Painlevé Analysis of the Cosmological Field Equations in Weyl Integrable Spacetime
Abstract
:1. Introduction
2. Field Equations
3. Lagrangian Description
Normal Coordinates
4. Singularity Analysis
4.1. Case
4.2. Case
5. Conclusions
Funding
Conflicts of Interest
References
- Salim, J.M.; Sautú, S.L. Gravitational theory in Weyl integrable spacetime. Class. Quantum Grav. 1996, 13, 353. [Google Scholar] [CrossRef]
- Tegmark, M.; Blanton, M.R.; Strauss, M.A.; Hoyle, F.; Schlegel, D.; Scoccimarro, R.; Vogeley, M.S.; Weinberg, D.H.; Zehavi, I.; Berlind, A.; et al. 3D power spectrum of galaxies from the SDSS. Astrophys. J. 2004, 606, 702. [Google Scholar] [CrossRef] [Green Version]
- Akrami, Y.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results–X. Constraints on inflation. Astron. Astrophys. 2020, 641, A10. [Google Scholar]
- Ratra, B.; Peebles, P.J.E. Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev. D 1998, 37, 3406. [Google Scholar] [CrossRef]
- Copeland, E.J.; Sami, M.; Tsujikawa, S. Dynamics of dark energy. Int. J. Mod. Phys. D 2006, 15, 1753. [Google Scholar] [CrossRef] [Green Version]
- Guth, A. Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D 1981, 23, 347. [Google Scholar] [CrossRef] [Green Version]
- Barrow, J.D.; Saich, P. Scalar-field cosmologies. Class. Quant. Grav. 1993, 10, 279. [Google Scholar] [CrossRef]
- Sotiriou, T.P. Gravity and Scalar Fields. In Modifications of Einstein’s Theory of Gravity at Large Distances; Papantonopoulos, E., Ed.; Springer: Cham, Switzerland, 2015; Volume 892. [Google Scholar]
- Chimento, L.P. Linear and nonlinear interactions in the dark sector. Phys. Rev. D 2010, 81, 043525. [Google Scholar] [CrossRef] [Green Version]
- Arevalo, F.; Bacalhau, A.P.R.; Zimdahl, W. Cosmological dynamics with nonlinear interactions. Class. Quant. Grav. 2012, 29, 235001. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Pan, S.; Barrow, J.D. Large-scale stability and astronomical constraints for coupled dark-energy models. Phys. Rev. D 2018, 4, 043529. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.S.; Wang, F.Y. Cosmological model of the interaction between dark matter and dark energy. Astron. Astrophys. 2014, 564, A137. [Google Scholar] [CrossRef] [Green Version]
- Cai, R.-G.; Tamanini, N.; Yang, T. Reconstructing the dark sector interaction with LISA. JCAP 2017, 5, 031. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Banerjee, N.; Paliathanasis, A.; Pan, S. Reconstructing the dark matter and dark energy interaction scenarios from observations. Phys. Dark Univ. 2019, 26, 100383. [Google Scholar] [CrossRef] [Green Version]
- Amendola, L. Coupled quintessence. Phys. Rev. D 2000, 62, 043511. [Google Scholar] [CrossRef] [Green Version]
- Amendola, L.; Quercellini, C. Tracking and coupled dark energy as seen by the Wilkinson Microwave Anisotropy Probe. Phys. Rev. D 2003, 68, 023514. [Google Scholar] [CrossRef] [Green Version]
- Pavón, D.; Zimdahl, W. Holographic dark energy and cosmic coincidence. Phys. Lett. B 2005, 628, 206. [Google Scholar] [CrossRef] [Green Version]
- del Campo, S.; Herrera, R.; Pavón, D. Interacting models may be key to solve the cosmic coincidence problem. JCAP 2009, 901, 020. [Google Scholar] [CrossRef]
- Wetterich, C. The cosmon model for an asymptotically vanishing time-dependent cosmological “constant”. Astron. Astrophys. 1995, 301, 321. [Google Scholar]
- Khoury, J.; Weltman, A. Chameleon cosmology. Phys. Rev. D 2004, 69, 044026. [Google Scholar] [CrossRef]
- Konstantinov, M.Y.; Melnikov, V.N. Numerical investigation of multidimensional cosmological models based on the Weyl integrable geometry. Russ. Phys. J. 1995, 38, 533. [Google Scholar] [CrossRef]
- Aguilar, J.M.; Romero, C.; Neto, J.F.; Almeida, T.S.; Formiga, J.B. (2+1)-Dimensional Gravity in Weyl Integrable Spacetime. Class. Quantum Grav. 2015, 32, 215003. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, H.P.; Salim, J.M.; Sautu, S.L. Nonsingular inflationary cosmologies in Weyl integrable space-time. Class. Quantum Grav. 1997, 14, 2833. [Google Scholar] [CrossRef]
- Fabris, J.C.; Salim, J.M.; Sautu, S.L. Inflationary cosmological solutions in Weyl integrable geometry. Mod. Phys. Lett. A 1998, 13, 953. [Google Scholar] [CrossRef]
- Aguila, R.; Aguilar, J.E.M.; Moreon, C.; Bellini, M. Present accelerated expansion of the universe from new Weyl-Integrable gravity approach. EPJC 2014, 74, 3158. [Google Scholar] [CrossRef] [Green Version]
- Gannouji, R.; Nandan, H.; Dadhich, N. FLRW cosmology in Weyl-Integrable Space-Time. JCAP 2011, 11, 051. [Google Scholar] [CrossRef] [Green Version]
- Miritzis, J. Acceleration in Weyl Integrable Spacetime. Int. J. Mod. Phys. D 2013, 22, 1350019. [Google Scholar] [CrossRef] [Green Version]
- Paliathanasis, A.; Leon, G. Integrability and cosmological solutions in Einstein-æther-Weyl theory. EPJC 2021, 81, 255. [Google Scholar] [CrossRef]
- Paliathanasis, A. Dynamical Analysis and Cosmological Evolution in Weyl Integrable Gravity. Universe 2021, 7, 468. [Google Scholar] [CrossRef]
- Paliathanasis, A. New exact and analytic solutions in Weyl Integrable cosmology from Noether symmetry analysis. 2022; submitted. [Google Scholar]
- Dimakis, N.; Christodoulakis, T.; Terzis, P.A. FLRW metric f (R) cosmology with a perfect fluid by generating integrals of motion. J. Geom. Phys. 2012, 77, 97. [Google Scholar] [CrossRef] [Green Version]
- de Ritis, R.; Marmo, G.; Platania, G.; Rubano, C.; Scudellaro, P.; Stornaiolo, C. New approach to find exact solutions for cosmological models with a scalar field. Phys. Rev. D 1990, 42, 1091. [Google Scholar] [CrossRef]
- Dialektopoulos, K.F.; Said, J.L.; Oikonomopoulou, Z. Classification of teleparallel Horndeski cosmology via Noether symmetries. EPCJ 2022, 82, 259. [Google Scholar] [CrossRef]
- Basilakos, S.; Tsamparlis, M.; Paliathanasis, A. Using the Noether symmetry approach to probe the nature of dark energy. Phys. Rev. D 2011, 83, 103512. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Gong, Y.-G.; Zhu, Z.-H. Noether symmetry approach in multiple scalar fields scenario. Phys. Lett. B 2010, 688, 13. [Google Scholar] [CrossRef] [Green Version]
- Tsamparlis, M.; Paliathanasis, A. Symmetries of Differential Equations in Cosmology. Symmetry 2018, 10, 233. [Google Scholar] [CrossRef] [Green Version]
- Ramani, A.; Grammaticos, B.; Bountis, T. The Painlevé property and singularity analysis of integrable and non-integrable systems. Phys. Rep. 1989, 180, 159. [Google Scholar] [CrossRef]
- Paliathanasis, A.; Barrow, J.D.; Leach, P.G.L. Cosmological solutions of f(T) gravity. Phys. Rev. D 2016, 94, 023525. [Google Scholar] [CrossRef] [Green Version]
- Latta, J.; Leon, G.; Paliathanasis, A. Kantowski-Sachs Einstein-æther perfect fluid models. JCAP 2016, 1611, 051. [Google Scholar] [CrossRef] [Green Version]
- Cotsakis, S.; Kolionis, G.; Tsokaros, A. The Initial State of Generalized Radiation Universes. Phys. Lett. B 2013, 721, 1. [Google Scholar] [CrossRef] [Green Version]
- Cotsakis, S.; Kadry, S.; Kolionis, G.; Tsokaros, A. Asymptotic vacua with higher derivatives. Phys. Lett. B 2016, 755, 387. [Google Scholar] [CrossRef] [Green Version]
- Feix, M.R.; Géronimi, C.; Cairó, L.; Leach, P.G.L.; Lemmer, R.L.; Bouquet, S.X. On the singularity analysis of ordinary differential equations invariant under time translation and rescaling. J.Phys. A Math. Gen. 1997, 30, 7437. [Google Scholar] [CrossRef]
- Demaret, J.; Scheen, C. Painlevé singularity analysis of the perfect fluid Bianchi type-IX relativistic cosmological model. J. Math. Phys. A Math. Gen. 1996, 29, 59. [Google Scholar] [CrossRef]
- Christiansen, F.; Rugh, H.H.; Rugh, S.E. Non-integrability of the mixmaster universe. J. Phys. A Math. Gen. 1995, 28, 657. [Google Scholar] [CrossRef] [Green Version]
- Cotsakis, S.; Demaret, J.; Rop, Y.D.; Querella, L. Mixmaster universe in fourth-order gravity theories. Phys. Rev. D 1993, 48, 4595. [Google Scholar] [CrossRef] [PubMed]
- Faraoni, V.; Jose, S.; Dussault, S. Multi-fluid cosmology in Einstein gravity: Analytical solutions. Gen. Rel. Grav. 2021, 53, 109. [Google Scholar] [CrossRef]
- Ivanov, V.R.; Vernov, S.Y. Integrable cosmological models with an additional scalar field. EPJC 2021, 81, 985. [Google Scholar] [CrossRef]
- Miritzis, J.; Leach, P.G.L.; Cotsakis, S. Symmetries, Singularities and Integrability in Complex Dynamics IV: Painlevé Integrability of Isotropic Cosmologies. Grav. Cosm. 2000, 6, 282. [Google Scholar]
- Visser, M. Cosmography: Cosmology without the Einstein equations. Gen. Rel. Grav. 2005, 37, 1541. [Google Scholar] [CrossRef] [Green Version]
- Dunsby, P.K.S.; Luongo, O. On the theory and applications of modern cosmography, On the theory and applications of modern cosmography. IJGMMP 2016, 13, 1630002. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paliathanasis, A. Painlevé Analysis of the Cosmological Field Equations in Weyl Integrable Spacetime. Universe 2022, 8, 345. https://doi.org/10.3390/universe8070345
Paliathanasis A. Painlevé Analysis of the Cosmological Field Equations in Weyl Integrable Spacetime. Universe. 2022; 8(7):345. https://doi.org/10.3390/universe8070345
Chicago/Turabian StylePaliathanasis, Andronikos. 2022. "Painlevé Analysis of the Cosmological Field Equations in Weyl Integrable Spacetime" Universe 8, no. 7: 345. https://doi.org/10.3390/universe8070345
APA StylePaliathanasis, A. (2022). Painlevé Analysis of the Cosmological Field Equations in Weyl Integrable Spacetime. Universe, 8(7), 345. https://doi.org/10.3390/universe8070345