wiley: New York, NY, USA, 1972. [Google Scholar]
- Fabris, J.C.; Alvarenga, M.H.; Hamani-Daouda, M.; Velten, H. Nonconservative Unimodular Gravity: Gravitational Waves. Symmetry 2022, 14, 87. [Google Scholar] [CrossRef]
- Baptista, J.P.; Fabris, J.C.; Goncalves, S.V.B. Density perturbations in the Brans–Dicke theory. Astrophys. Space Sci. 1996, 246, 315. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida, A.M.R.; Fabris, J.C.; Daouda, M.H.; Kerner, R.; Velten, H.; Hipólito-Ricaldi, W.S. Brans–Dicke Unimodular Gravity. Universe 2022, 8, 429. https://doi.org/10.3390/universe8080429
Almeida AMR, Fabris JC, Daouda MH, Kerner R, Velten H, Hipólito-Ricaldi WS. Brans–Dicke Unimodular Gravity. Universe. 2022; 8(8):429. https://doi.org/10.3390/universe8080429
Chicago/Turabian StyleAlmeida, Alexandre M. R., Júlio C. Fabris, Mahamadou Hamani Daouda, Richard Kerner, Hermano Velten, and Willian S. Hipólito-Ricaldi. 2022. "Brans–Dicke Unimodular Gravity" Universe 8, no. 8: 429. https://doi.org/10.3390/universe8080429
APA StyleAlmeida, A. M. R., Fabris, J. C., Daouda, M. H., Kerner, R., Velten, H., & Hipólito-Ricaldi, W. S. (2022). Brans–Dicke Unimodular Gravity. Universe, 8(8), 429. https://doi.org/10.3390/universe8080429