Painlevé Analysis of the Cosmological Field Equations in Weyl Integrable Spacetime
Abstract
1. Introduction
2. Field Equations
3. Lagrangian Description
Normal Coordinates
4. Singularity Analysis
4.1. Case
4.2. Case
5. Conclusions
Funding
Conflicts of Interest
References
- Salim, J.M.; Sautú, S.L. Gravitational theory in Weyl integrable spacetime. Class. Quantum Grav. 1996, 13, 353. [Google Scholar] [CrossRef]
- Tegmark, M.; Blanton, M.R.; Strauss, M.A.; Hoyle, F.; Schlegel, D.; Scoccimarro, R.; Vogeley, M.S.; Weinberg, D.H.; Zehavi, I.; Berlind, A.; et al. 3D power spectrum of galaxies from the SDSS. Astrophys. J. 2004, 606, 702. [Google Scholar] [CrossRef]
- Akrami, Y.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results–X. Constraints on inflation. Astron. Astrophys. 2020, 641, A10. [Google Scholar]
- Ratra, B.; Peebles, P.J.E. Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev. D 1998, 37, 3406. [Google Scholar] [CrossRef]
- Copeland, E.J.; Sami, M.; Tsujikawa, S. Dynamics of dark energy. Int. J. Mod. Phys. D 2006, 15, 1753. [Google Scholar] [CrossRef]
- Guth, A. Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D 1981, 23, 347. [Google Scholar] [CrossRef]
- Barrow, J.D.; Saich, P. Scalar-field cosmologies. Class. Quant. Grav. 1993, 10, 279. [Google Scholar] [CrossRef]
- Sotiriou, T.P. Gravity and Scalar Fields. In Modifications of Einstein’s Theory of Gravity at Large Distances; Papantonopoulos, E., Ed.; Springer: Cham, Switzerland, 2015; Volume 892. [Google Scholar]
- Chimento, L.P. Linear and nonlinear interactions in the dark sector. Phys. Rev. D 2010, 81, 043525. [Google Scholar] [CrossRef]
- Arevalo, F.; Bacalhau, A.P.R.; Zimdahl, W. Cosmological dynamics with nonlinear interactions. Class. Quant. Grav. 2012, 29, 235001. [Google Scholar] [CrossRef]
- Yang, W.; Pan, S.; Barrow, J.D. Large-scale stability and astronomical constraints for coupled dark-energy models. Phys. Rev. D 2018, 4, 043529. [Google Scholar] [CrossRef]
- Wang, J.S.; Wang, F.Y. Cosmological model of the interaction between dark matter and dark energy. Astron. Astrophys. 2014, 564, A137. [Google Scholar] [CrossRef][Green Version]
- Cai, R.-G.; Tamanini, N.; Yang, T. Reconstructing the dark sector interaction with LISA. JCAP 2017, 5, 031. [Google Scholar] [CrossRef]
- Yang, W.; Banerjee, N.; Paliathanasis, A.; Pan, S. Reconstructing the dark matter and dark energy interaction scenarios from observations. Phys. Dark Univ. 2019, 26, 100383. [Google Scholar] [CrossRef]
- Amendola, L. Coupled quintessence. Phys. Rev. D 2000, 62, 043511. [Google Scholar] [CrossRef]
- Amendola, L.; Quercellini, C. Tracking and coupled dark energy as seen by the Wilkinson Microwave Anisotropy Probe. Phys. Rev. D 2003, 68, 023514. [Google Scholar] [CrossRef]
- Pavón, D.; Zimdahl, W. Holographic dark energy and cosmic coincidence. Phys. Lett. B 2005, 628, 206. [Google Scholar] [CrossRef]
- del Campo, S.; Herrera, R.; Pavón, D. Interacting models may be key to solve the cosmic coincidence problem. JCAP 2009, 901, 020. [Google Scholar] [CrossRef]
- Wetterich, C. The cosmon model for an asymptotically vanishing time-dependent cosmological “constant”. Astron. Astrophys. 1995, 301, 321. [Google Scholar]
- Khoury, J.; Weltman, A. Chameleon cosmology. Phys. Rev. D 2004, 69, 044026. [Google Scholar] [CrossRef]
- Konstantinov, M.Y.; Melnikov, V.N. Numerical investigation of multidimensional cosmological models based on the Weyl integrable geometry. Russ. Phys. J. 1995, 38, 533. [Google Scholar] [CrossRef]
- Aguilar, J.M.; Romero, C.; Neto, J.F.; Almeida, T.S.; Formiga, J.B. (2+1)-Dimensional Gravity in Weyl Integrable Spacetime. Class. Quantum Grav. 2015, 32, 215003. [Google Scholar] [CrossRef]
- de Oliveira, H.P.; Salim, J.M.; Sautu, S.L. Nonsingular inflationary cosmologies in Weyl integrable space-time. Class. Quantum Grav. 1997, 14, 2833. [Google Scholar] [CrossRef]
- Fabris, J.C.; Salim, J.M.; Sautu, S.L. Inflationary cosmological solutions in Weyl integrable geometry. Mod. Phys. Lett. A 1998, 13, 953. [Google Scholar] [CrossRef]
- Aguila, R.; Aguilar, J.E.M.; Moreon, C.; Bellini, M. Present accelerated expansion of the universe from new Weyl-Integrable gravity approach. EPJC 2014, 74, 3158. [Google Scholar] [CrossRef]
- Gannouji, R.; Nandan, H.; Dadhich, N. FLRW cosmology in Weyl-Integrable Space-Time. JCAP 2011, 11, 051. [Google Scholar] [CrossRef]
- Miritzis, J. Acceleration in Weyl Integrable Spacetime. Int. J. Mod. Phys. D 2013, 22, 1350019. [Google Scholar] [CrossRef]
- Paliathanasis, A.; Leon, G. Integrability and cosmological solutions in Einstein-æther-Weyl theory. EPJC 2021, 81, 255. [Google Scholar] [CrossRef]
- Paliathanasis, A. Dynamical Analysis and Cosmological Evolution in Weyl Integrable Gravity. Universe 2021, 7, 468. [Google Scholar] [CrossRef]
- Paliathanasis, A. New exact and analytic solutions in Weyl Integrable cosmology from Noether symmetry analysis. 2022; submitted. [Google Scholar]
- Dimakis, N.; Christodoulakis, T.; Terzis, P.A. FLRW metric f (R) cosmology with a perfect fluid by generating integrals of motion. J. Geom. Phys. 2012, 77, 97. [Google Scholar] [CrossRef]
- de Ritis, R.; Marmo, G.; Platania, G.; Rubano, C.; Scudellaro, P.; Stornaiolo, C. New approach to find exact solutions for cosmological models with a scalar field. Phys. Rev. D 1990, 42, 1091. [Google Scholar] [CrossRef]
- Dialektopoulos, K.F.; Said, J.L.; Oikonomopoulou, Z. Classification of teleparallel Horndeski cosmology via Noether symmetries. EPCJ 2022, 82, 259. [Google Scholar] [CrossRef]
- Basilakos, S.; Tsamparlis, M.; Paliathanasis, A. Using the Noether symmetry approach to probe the nature of dark energy. Phys. Rev. D 2011, 83, 103512. [Google Scholar] [CrossRef]
- Zhang, Y.; Gong, Y.-G.; Zhu, Z.-H. Noether symmetry approach in multiple scalar fields scenario. Phys. Lett. B 2010, 688, 13. [Google Scholar] [CrossRef]
- Tsamparlis, M.; Paliathanasis, A. Symmetries of Differential Equations in Cosmology. Symmetry 2018, 10, 233. [Google Scholar] [CrossRef]
- Ramani, A.; Grammaticos, B.; Bountis, T. The Painlevé property and singularity analysis of integrable and non-integrable systems. Phys. Rep. 1989, 180, 159. [Google Scholar] [CrossRef]
- Paliathanasis, A.; Barrow, J.D.; Leach, P.G.L. Cosmological solutions of f(T) gravity. Phys. Rev. D 2016, 94, 023525. [Google Scholar] [CrossRef]
- Latta, J.; Leon, G.; Paliathanasis, A. Kantowski-Sachs Einstein-æther perfect fluid models. JCAP 2016, 1611, 051. [Google Scholar] [CrossRef]
- Cotsakis, S.; Kolionis, G.; Tsokaros, A. The Initial State of Generalized Radiation Universes. Phys. Lett. B 2013, 721, 1. [Google Scholar] [CrossRef]
- Cotsakis, S.; Kadry, S.; Kolionis, G.; Tsokaros, A. Asymptotic vacua with higher derivatives. Phys. Lett. B 2016, 755, 387. [Google Scholar] [CrossRef]
- Feix, M.R.; Géronimi, C.; Cairó, L.; Leach, P.G.L.; Lemmer, R.L.; Bouquet, S.X. On the singularity analysis of ordinary differential equations invariant under time translation and rescaling. J.Phys. A Math. Gen. 1997, 30, 7437. [Google Scholar] [CrossRef]
- Demaret, J.; Scheen, C. Painlevé singularity analysis of the perfect fluid Bianchi type-IX relativistic cosmological model. J. Math. Phys. A Math. Gen. 1996, 29, 59. [Google Scholar] [CrossRef]
- Christiansen, F.; Rugh, H.H.; Rugh, S.E. Non-integrability of the mixmaster universe. J. Phys. A Math. Gen. 1995, 28, 657. [Google Scholar] [CrossRef]
- Cotsakis, S.; Demaret, J.; Rop, Y.D.; Querella, L. Mixmaster universe in fourth-order gravity theories. Phys. Rev. D 1993, 48, 4595. [Google Scholar] [CrossRef] [PubMed]
- Faraoni, V.; Jose, S.; Dussault, S. Multi-fluid cosmology in Einstein gravity: Analytical solutions. Gen. Rel. Grav. 2021, 53, 109. [Google Scholar] [CrossRef]
- Ivanov, V.R.; Vernov, S.Y. Integrable cosmological models with an additional scalar field. EPJC 2021, 81, 985. [Google Scholar] [CrossRef]
- Miritzis, J.; Leach, P.G.L.; Cotsakis, S. Symmetries, Singularities and Integrability in Complex Dynamics IV: Painlevé Integrability of Isotropic Cosmologies. Grav. Cosm. 2000, 6, 282. [Google Scholar]
- Visser, M. Cosmography: Cosmology without the Einstein equations. Gen. Rel. Grav. 2005, 37, 1541. [Google Scholar] [CrossRef]
- Dunsby, P.K.S.; Luongo, O. On the theory and applications of modern cosmography, On the theory and applications of modern cosmography. IJGMMP 2016, 13, 1630002. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paliathanasis, A. Painlevé Analysis of the Cosmological Field Equations in Weyl Integrable Spacetime. Universe 2022, 8, 345. https://doi.org/10.3390/universe8070345
Paliathanasis A. Painlevé Analysis of the Cosmological Field Equations in Weyl Integrable Spacetime. Universe. 2022; 8(7):345. https://doi.org/10.3390/universe8070345
Chicago/Turabian StylePaliathanasis, Andronikos. 2022. "Painlevé Analysis of the Cosmological Field Equations in Weyl Integrable Spacetime" Universe 8, no. 7: 345. https://doi.org/10.3390/universe8070345
APA StylePaliathanasis, A. (2022). Painlevé Analysis of the Cosmological Field Equations in Weyl Integrable Spacetime. Universe, 8(7), 345. https://doi.org/10.3390/universe8070345