Stark Broadening of Zn III Spectral Lines
Abstract
:1. Introduction
2. Theory
3. Results
4. On the Stark Broadening in Stellar Atmospheres
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beauchamp, A.; Wesemael, F.; Bergeron, P. Spectroscopic Studies of DB White Dwarfs: Improved Stark Profiles for Optical Transitions of Neutral Helium. Astrophys. J. Suppl. Ser. 1997, 108, 559–573. [Google Scholar] [CrossRef]
- Konjević, N. Plasma broadening and shifting of non-hydrogenic spectral lines: Present status and applications. Phys. Rep. 1999, 316, 339–401. [Google Scholar] [CrossRef]
- Torres, J.; van de Sande, M.J.; van der Mullen, J.J.A.M.; Gamero, A.; Sola, A. Stark broadening for simultaneous diagnostics of the electron density and temperature in atmospheric microwave discharges. Spectrochim. Acta B 2006, 61, 58–68. [Google Scholar] [CrossRef]
- Belostotskiy, S.G.; Ouk, T.; Donnelly, V.M.; Economou, D.J.; Sadeghi, N.J. Gas temperature and electron density profiles in an argon dc microdischarge measured by optical emission spectroscopy. Appl. Phys. 2010, 107, 053305. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, H.; Jung, J.-E.J.; Ki, N.S.; Donnelly, V.M. Effects of N2 and O2 plasma treatments of quartz surfaces exposed to H2 plasmas. J. Vac. Sci. Technol. A 2022, 40, 053002. [Google Scholar] [CrossRef]
- Griem, H.R. Plasma spectroscopy in inertial confinement fusion and soft X-ray laser research. Phys. Fluids 1992, 4, 2346–2361. [Google Scholar] [CrossRef]
- Iglesias, E.; Griem, H.R.; Welch, B.; Weaver, J. UV Line Profiles of B V from a 10-Ps KrF-Laser-Produced Plasma. Astrophys. Space Sci. 1997, 256, 327–331. [Google Scholar] [CrossRef]
- Wang, J.S.; Griem, H.R.; Huang, Y.W.; Böttcher, F. Measurements of line broadening of B V Hα and Lδ in a laser-produced plasma. Phys. Rev. A 1992, 45, 4010–4014. [Google Scholar] [CrossRef]
- Gornushkin, I.B.; King, L.A.; Smith, B.W.; Omenetto, N.; Winefordner, J.D. Line broadening mechanisms in the low pressure laser-induced plasma. Spectrochim. Acta 1999, 54, 1207–1217. [Google Scholar] [CrossRef]
- Nicolosi, P.; Garifo, L.; Jannitti, E.; Malvezzi, A.M.; Tondello, G. Broadening and self-absorption of the resonance lines of H-like light ions in laser-produced plasmas. Nuovo Cimento B 1978, 48, 133–151. [Google Scholar] [CrossRef]
- Sorge, S.; Wierling, A.; Röpke, G.; Theobald, W.; Suerbrey, R.; Wilhein, T. Diagnostics of a laser-induced dense plasma by hydrogen-like carbon spectra. J. Phys. B 2000, 33, 2983–3000. [Google Scholar] [CrossRef]
- Yilbas, B.S.; Patel, F.; Karatas, C. Laser controlled melting of H12 hot-work tool steel with B4C particles at the surface. Opt. Laser Technol. 2015, 74, 36–42. [Google Scholar] [CrossRef]
- Hoffman, J.; Szymański, Z.; Azharonok, V. Laser controlled melting of H12 hot-work tool steel with B4C particles at the surface. AIP Conf. Proc. 2006, 812, 469–472. [Google Scholar]
- Dimitrijević, M.S.; Christova, M.D. Stark widths of Lu II spectral lines. Eur. Phys. J. D 2021, 75, 172. [Google Scholar] [CrossRef]
- Majlinger, Z.; Dimitrijević, M.S.; Srećković, V. Stark broadening of Zr IV spectral lines in the atmospheres of chemically peculiar stars. Mon. Not. R. Astron. Soc. 2020, 470, 1911–1918. [Google Scholar] [CrossRef]
- Hamdi, R.; Ben Nessib, N.; Milovanović, N.; Popović, L.Č.; Dimitrijević, M.S.; Sahal-Bréchot, S. Stark Widths of Ar II Spectral Lines in the Atmospheres of Subdwarf B Stars. Atoms 2017, 5, 26. [Google Scholar] [CrossRef] [Green Version]
- Sneden, C.; Crocker, D.A. Copper and Zinc in Very Metal-poor Stars. Astrophys. J. 1988, 335, 406–414. [Google Scholar] [CrossRef]
- Barbuy, B.; Friaça, A.C.S.; Da Silveira, C.R.; Hill, V.; Zoccali, M.; Minniti, D.; Renzini, A.; Ortolani, S.; Gómez, A. Zinc abundances in Galactic bulge field red giants: Implications for damped Lyman-α systems. Astron. Astrophys. 2015, 580, A40. [Google Scholar] [CrossRef] [Green Version]
- Da Silveira, C.R.; Barbuy, B.; Friaça, A.C.S.; Hill, V.; Zoccali, M.; Rafelski, M.; Gonzalez, O.A.; Minniti, D.; Renzini, A.; Ortolani, S. Oxygen and zinc abundances in 417 Galactic bulge red giants. Astron. Astrophys. 2018, 614, A149. [Google Scholar] [CrossRef] [Green Version]
- Pettini, M.; Ellison, S.L.; Steidel, C.C.; Bowen, D.V. Metal Abundances at z < 1.5: Fresh Clues to the Chemical Enrichment History of Damped Lyα Systems. Astrophys. J. 1999, 510, 576–589. [Google Scholar]
- Rafelski, M.; Wolfe, A.M.; Prochaska, J.X.; Neeleman, M.; Mendez, A.J. Metallicity Evolution of Damped Lyα Systems Out to z ∼ 5. Astrophys. J. 2012, 755, 89. [Google Scholar] [CrossRef] [Green Version]
- Rafelski, M.; Neeleman, M.; Fumagalli, M.; Wolfe, A.M.; Prochaska, J.X. The Rapid Decline in Metallicity of Damped Lyα Systems at z ∼ 5. Astrophys. J. 2014, 782, L29. [Google Scholar] [CrossRef]
- Lehmann, H.; Vitrichenko, E.; Bychkov, V.; Bychkova, L.; Klochkova, V. Θ1 Orionis C—A triple system? Astron. Astrophys. 2010, 514, A34. [Google Scholar] [CrossRef] [Green Version]
- Dorsch, M.; Latour, M.; Heber, U. Heavy metals in intermediate He-rich hot subdwarfs: The chemical composition of HZ 44 and HD 127493. Astron. Astrophys. 2019, 630, A130. [Google Scholar] [CrossRef] [Green Version]
- Dorsch, M.; Latour, M.; Heber, U.; Irrgang, A.; Charpinet, S.; Jeffery, C.S. Heavy-metal enrichment of intermediate He-sdOB stars: The pulsators Feige 46 and LS IV–14°116 revisited. Astron. Astrophys. 2020, 643, A22. [Google Scholar] [CrossRef]
- Simić, Z.; Dimitrijević, M.S.; Popović, L.Č.; Dačić, M. Stark broadening parameters for Cu III, Zn III and Se III lines in laboratory and stellar plasma. New Astron. 2006, 12, 187–191. [Google Scholar] [CrossRef]
- Dimitrijević, M.S.; Konjević, N. Stark widths of doubly- and triply-ionized atom lines. J. Quant. Spectrosc. Radiat. Transf. 1980, 24, 451–459. [Google Scholar] [CrossRef]
- Shore, B.W.; Menzel, D. Generalized Tables for the Calculation of Dipole Transition Probabilities. Astrophys. J. Suppl. Ser. 1965, 12, 187–214. [Google Scholar] [CrossRef]
- Griem, H.R. Semiempirical Formulas for the Electron-Impact Widths and Shifts of Isolated Ion Lines in Plasmas. Phys. Rev. 1968, 165, 258–266. [Google Scholar] [CrossRef]
- Griem, H.R. Spectral Line Broadening by Plasmas; McGraw-Hill: New York, NY, USA, 1974. [Google Scholar]
- Bates, D.R.; Damgaard, A. The Calculation of the Absolute Strengths of Spectral Lines. Philos. Trans. R. Soc. Lond. Ser. A 1949, 242, 101–122. [Google Scholar]
- Oertel, G.K.; Shomo, L.P. Tables for the Calculation of Radial Multipole Matrix Elements by the Coulomb Approximation. Astrophys. J. Suppl. Ser. 1968, 16, 175–218. [Google Scholar] [CrossRef]
- Van Regemorter, H.; Dy Hoang, B.; Prud’homme, M. Radial transition integrals involving low or high effective quantum numbers in the Coulomb approximation. J. Phys. B 1979, 12, 1053–1061. [Google Scholar] [CrossRef]
- Sugar, J.; Musgrove, A. Energy Levels of Zinc, Zn I through Zn XXX. J. Phys. Chem. Ref. Data 1995, 24, 1803–1872. [Google Scholar] [CrossRef] [Green Version]
- Kramida, A.; Ralchenko, Y.; Reader, J.; NIST ASD Team. NIST Atomic Spectra Database (Ver. 5.9); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2021. Available online: https://physics.nist.gov/asd (accessed on 16 July 2022).
- Wiese, W.L.; Konjević, N. Regularities and similarities in plasma broadened spectral line widths (Stark widths). J. Quant. Spectrosc. Radiat. Transf. 1982, 28, 185–198. [Google Scholar] [CrossRef]
- Wesemael, F. Atmospheres for hot, high-gravity stars. II. Pure helium models. Astrophys. J. Suppl. Ser. 1981, 45, 177–257. [Google Scholar] [CrossRef]
- Kurucz, R.L. Model atmospheres for G, F, A, B, and O stars. Astrophys. J. Suppl. Ser. 1979, 40, 1–340. [Google Scholar] [CrossRef]
- Sahal-Bréchot, S.; Dimitrijević, M.S.; Moreau, N.; Ben Nessib, N. The STARK-B database VAMDC node: A repository for spectral line broadening and shifts due to collisions with charged particles. Phys. Scr. 2015, 90, 054008. [Google Scholar] [CrossRef]
- Sahal-Bréchot, S.; Dimitrijević, M.S.; Moreau, N. STARK-B Database. Available online: http://stark-B.obspm.fr (accessed on 10 July 2022).
- Dubernet, M.L.; Antony, B.K.; Ba, Y.A.; Babikov, Y.L.; Bartschat, K.; Boudon, V.; Braams, B.J.; Chung, H.K.; Daniel, F.; Delahaye, F.; et al. The virtual atomic and molecular data centre (VAMDC) consortium. J. Phys. B 2016, 49, 074003. [Google Scholar] [CrossRef]
- Albert, D.; Antony, B.K.; Ba, Y.A.; Babikov, Y.L.; Bollard, P.; Boudon, V.; Delahaye, F.; Del Zanna, G.; Dimitrijević, M.S.; Drouin, B.J.; et al. A Decade with VAMDC: Results and Ambitions. Atoms 2020, 8, 76. [Google Scholar] [CrossRef]
Transition | T [K] | W [Å] | 3kT/2E |
---|---|---|---|
Zn III 4sD–4pFo | 5000 | 0.204 | 0.855 |
10,000 | 0.144 | 0.171 | |
= 1639.3 Å | 20,000 | 0.102 | 0.342 |
50,000 | 0.644 | 0.855 | |
100,000 | 0.456 | 1.71 | |
Zn III 4sD–4pDo | 5000 | 0.200 | 0.855 |
10,000 | 0.141 | 0.171 | |
= 1619.6 Å | 20,000 | 0.998 | 0.342 |
50,000 | 0.631 | 0.855 | |
100,000 | 0.446 | 1.71 | |
Zn III 4sD–4pPo | 5000 | 0.191 | 0.855 |
10,000 | 0.135 | 0.171 | |
= 1562.5 Å | 20,000 | 0.954 | 0.342 |
50,000 | 0.603 | 0.855 | |
100,000 | 0.426 | 1.71 | |
Zn III 4pFo–4dG | 5000 | 0.216 | 0.136 |
10,000 | 0.153 | 0.271 | |
= 1335.8 Å | 20,000 | 0.108 | 0.543 |
50,000 | 0.682 | 1.36 | |
100,000 | 0.485 | 2.71 | |
Zn III 4pFo–4dD | 5000 | 0.229 | 0.139 |
10,000 | 0.162 | 0.277 | |
= 1312.9 Å | 20,000 | 0.114 | 0.554 |
50,000 | 0.723 | 1.39 | |
100,000 | 0.515 | 2.77 | |
Zn III 4pFo–4dF | 5000 | 0.221 | 0.141 |
10,000 | 0.157 | 0.281 | |
= 1304.8 Å | 20,000 | 0.111 | 0.562 |
50,000 | 0.700 | 1.41 | |
100,000 | 0.499 | 2.81 | |
Zn III 4pDo–4dP | 5000 | 0.214 | 0.125 |
10,000 | 0.151 | 0.250 | |
= 1357.5 Å | 20,000 | 0.107 | 0.500 |
50,000 | 0.677 | 1.25 | |
100,000 | 0.480 | 2.50 | |
Zn III 4pDo–4dD | 5000 | 0.233 | 0.139 |
10,000 | 0.165 | 0.277 | |
= 1325.8 Å | 20,000 | 0.116 | 0.554 |
50,000 | 0.736 | 1.39 | |
100,000 | 0.525 | 2.77 | |
Zn III 4pDo–4dF | 5000 | 0.226 | 0.141 |
10,000 | 0.160 | 0.281 | |
= 1317.5 Å | 20,000 | 0.113 | 0.562 |
50,000 | 0.713 | 1.41 | |
100,000 | 0.508 | 2.81 | |
Zn III 4pPo–4dP | 5000 | 0.228 | 0.125 |
10,000 | 0.161 | 0.250 | |
= 1400.3 Å | 20,000 | 0.114 | 0.500 |
50,000 | 0.722 | 1.25 | |
100,000 | 0.512 | 2.50 | |
Zn III 4pPo–4dD | 5000 | 0.248 | 0.139 |
10,000 | 0.175 | 0.277 | |
= 1366.7 Å | 20,000 | 0.124 | 0.554 |
50,000 | 0.784 | 1.39 | |
100,000 | 0.559 | 2.77 | |
Zn III 4pPo–4dS | 5000 | 0.264 | 0.174 |
10,000 | 0.187 | 0.348 | |
= 1203.3 Å | 20,000 | 0.132 | 0.696 |
50,000 | 0.835 | 1.74 | |
100,000 | 0.606 | 3.48 | |
Zn III 4sD– 4pPo | 5000 | 0.195 | 0.870 |
10,000 | 0.138 | 0.174 | |
= 1668.0 Å | 20,000 | 0.974 | 0.348 |
50,000 | 0.616 | 0.870 | |
100,000 | 0.436 | 1.74 | |
Zn III 4sD–4pFo | 5000 | 0.186 | 0.870 |
10,000 | 0.132 | 0.174 | |
= 1604.1 Å | 20,000 | 0.930 | 0.348 |
50,000 | 0.588 | 0.870 | |
100,000 | 0.416 | 1.74 | |
Zn III 4sD–4pDo | 5000 | 0.170 | 0.870 |
10,000 | 0.120 | 0.174 | |
= 1472.8 Å | 20,000 | 0.848 | 0.348 |
50,000 | 0.536 | 0.870 | |
100,000 | 0.379 | 1.74 | |
Zn III 4pPo–4dS | 5000 | 0.168 | 0.116 |
10,000 | 0.119 | 0.233 | |
= 1326.9 Å | 20,000 | 0.841 | 0.465 |
50,000 | 0.532 | 1.16 | |
100,000 | 0.376 | 2.33 | |
Zn III 4pPo–4dP | 5000 | 0.177 | 0.124 |
10,000 | 0.125 | 0.248 | |
= 1279.2 Å | 20,000 | 0.883 | 0.496 |
50,000 | 0.558 | 1.24 | |
100,000 | 0.396 | 2.48 | |
Zn III 4pPo–4dD | 5000 | 0.177 | 0.128 |
10,000 | 0.125 | 0.256 | |
= 1259.0 Å | 20,000 | 0.885 | 0.512 |
50,000 | 0.559 | 1.28 | |
100,000 | 0.397 | 2.56 | |
Zn III 4pFo–4dG | 5000 | 0.189 | 0.125 |
10,000 | 0.134 | 0.249 | |
= 1316.1 Å | 20,000 | 0.945 | 0.499 |
50,000 | 0.598 | 1.25 | |
100,000 | 0.424 | 2.49 | |
Zn III 4pFo–4dD | 5000 | 0.193 | 0.128 |
10,000 | 0.136 | 0.256 | |
= 1298.0 Å | 20,000 | 0.964 | 0.512 |
50,000 | 0.609 | 1.28 | |
100,000 | 0.432 | 2.56 | |
Zn III 4pFo–4dF | 5000 | 0.194 | 0.129 |
10,000 | 0.137 | 0.258 | |
= 1291.2 Å | 20,000 | 0.971 | 0.517 |
50,000 | 0.614 | 1.29 | |
100,000 | 0.436 | 2.58 | |
Zn III 4pDo–4dP | 5000 | 0.221 | 0.124 |
10,000 | 0.157 | 0.248 | |
= 1424.0 Å | 20,000 | 0.111 | 0.496 |
50,000 | 0.700 | 1.24 | |
100,000 | 0.496 | 2.48 | |
Zn III 4pDo–4dD | 5000 | 0.226 | 0.128 |
10,000 | 0.160 | 0.256 | |
= 1399.0 Å | 20,000 | 0.113 | 0.512 |
50,000 | 0.714 | 1.28 | |
100,000 | 0.507 | 2.56 | |
Zn III 4pDo–4dF | 5000 | 0.227 | 0.129 |
10,000 | 0.161 | 0.258 | |
= 1391.0 Å | 20,000 | 0.114 | 0.517 |
50,000 | 0.719 | 1.29 | |
100,000 | 0.510 | 2.58 |
Transition | [Å] | W [Å] | W [10 s] |
---|---|---|---|
Zn III 4sD–4pFo | 1639.3 | 0.144 | 0.101 |
Zn III 4sD–4pDo | 1619.6 | 0.141 | 0.101 |
Zn III 4sD–4pPo | 1562.5 | 0.135 | 0.104 |
Zn III 4pFo–4dG | 1335.8 | 0.153 | 0.162 |
Zn III 4pFo–4dD | 1312.9 | 0.162 | 0.177 |
Zn III 4pFo–4dF | 1304.8 | 0.157 | 0.174 |
Zn III 4pDo–4dP | 1357.5 | 0.151 | 0.154 |
Zn III 4pDo–4dD | 1325.8 | 0.165 | 0.177 |
Zn III 4pDo–4dF | 1317.5 | 0.160 | 0.174 |
Zn III 4pPo–4dP | 1400.3 | 0.161 | 0.155 |
Zn III 4pPo–4dD | 1366.7 | 0.175 | 0.176 |
Zn III 4pPo–4dS | 1203.3 | 0.187 | 0.243 |
Zn III 4sD– 4pPo | 1668.0 | 0.138 | 0.093 |
Zn III 4sD–4pFo | 1604.1 | 0.132 | 0.097 |
Zn III 4sD–4pDo | 1472.8 | 0.120 | 0.104 |
Zn III 4pPo–4dS | 1326.9 | 0.119 | 0.127 |
Zn III 4pPo–4dP | 1279.2 | 0.125 | 0.144 |
Zn III 4pPo–4dD | 1259.0 | 0.125 | 0.148 |
Zn III 4pFo–4dG | 1316.1 | 0.134 | 0.146 |
Zn III 4pFo–4dD | 1298.0 | 0.136 | 0.152 |
Zn III 4pFo–4dF | 1291.2 | 0.137 | 0.155 |
Zn III 4pDo–4dP | 1424.0 | 0.157 | 0.146 |
Zn III 4pDo–4dD | 1399.0 | 0.160 | 0.154 |
Zn III 4pDo–4dF | 1391.0 | 0.161 | 0.157 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimitrijević, M.S.; Christova, M.D. Stark Broadening of Zn III Spectral Lines. Universe 2022, 8, 430. https://doi.org/10.3390/universe8080430
Dimitrijević MS, Christova MD. Stark Broadening of Zn III Spectral Lines. Universe. 2022; 8(8):430. https://doi.org/10.3390/universe8080430
Chicago/Turabian StyleDimitrijević, Milan S., and Magdalena D. Christova. 2022. "Stark Broadening of Zn III Spectral Lines" Universe 8, no. 8: 430. https://doi.org/10.3390/universe8080430
APA StyleDimitrijević, M. S., & Christova, M. D. (2022). Stark Broadening of Zn III Spectral Lines. Universe, 8(8), 430. https://doi.org/10.3390/universe8080430