The Updated Version of the A.Ne.Mo.S. GLE Alert System: The Case of the Ground-Level Enhancement GLE73 on 28 October 2021
Abstract
:1. Introduction
2. The GLE73 Event
2.1. Observations by Satellites
2.2. Observations by Neutron Monitors
2.3. A.Ne.Mo.S. GLE Alert Systems
- The algorithm independently runs for each station without keeping a back-up of the database. In this way, it is faster, creating diagrams for all NM station in only 3–4 s.
- It stores data via SQLite databases, a different one for each day, which is much faster and raises an alert within the same minute the data are available. Thus, this overcomes possible time delays faced by the previous version, which were caused by the one huge SQL database after a few months or years.
- The SQLite database includes important information, such as: (i) the Universal Time (UT) of the GLE Alert++ server; (ii) the value of the measurement, including the station’s day and time; and (iii) the time that the value was recorded from the NMDB database. Therefore, the reproduction of a historical run (for the forthcoming GLE events) with the actual data conditions that were recorded in real time and not with the historical archived data is possible. The previous version also supported such a feature, but this new version continues to provide it in a more convenient way for the user. This is very helpful when one needs to explain the time lag between the General Alert produced based on historical data from NMDB and the General Alert issued based on the actual real time data.
- The webpage design is more user-friendly: users can find as much information as possible about a GLE event. A graph showing the current status of the GLE Alert (Quit, Watch, Warning, or Alert) is displayed in the center of the web page. A summary of the NM stations that are online/offline or no real time is planned to be provided.
- The interface is fully parameterizable, which means that the administrator can: (i) set the parameters of the Station Alert independently for every station; (ii) design a running scenario, trimming all the parameters of the GLE Alert++ system; (iii) decide which stations will be involved in the scenario; and (iv) choose how many stations will trigger a General Alert.
- Based on the knowledge gained by the continuous operation and the real-time detection of the GLE Alert on 10 September 2017, the new graph showing the evolution of alert status is extended to a 2 h duration, instead of the present duration of 1 h. When a GLE Alert is issued, real-time notifications will be distributed to the registered users of the service via email. A report will be issued after the event (within 1 day) and will include the NMs that have recorded the event around the world, onset and maximum flux determination for each station, maximum, time profile, and evolution of the event.
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Souvatzoglou, G.; Mavromichalaki, H.; Sarlanis, C.; Mariatos, G.; Belov, A.; Eroshenko, E.; Yanke, V. Real-time GLE alert in the ANMODAP Center for December 13, 2006. Adv. Space Res. 2009, 43, 728–734. [Google Scholar] [CrossRef]
- Papaioannou, A.; Kouloumvakos, A.; Mishev, A.; Vainio, R.; Usoskin, I.G.; Herbst, K.; Rouillard, A.P.; Anastasiadis, A.; Gieseler, J.; Wimmer–Schweingruber, R.F.; et al. The first ground-level enhancement of solar cycle 25 on 28 October 2021. Astron. Astrophys. 2022, 660, L5. [Google Scholar] [CrossRef]
- Mavromichalaki, H.; Paouris, Ε.; Karalidi, Τ. Cosmic-Ray Modulation: An Empirical Relation with Solar and Heliospheric Parameters. Sol. Phys. 2007, 245, 369–390. [Google Scholar] [CrossRef]
- Anashin, V.; Belov, A.; Eroshenko, E.; Krjakunova, O.; Mavromichalaki, H.; Ishutin, I.; Sarlanis, C.; Souvatsoglou GVashenyuk, E.; Yanke, V. The ALERT signal of ground level enhancements of solar cosmic rays: Physics basis, the ways of realization and development. In Proceedings of the 31st International Cosmic Ray Conference (ICRC), Lodz, Poland, 7–15 July 2009. [Google Scholar]
- Souvatzoglou, G.; Papaioannou, A.; Mavromichalaki, H.; Dimitroulakos, J.; Sarlanis, C. Optimizing the real-time ground level enhancement alert system based on neutron monitor measurements: Introducing GLE Alert Plus. Space Weather 2014, 12, 633–649. [Google Scholar] [CrossRef]
- Velinov, P.I.Y. Major X-class solar flare from earth–Facing active region AR12887 on October 28, 2021 and first cosmic ray GLE73 in solar cycle 25. C. R. Acad. Bulg. Sci. 2022, 75, 2. [Google Scholar] [CrossRef]
- Miroshnichenko, L.I. Retrospective analysis of GLEs and estimates of radiation risks. J. Space Weather Space Clim. 2018, 8, A52. [Google Scholar] [CrossRef] [Green Version]
- Poluianov, S.V.; Usoskin, I.G.; Mishev, A.L.; Shea, M.A.; Smart, D.F. GLE and Sub-GLE Redefinition in the Light of High-Altitude Polar Neutron Monitors. Sol. Phys. 2017, 292, 176. [Google Scholar] [CrossRef] [Green Version]
- Belov, A.V.; Eroshenko, E.A.; Kryakunova, O.N.; Kurt, V.G.; Yanke, V.G. GLEs in the last three solar cycles. In Proceedings of the 31st International Cosmic Ray Conference (ICRC), Lodz, Poland, 7–15 July 2009. [Google Scholar]
- Papaioannou, A.; Mavromichalaki, H.; Gerontidou, M.; Souvatzoglou, G.; Nieminen, P.; Glover, A. Solar particle event analysis using the standard radiation environment monitors: Applying the neutron monitor’s experience. Astrophys. Space Sci. Trans. 2011, 7, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Andriopoulou, M.; Mavromichalaki, H.; Plainaki, C.; Belov, A.; Eroshenko, E. Intense ground level enhancements of solar cosmic rays during the last solar cycles. Sol. Phys. 2011, 269, 155–168. [Google Scholar] [CrossRef]
- Mavromichalaki, H. The Physics of Cosmic Rays Applied to Space Weather. In Advances in Solar and Solar-Terrestrial Physics; Maris, G., Demetrescu, C., Eds.; Research Signpost: Kerala, India, 2012; pp. 135–161. ISBN 978-81-308-0483-5. Available online: http://cosray.phys.uoa.gr/publications/d95.pdf (accessed on 28 October 2021).
- Mishev, A.L.; Kocharov, L.G.; Usoskin, I.G. Analysis of the ground level enhancement on 17 May 2012 using data from the global neutron monitor network. J. Geophys. Res. Space Phys. 2014, 119, 670–679. [Google Scholar] [CrossRef]
- Papaioannou, A.; Souvatzoglou, G.; Paschalis, P.; Gerontidou, M.; Mavromichalaki, H. The first ground level enhancement of solar cycle 24 on 17 May 2012 and its real time detection. Sol. Phys. 2014, 289, 423–436. [Google Scholar] [CrossRef]
- Mavromichalaki, H.; Gerontidou, M.; Paschalis, P.; Paouris, E.; Tezari, A.; Sgouropoulos, C.; Crosby, N.; Dierckxsens, M. Real-Time Detection of the Ground Level Enhancement on 10 September 2017 by A.Ne.Mo.S.: System Report. Space Weather 2018, 16, 1797–1805. [Google Scholar] [CrossRef] [Green Version]
- Daglis, I.A. Effects of Space Weather on Technology Infrastructure. In Proceedings of the NATO ARW on Effects of Space Weather on Technology Infrastructure, Rhodes, Greece, 25–29 March 2003. [Google Scholar]
- Brunetti, G.; McKenzie, I.; Dell’Olio, F.; Armenise, M.N.; Ciminelli, C. Measured radiation effects on InGaAsP/InP ring resonators for space applications. Opt. Express 2019, 27, 24434–24444. [Google Scholar] [CrossRef] [PubMed]
- Makrantoni, P.; Tezari, A.; Stassinakis, A.N.; Paschalis, P.; Gerontidou, M.; Karaiskos, P.; Georgakilas, A.G.; Mavromichalaki, H.; Usoskin, I.G.; Crosby, N.; et al. Estimation of Cosmic-Ray-Induced Atmospheric Ionization and Radiation at Commercial Aviation Flight Altitudes. Appl. Sci. 2022, 12, 5297. [Google Scholar] [CrossRef]
- Bütikofer, R.R.; Flückiger, E.O.; Desorgher, L.; Moser, M.; Pirard, B. The solar cosmic ray ground-level enhancements on 20 January 2005 and 13 December 2006. Adv. Space Res. 2009, 43, 499–503. [Google Scholar] [CrossRef]
- Flückiger, E.; Bütikofer, R. Radiation doses along selected flight profiles during two extreme solar cosmic ray events. ASTRA 2011, 7, 105–109. [Google Scholar]
- Mishev, A.L.; Usoskin, I.G. Assessment of the radiation environment at commercial jet-flight altitudes during GLE 72 on 10 September 2017 using neutron monitor data. Space Weather 2018, 16, 1921–1929. [Google Scholar] [CrossRef] [Green Version]
- Meier, M.M.; Copeland, K.; Kloble, K.E.J.; Matthia, D.; Plettenberg, M.C.; Schennetten, K.; Wirtz, M.; Hellweg, C.E. Radiation in the atmosphere. A hazard to aviation safety? Atmosphere 2020, 11, 1358. [Google Scholar] [CrossRef]
- Tezari, A.; Paschalis, P.; Stassinakis, A.; Mavromichalaki, H.; Karaiskos, P.; Gerontidou, M.; Alexandridis, D.; Kanellakopoulos, A.; Crosby, N.; Dierckxsens, M. Radiation Exposure in the Lower Atmosphere during Different Periods of Solar Activity. Atmosphere 2022, 13, 166. [Google Scholar] [CrossRef]
- Paouris, E.; Mavromichalaki, H. Effective Acceleration Model for the Arrival Time of Interplanetary Shocks driven by Coronal Mass Ejections. Sol. Phys. 2017, 292, 180. [Google Scholar] [CrossRef]
- Paouris, E.; Čalogović, J.; Dumbović, M.; Mays, M.L.; Vourlidas, A.; Papaioannou, A.; Anastasiadis, A.; Balasis, G. Propagating Conditions and the Time of ICME Arrival: A Comparison of the Effective Acceleration Model with ENLIL and DBEM Models. Sol. Phys. 2021, 296, 12. [Google Scholar] [CrossRef]
NM Station | Abbrev. | R (GV) | Altitude (m) | Geographic Latitude | Geographic Longitude | Onset UT | Increase (%) |
---|---|---|---|---|---|---|---|
Apatity, Russia | APTY | 0.65 | 181 | 67.57° N | 33.40° E | 16:00 | 2.33 |
Fort Smith, Canada | FSMT | 0.30 | 180 | 60.02° N | 111.93° W | 15:50 | 4.97 |
Inuvik, Canada | INVK | 0.30 | 21 | 68.36° N | 133.72° W | 16:05 | 3.55 |
Kerguelen, France | KERG | 1.14 | 33 | 49.35° S | 70.25° E | 16:05 | 4.15 |
Nain, Canada | NAIN | 0.30 | 46 | 56.55° N | 61.68° W | 15:45 | 2.94 |
Oulu, Finland | OULU | 0.81 | 15 | 65.05° N | 25.47° E | 15:55 | 3.24 |
Peawanuk, Canada | PWNK | 0.30 | 53 | 54.98° N | 85.44° W | 15:55 | 5.10 |
Tixie Bay, Russia | TXBY | 0.48 | 0 | 71.01° N | 128.54° E | 16.15 | 2.91 |
Yakutsk, Russia | YKTK | 1.65 | 105 | 62.01° N | 129.43° E | 16:05 | 3.10 |
South Pole, Antarctica | SOPO | 0.10 | 2820 | 90.00° S | N/A | 15:45 | 5.40 |
South Pole Bares, Antarctica | SOPB | 0.10 | 2820 | 90.00° S | N/A | 15:50 | 6.64 |
Terre Adelie, Antarctica | TERA | 0.01 | 32 | 66.65° S | 140.00° E | 16:20 | 3.28 |
Thule, Greenland | THUL | 0.30 | 26 | 76.50° N | 68.70° W | 16:15 | 2.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mavromichalaki, H.; Paschalis, P.; Gerontidou, M.; Papailiou, M.-C.; Paouris, E.; Tezari, A.; Lingri, D.; Livada, M.; Stassinakis, A.N.; Crosby, N.; et al. The Updated Version of the A.Ne.Mo.S. GLE Alert System: The Case of the Ground-Level Enhancement GLE73 on 28 October 2021. Universe 2022, 8, 378. https://doi.org/10.3390/universe8070378
Mavromichalaki H, Paschalis P, Gerontidou M, Papailiou M-C, Paouris E, Tezari A, Lingri D, Livada M, Stassinakis AN, Crosby N, et al. The Updated Version of the A.Ne.Mo.S. GLE Alert System: The Case of the Ground-Level Enhancement GLE73 on 28 October 2021. Universe. 2022; 8(7):378. https://doi.org/10.3390/universe8070378
Chicago/Turabian StyleMavromichalaki, Helen, Pavlos Paschalis, Maria Gerontidou, Maria-Christina Papailiou, Evangelos Paouris, Anastasia Tezari, Dimitra Lingri, Maria Livada, Argyris N. Stassinakis, Norma Crosby, and et al. 2022. "The Updated Version of the A.Ne.Mo.S. GLE Alert System: The Case of the Ground-Level Enhancement GLE73 on 28 October 2021" Universe 8, no. 7: 378. https://doi.org/10.3390/universe8070378
APA StyleMavromichalaki, H., Paschalis, P., Gerontidou, M., Papailiou, M. -C., Paouris, E., Tezari, A., Lingri, D., Livada, M., Stassinakis, A. N., Crosby, N., & Dierckxsens, M. (2022). The Updated Version of the A.Ne.Mo.S. GLE Alert System: The Case of the Ground-Level Enhancement GLE73 on 28 October 2021. Universe, 8(7), 378. https://doi.org/10.3390/universe8070378