Instrumentation for Detecting Sulphur Isotopes as Biosignatures on Europa and Ganymede by Forthcoming Missions
Abstract
:1. A Sulphur Dilemma in the Jovian System
2. Sulphate Reduction: Has there Been Evolution of Life on Ocean Worlds?
2.1. Isotopic Compositions
2.2. δ34 S as an Index of Biogenicity in a Terrestrial Context
2.3. δ34 S as an Index of Biogenicity in the Context of Astrobiology
3. Testing for Excursions on the Surfaces of Icy Worlds
4. Evolution of Instrumentation for Testing Biosignatures
5. Recent Work in Instrumentation for Testing Biosignatures
6. The Relevant Payloads of Europa Clipper and JUICE
7. Final Comments
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
JUICE | JUpiter ICy moons Explorer; |
LIMS | miniaturised laser ablation ionization mass spectrometry (general use); |
MASPEX | MAss SPectrometer for Planetary EXploration (for Europa Clipper); |
NIMS | Near-Infrared Mapping Spectrometer (Galileo mission); |
PEP | Particle Environment Package (for JUICE); |
SSI | Solid-State Imaging (Galileo mission); |
SUDA | SUrface Dust Mass Analyzer (for Europa Clipper); |
UVS | Ultraviolet Spectrometer (Galileo mission). |
References
- Chela-Flores, J. Habitability of Europa: Possible degree of evolution of Europan biota. In The Europa Ocean Conference; Nash, D., Ed.; San Juan Capistrano Research Institute: San Juan Capistrano, CA, USA, 1996; pp. 21–21a. Available online: http://www.ictp.it/~chelaf/ss29.html (accessed on 23 June 2022).
- Lane, A.L.; Nelson, R.M.; Matson, D.L. Evidence for sulphur implantation in Europa’s UV absorption band. Nature 1981, 292, 38–39. [Google Scholar] [CrossRef]
- Fanale, F.P.; Granahan, J.C.; McCord, T.B.; Hansen, G.; Hibbitts, C.A.; Carlson, R.; Matson, D.; Ocampo, A.; Kamp, L.; Smythe, W.; et al. Galileo’s Multiinstrument Spectral View of Europa’s Surface Composition. Icarus 1999, 139, 179–188. [Google Scholar] [CrossRef]
- Fagents, S.A. Considerations for the Effusive Cryovolcanism on Europa: The Post-Galileo Perspective. J. Geophys. Res. 2003, 108, 5139. [Google Scholar] [CrossRef]
- McCord, T.B.; Hansen, G.B.; Matson, D.L.; Johnson, T.V.; Crowley, J.K.; Fanale, F.P.; Carlson, R.W.; Smythe, W.D.; Martin, P.D.; Hibbitts, C.A.; et al. Hydrated salt minerals on Europa’s surface from the Galileo near-infrared mapping spectrometer (NIMS) investigation. J. Geophys. Res. Planets 1999, 104, 11827–11851. [Google Scholar] [CrossRef]
- Hendrix, A.R.; Hurford, T.A.; Barge, L.M.; Bland, M.T.; Bowman, J.S.; Brinckerhoff, W.; Buratti, B.J.; Cable, M.L.; Castillo-Rogez, J.; Collins, G.C.; et al. The NASA Roadmap to Ocean Worlds. Astrobiology 2018, 19, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Rosman, K.J.R.; Taylor, P.D.P. Isotopic compositions of the elements 1997 (Technical Report). J. Pure Appl. Chem. 1998, 70, 217–235. [Google Scholar] [CrossRef]
- Shen, Y.; Buick, R.; Canfield, D.E. Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature 2001, 410, 77–81. [Google Scholar] [CrossRef]
- Shen, Y.; Buick, R. The antiquity of microbial sulfate reduction. Earth Sci. Rev. 2004, 64, 243–272. [Google Scholar] [CrossRef]
- Philippot, P.; Van Zuilen, M.; Lepot, K.; Thomazo, C.; Farquhar, J.; Van Kranendonk, M.J. Early Archaean Microorganisms Preferred Elemental Sulfur, Not Sulfate. Science 2007, 317, 1534–1537. [Google Scholar] [CrossRef] [PubMed]
- Messerotti, M.; Chela-Flores, J. Signatures of the ancient Sun constraining the early emergence of life on Earth. In Space Weather: Research Towards Applications in Europe; Astrophysics and Space Science Library (ASSL) Series; Lilensten, J., Ed.; Springer: Dordrecht, The Netherlands, 2007; Volume 344, pp. 49–59. [Google Scholar]
- Schidlowski, M.; Hayes, J.M.; Kaplan, I.R. Isotopic inferences of ancient biochemistries: Carbon, sulfur, hydrogen, and nitrogen. In Earth’s Earliest Biosphere Its Origin and Evolution; William Schopf, J., Ed.; Princeton University Press: Princeton, NJ, USA, 1983; p. 166. [Google Scholar]
- Wortmann, U.G.; Bernasconi, S.M.; Böttcher, M.E. Hypersulfidic deep biosphere indicates extreme sulfur isotope fractionation during single-step microbial sulfate reduction. Geology 2001, 29, 647–650. [Google Scholar] [CrossRef]
- Kaplan, I.R. Stable Isotopes as a Guide to Biogeochemical processes. Proc. R. Soc. London. Ser. B. Biol. Sci. 1975, 189, 183–211. [Google Scholar]
- Monster, J.; Appel, P.W.U.; Thode, H.G.; Schidlowski, M.; Carmichael, C.M.; Bridgwater, D. Sulfur isotope studies on Early Archaean sediments from Isua, West Greenland: Implications for the antiquity of bacterial sulfate reduction. Geochim. Cosmochim. Acta 1979, 43, 405–413. [Google Scholar] [CrossRef]
- Goodwin, A.M.; Monster, J.; Thode, H.G. Carbon and sulfur isotope abundances in Archean iron-formations and early Precambrian life. Econ. Geol. 1976, 71, 870–891. [Google Scholar] [CrossRef]
- Chela-Flores, J. Miniaturised Instrumentation for the Detection of Biosignatures in Ocean Worlds of the Solar System. Front. Astron. Space Sci. 2021, 2, 703809. [Google Scholar] [CrossRef]
- Riedo, A.; Neuland, M.; Meyer, S.; Tulej, M.; Wurz, P. Coupling of LMS with a fs-laser ablation ion source: Elemental and isotope composition measurements. J. Anal. At. Spectrom. 2013, 28, 1256–1269. [Google Scholar] [CrossRef] [Green Version]
- Tulej, M.; Neubeck, A.; Ivarsson, M.; Riedo, A.; Neuland, M.B.; Meyer, S.; Wurz, P. Chemical composition of micrometer-sized filaments in an aragonite host by a miniature laser ablation/ionization mass spectrometer. Astrobiology 2015, 15, 669–682. [Google Scholar] [CrossRef] [PubMed]
- Tulej, M.; Meyer, S.; Lüthi, M.; Lasi, D.; Galli, A.; Piazza, D.; Desorgher, L.; Reggiani, D.; Hajdas, W.; Karlsson, S.; et al. Experimental investigation of the radiation shielding efficiency of a MCP detector in the radiation environment near Jupiter’s moon Europa. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2016, 383, 21–37. [Google Scholar] [CrossRef]
- Wiesendanger, R.; Wacey, D.; Tulej, M.; Neubeck, A.; Ivarsson, I.; Grimaudo, V.; Moreno-Garcia, P.; Cedeno-Lopez, A.; Riedo, A.; Wurz, P. Chemical and optical identification of micrometer-sized 1.9 billion-year-old fossils by combining a miniature laser ablation ionization mass spectrometry system with an optical microscope. Astrobiology 2018, 18, 1071–1080. [Google Scholar] [CrossRef]
- Farquhar, J.; Bao, H.; Thiemens, M. Atmospheric influence of Earth’s earliest sulfur cycle. Science 2000, 289, 756–759. [Google Scholar] [CrossRef] [Green Version]
- Franz, H.B.; Danielache, S.O.; Farquhar, J.; Wing, B.A. Mass-independent fractionation of sulfur isotopes during broadband SO2 photolysis: Comparison between 16O- and 18O-rich SO2. Chem. Geol. 2013, 362, 56–65. [Google Scholar] [CrossRef]
- Smith, J.W. Isotopic fractionations accompanying sulfur hydrolysis. Geochem. J. 2000, 34, 95–99. [Google Scholar] [CrossRef] [Green Version]
- Ohmoto, H.; Lasaga, A.C. Kinetics of reactions between aqueous sulfates and sulfides in hydrothermal systems. Geochim. Cosmochim. Acta 1982, 46, 1727–1745. [Google Scholar] [CrossRef]
- Canfield, D.; Thamdrup, B. The production of 34S-depleted sulfide during bacterial disproprtionation of elemental sulfur. Science 1994, 266, 1973–1975. [Google Scholar] [CrossRef] [PubMed]
- Chela-Flores, J. The sulphur dilemma: Are there biosignatures on Europa’s icy and patchy surface? Int. J. Astrobiol. 2006, 5, 17–22. [Google Scholar] [CrossRef] [Green Version]
- McCord, T.B.; Hansen, G.B.; Hibbitts, C.A. Hydrated Salt Minerals on Ganymede’s Surface: Evidence of an Ocean Below. Science 2001, 292, 1523–1525. [Google Scholar] [CrossRef]
- Hoefs, J. Stable Isotope Geochemistry, 6th ed.; Springer: Berlin/Heidelberg, Germany, 2009; 285p. [Google Scholar]
- Chela-Flores, J.; Kumar, N. Returning to Europa: Can traces of surficial life be detected? Int. J. Astrobiol. 2008, 7, 263–269. [Google Scholar] [CrossRef] [Green Version]
- Chela-Flores, J. Instrumentation for the search of habitable ecosystems in the future exploration of Europa and Ganymede. Int. J. Astrobiol. 2010, 9, 101–108. Available online: http://www.ictp.it/~chelaf/jcf_IJA_2010.pdf (accessed on 23 June 2022). [CrossRef] [Green Version]
- Wurz, P.; Meyer, S.; Galli, A.; Tulej, M.; Vorburger, A.; Lasi, D.; Piazza, D.; Lüthi, M.; Brandt, P.; Barabash, S. The Neutral Gas and Ion Mass spectrometer of the PEP experiment on the JUICE mission. In Proceedings of the 20th EGU General Assembly, EGU2018, Vienna, Austria, 4–13 April 2018. [Google Scholar]
- Sim, M.S.; Bosak, T.; Ono, S. Large sulfur isotope fractionation does not require disproportionation. Science 2011, 333, 74–77. [Google Scholar] [CrossRef]
- Krouse, H.; Viau, C.; Eliuk, L.; Ueda, A.; Halas, S. Chemical and isotopic evidence of thermochemical sulphate reduction by light hydrocarbon gases in deep carbonate reservoirs. Nature 1988, 333, 415–419. [Google Scholar] [CrossRef]
- Machel, H.G.; Krouse, H.R.; Sassen, R. Products and distinguishing criteria of bacterial and thermochemical sulfate reduction. Appl. Geochem. 1995, 10, 373–389. [Google Scholar] [CrossRef]
- Trudinger, P.A.; Chambers, L.A.; Smith, J.W. Low temperature sulphate reduction: Biological versus abiological. Can. J. Earth Sci. 1985, 22, 1910–1918. [Google Scholar] [CrossRef]
- Horvath, J.; Carsey, F.; Cutts, J.A.; Jones, J.A.; Johnson, E.D.; Landry, B.; Lane, L.; Lynch, G.; Chela-Flores, J.; Jeng, T.-W.; et al. Searching for ice and ocean biogenic activity on Europa and Earth. In Instruments, Methods and Missions for Investigation of Extraterrestrial Microorganisms; Hoover, R.B., Ed.; SPIE: Bellingham, WA, USA, 1997; pp. 490–500. Available online: http://www.ictp.it/~chelaf/searching_for_ice.html (accessed on 23 June 2022).
- Hand, K.; Murray, A.; Garvin, J.; Brinkerhoff, W.B.; Hoehler, T.M.; Smith, D.E.; Christner, B.C.; Horst, S.M.; Rhoden, A.R.; Edgett, K.S.; et al. Report of the Europa Lander Science Definition Team, NASA. 2017. Available online: https://europa.nasa.gov/resources/58/europa-lander-study-2016-report/ (accessed on 23 June 2022).
- Hand, K.P.; Phillips, C.B.; Murray, A.; Garvin, J.B.; Maize, E.H.; Gibbs, R.G.; Reeves, G.; Martin, A.M.S.; Tan-Wang, G.H.; Krajewski, J.; et al. Science Goals and Mission Architecture of the Europa Lander Mission Concept. Planet. Sci. J. 2022, 3, 22. [Google Scholar] [CrossRef]
- Nelson, B. 2022 NASA Strategic Planning. 2022. Available online: https://www.nasa.gov/sites/default/files/atoms/files/fy_22_strategic_plan.pdf (accessed on 20 June 2022).
- Chela-Flores, J.; Cicuttin, A.; Crespo, M.L.; Tuniz, C. Biogeochemical Fingerprints of Life: Earlier Analogies with Polar Ecosystems Suggest Feasible Instrumentation for Probing the Galilean Moons. Int. J. Astrobiol. 2015, 14, 427–434. [Google Scholar] [CrossRef] [Green Version]
- Kempf, S. Dust Spectroscopy of Jovian Satellite Surface Composition. In Proceedings of the European Planetary Science Congress, Potsdam, Germany, 14–18 September 2009; pp. 472–473. [Google Scholar]
- Kempf, S.; Sram, R.; Grun, E.; Mocker, A.; Postberg, F.; Hillier, J.K.; Horanyi, M.; Sternovsky, Z.; Abel, B. Linear high resolution dust mass spectrometer for a mission to the Galilean satellites. Planet. Space Sci. 2012, 65, 10–20. [Google Scholar] [CrossRef]
- Brockwell, T.G.; Meech, K.J.; Pickens, K.; Waite, J.H.; Miller, G.; Roberts, J.; Lunine, J.I.; Wilson, P. The mass spectrometer for planetary exploration (MASPEX). In Proceedings of the IEEE Aerospace Conference, Big Sky, MT, USA, 5–12 March 2016; pp. 1–17. [Google Scholar] [CrossRef]
- Salter, T.L.; Magee, B.A.; Waite, J.H.; Sephton, M.A. Mass Spectrometric Fingerprints of Bacteria and Archaea for Life Detection on Icy Moons. Astrobiology 2022, 22, 2. [Google Scholar] [CrossRef]
- Barabash, S.; Wurz, P.; Brandt, P.; Wieser, M.; Holmström, M.; Futaana, Y.; Stenberg, G.; Nilsson, H.; Eriksson, A.; Tulej, M.; et al. Particle Environment Package (PEP). In Proceedings of the European Planetary Science Congress, London, UK, 8–13 September 2013. [Google Scholar]
- Meyer, S.; Tulej, M.; Wurz, P. Mass spectrometry of planetary exospheres at high relative velocity: Direct comparison of open- and closed-source measurements. Geosci. Instrum. Methods Data Syst. 2017, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Riedo, A.; Grimaudo, V.; Aerts, J.W.; Lukmanov, R.; Tulej, M.; Broekmann, P.; Lindner, R.; Wurz, P.; Ehrenfreund, P. Wurz and Pascale Ehrenfreund, Laser Ablation Ionization Mass Spectrometry: A space prototype system for in situ Sulphur isotope fractionation analysis on planetary surfaces. Front. Astron. Space Sci. 2021, 8, 726373. [Google Scholar] [CrossRef]
- Carlson, R.W.; Johnson, R.E.; Anderson, M.S. Sulfuric acid on Europa and the radiolytic sulfur cycle. Science 1999, 286, 97–99. [Google Scholar] [CrossRef] [Green Version]
- Carlson, R.W.; Anderson, M.S.; Johnson, R.E.; Schulman, M.B.; Yavrouian, A.H. Sulfuric acid production on Europa: The radiolysis of sulfur in water ice. Icarus 2002, 157, 456–463. [Google Scholar] [CrossRef] [Green Version]
- Zolotov, M.; Shock, E.L. Composition and stability of salts on the surface of Europa and their oceanic origin. J. Geophys. Res. 2001, 106, 32815–32827. [Google Scholar] [CrossRef] [Green Version]
- Cassidy, T.A.; Johnson, R.E.; Tucker, O.J. Trace constituents of Europa’s atmosphere. Icarus 2009, 201, 182–190. [Google Scholar] [CrossRef]
- Ligier, N.; Paranicas, C.; Carter, J.; Poulet, F.; Calvin, W.; Nordheim, T.; Snodgrass, C.; Ferellec, L. Surface composition and properties of Ganymede: Updates from ground-based observations with the near-infrared imaging spectrometer SINFONI/VLT/ESO. Icarus 2019, 333, 496–515. [Google Scholar] [CrossRef] [Green Version]
- Cassidy, T.; Coll, P.; Raulin, F.; Carlson, R.W.; Johnson, R.E.; Loeffler, M.J.; Hand, K.P.; Baragiola, R.A. Radiolysis and Photolysis of Icy Satellite Surfaces: Experiments and Theory. Space Sci Rev. 2010, 153, 299–315. [Google Scholar] [CrossRef]
- Grasset, O.; Bunce, E.; Coustenis, A.; Dougherty, M.; Erd, C.; Hussmann, H.; Jaumann, R.; Prieto-Ballesteros, O. Review of Exchange Processes on Ganymede in View of Its Planetary Protection Categorization. Astrobiology 2013, 13, 991–1004. [Google Scholar] [CrossRef] [Green Version]
- Grasset, O.; Dougherty, M.K.; Coustenis, A.; Bunce, E.J.; Erd, C.; Titov, D.; Blanc, M.; Coates, A.; Drossart, P.; Fletcher, L.N.; et al. JUpiter ICy moons Explorer (JUICE): An ESA mission to orbit Ganymede and to characterise the Jupiter system. Planet. Space Sci. 2013, 78, 1–21. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chela-Flores, J. Instrumentation for Detecting Sulphur Isotopes as Biosignatures on Europa and Ganymede by Forthcoming Missions. Universe 2022, 8, 357. https://doi.org/10.3390/universe8070357
Chela-Flores J. Instrumentation for Detecting Sulphur Isotopes as Biosignatures on Europa and Ganymede by Forthcoming Missions. Universe. 2022; 8(7):357. https://doi.org/10.3390/universe8070357
Chicago/Turabian StyleChela-Flores, Julian. 2022. "Instrumentation for Detecting Sulphur Isotopes as Biosignatures on Europa and Ganymede by Forthcoming Missions" Universe 8, no. 7: 357. https://doi.org/10.3390/universe8070357
APA StyleChela-Flores, J. (2022). Instrumentation for Detecting Sulphur Isotopes as Biosignatures on Europa and Ganymede by Forthcoming Missions. Universe, 8(7), 357. https://doi.org/10.3390/universe8070357